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Flow field of electrically conducting fluid around a rising sphere is discussed. An asymp-
totic solution at large Hartmann number Ha is proposed. A function with a singularity
called MHD oseenlet is derived. It gives double wake unique to MHD flows. Its flow rate
across horizontal plane is a finite value in contrast with divergent flow rate for stokeslet
and zero flow rate for source doublet. We obtain the flow field around a sphere in a
series of MHD oseenlet and its derivatives. Fluid in conical-shape near wake moves with
the rising sphere. The vertical height ±0.1Haa of the near wake is much larger than its
radius a. In far wake, the flow field is reduced to MHD oseenlet.

1. Introduction It is often required to prevent movement of droplets or
particles on processing of certain types of alloys. For monotectic alloys in which
liquid-liquid separation occurred, it has been generally recognized that homoge-
neous solidified structure was hardly obtained by conventional solidification pro-
cessing, since liquid particles easily segregated due to the density difference and
interfacial energy difference at solidifying front [1]. Microgravity condition is used
to prevent the gravitational segregation during the solidification. For example,
homogeneous solidified structure was produced under the microgravity condition
to improve the superconducting properties [2].

Applying uniform magnetic field is one of the promising methods to suppress
movement of particles or droplets in molten metal (Fig. 1). Even if a particle
moves parallel to the magnetic field, the flow around it traverses the magnetic field.
Consequently, Lorentz force acts on the flow. Therefore, the terminal velocity of
a rising or sedimental particle is a function of magnetic flux density.

Theoretical prediction of the terminal velocity U0 of a sphere under a uniform

Figure 1: Rising sphere in a molten metal under a vertical uniform magnetic field.



Figure 2: Hartmann number Ha of the flow around a sphere under 10 [T] magnetic
flux density.

magnetic field is 2
3a

2g(ρ` − ρs)η
−1Ha−1

[
1 +O(Ha−1)

]
when Hartmann number

Ha is much larger than 1 [3]-[5]. Here, g, a, ρs, η, ρ`, denote the gravity, radius and
density of the sphere, viscosity and density of the fluid, respectively. Hartmann
number Ha is defined as

Ha =
√
σ/η B0a, (1)

where B0, σ denote magnetic flux density and electric conductivity of the fluid.
This terminal velocity is a O(Ha−1) small value compared with the terminal veloc-
ity without magnetic field. For example, 10T magnetic field dramatically decrease
the terminal velocity of rising spheres in lead when the sphere diameter is greater
than 0.1mm (Fig. 2).

We discuss the flow field around a rising sphere at large Hartmann number,
small Reynolds number and small magnetic Reynolds number. Considering a
very small sphere compared with the vessel, we neglect the effect of the vessel
walls. Chester et al. [3],[4] studied the same problem and predict the drag of the
sphere. I. D. Chang [5] gave a flow field solution including an integral of Bessel
functions. Furthermore, Kyrlidis et al. [6] showed flow field solutions by numerical
simulation. In this paper, we reconstruct the flow field solution in a series of a
singularity (MHD oseenlet) and its derivatives.

2. Balance of forces We consider a flow of an electrically conducting
fluid when magnetic Reynolds number (Rm = σµ0U0a) is much smaller than 1.
Consequently, the induced magnetic field by the current in the fluid is negligibly
small compared with the imposed magnetic field. The imposed magnetic field is
static and uniform. Its direction is aligned with the gravity. It is denoted by
(0, 0, B0) in the cylindrical coordinate system r̂θ̂ẑ. The governing equations for
axisymmetric flow are given as follows.

1

r̂

∂r̂ûr
∂r̂

+
∂ûz
∂ẑ

= 0, (2)

−∂p̂
∂r̂

+ η

[
1

r̂

∂

∂r̂

(
r̂
∂ûr
∂r̂

)
+
∂2ûr
∂ẑ2

− ûr
r̂2

]
+ ̂θ B0 = 0, (3)
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−∂p̂
∂ẑ

+ η

[
1

r̂

∂

∂r̂

(
r̂
∂ûz
∂r̂

)
+
∂2ûz
∂ẑ2

]
− ρ` g = 0, (4)

̂r = 0, ̂θ = −σûrB0, ̂z = 0, (5)

where (ûr, 0, ûz), (0, ĵθ, 0) and p̂ denote velocity, current density and pressure,
respectively. Considering a flow at small Reynolds number (Re = ρ`U0 a/η � 1),
we neglect inertia terms in the momentum equation (3), (4). Current density has
only θ component, and there is no electric field. Therefore, conductivity of the
sphere has no effect to the flow. Boundary conditions at the sphere surface and
infinity are given as follows.

ûr = 0, ûz = U0 at r̂2 + ẑ2 = a2,
ûr → 0, ûz → 0 for r̂2 + ẑ2 → ∞.

(6)

Let us introduce dimensionless variables:

r̂ = ar̃, ẑ = az̃, ûr = U0ũr, ûz = U0ũz, p̂ = p0 − ρ` gz + σaB0
2U0p̃. (7)

We have the following dimensionless equations from Eqs. (2)–(6).

1

r̃

∂r̃ũr
∂r̃

+
∂ũz
∂z̃

= 0, (8)

−∂p̃
∂r̃

+
1

Ha2

[
1

r̃

∂

∂r̃

(
r̃
∂ũr
∂r̃

)
+
∂2ũr
∂z̃2

− ũr
r̃2

]
− ũr = 0, (9)

−∂p̃
∂z̃

+
1

Ha2

[
1

r̃

∂

∂r̃

(
r̃
∂ũz
∂r̃

)
+
∂2ũz
∂z̃2

]
= 0, (10)

ũr = 0, ũz = 1 at r̃2 + z̃2 = 1,
ũr → 0, ũz → 0 for r̃2 + z̃2 → ∞.

(11)

We propose an asymptotic solution for Ha� 1.
If we assume ũr = O(1), ũz = O(1) and neglect O(Ha−2) small terms in the

momentum equation (9), (10), we have no solution satisfying boundary conditions.
This fact suggest that the characteristic length-scale in z̃ direction is much larger
than the sphere radius 1. Thus, we compress the vertical coordinate following the
analyses by Chang [5] and Kyrlidis et al. [6]:

r̃ = r, z̃ = Haz, ũr = Ha−1ur, ũz = uz, p̃ = Ha−1p. (12)

Neglecting O(Ha−2) small terms after replacing variables in Eqs.(8)-(10), we ob-
tain the following simplified equations.

1

r

∂rur
∂r

+
∂uz
∂z

= 0, (13)

−∂p
∂r

− ur = 0, −∂p
∂z

+
1

r

∂

∂r

(
r
∂uz
∂r

)
= 0. (14)

Lorentz force balances with the horizontal component of the pressure gradient,
while the viscous force due to share flow balances with the vertical component of
the pressure gradient.

We introduce Stokes stream function ψ in order to reduce the number of
equations:

ur = −1

r

∂ψ

∂z
, uz =

1

r

∂ψ

∂r
. (15)
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Equation (13) is automatically satisfied. Taking rotation of Eqs. (14) and substi-
tuting Eq.(15) into it, we obtain the following equation without p.[(

∂2

∂r2
− 1

r

∂

∂r

)2

− ∂2

∂z2

]
ψ = 0. (16)

Boundary conditions are

ψ = r2/2 at z = 0, 0 ≤ r ≤ 1, (17)

ψ = 0, ∂ψ/∂r = 0 at r = 0,
∂ψ/∂z → 0 for z → ±∞.

(18)

In this coordinate system, the sphere surface r̃2 + z̃2 = 1 is reduced to the disk
surface z = ±0, 0 ≤ r ≤ 1.

3. Discussion about property of the solution We introduce the fol-
lowing variables in order to examine property of the function ψ.

f =

(
∂2

∂r2
− 1

r

∂

∂r

)
ψ, g =

∂ψ

∂z
. (19)

Equation (16) is reduced to the following equations.[(
∂2

∂r2
− 1

r

∂

∂r

)
− ∂

∂z

]
(f + g) = 0,

[(
∂2

∂r2
− 1

r

∂

∂r

)
+

∂

∂z

]
(f − g) = 0. (20)

The parabolic differential equations (20) show that the function (f + g) spa-
tially develops upward, while the function (f − g) spatially develops downward.
Considering the problem in infinite space, there is no disturbance coming from
infinity. All the disturbances are submitted from the sphere and spatially develop
upward and downward according to Eqs.(20).

From the above discussion, we decide an additional boundary condition:

uz = 0 at z = 0, r > 1, (21)

because no disturbance is submitted sideward in the horizontal plane including the
sphere. The discontinuity of uz at (r, z) = (1, 0) is caused by the approximation
neglecting O(Ha−2) small terms. This suggests existence of a thin boundary layer
around this point [5],[6].

The above thin boundary layer has negligibly small contribution to flow rate.
Consequently, Eq.(21) is reduced to

ψ = 1/2 at z = 0, r > 1. (22)

Furthermore, taking account of ur = 0 at infinity, the following condition is re-
quired for arbitrary z.

ψ → 1/2 for r → ∞. (23)

The boundary conditions for ψ are given by Eqs.(17), (18), (22) and (23).
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4. MHD Oseenlet The following solution satisfies Eq.(16).

ψm =
1

2

[
1− exp

(
− r2

4|z|

)]
. (24)

This solution satisfies boundary conditions (18), (22) and (23), though it does not
satisfy the other one Eq.(17). This solution gives asymptotic behavior of far wake
at |z| � 1 [5], as is shown in section 5.

We derive velocity, pressure and current density from Eq.(24) as follows.

urm =
r

8z|z|
exp

(
− r2

4|z|

)
, uzm =

1

4|z|
exp

(
− r2

4|z|

)
,

pm =
1

4z
exp

(
− r2

4|z|

)
, jθm = − r

8z|z|
exp

(
− r2

4|z|

)
,

(25)

where dimensionless current density jθ is defined as ̂θ = (ση)1/2a−1U0jθ. Fig-
ure 3 – 6 shows streamlines, distributions of uzm, urm and pm, respectively. Left-
hand side of these figures are mirror extensions for intuition. Distribution of jθm
is the same as that of urm except for the sign. The velocity uzm above or below
the rising body decrease with 1

4 |z|
−1 in far wake |z| � 1. The location at the

maximum |jθm| in each horizontal plane is r =
√
2|z|.

The solution (24) and (25) is one of the singularities such as stokeslet, oseenlet
and source doublet [7]. This function is practically equal to the superposition of
two oseenlets:

ψo+ + ψo− =

(
1 +

z̃√
r̃2 + z̃2

)[
1− exp

(
−k

√
r̃2 + z̃2 + kz̃

)]
+

(
1− z̃√

r̃2 + z̃2

)[
1− exp

(
−k

√
r̃2 + z̃2 − kz̃

)]
= 2− 2 exp

(
−k

√
r̃2 + z̃2

)[
cosh(kz̃) +

z̃√
r̃2 + z̃2

sinh(kz̃)

]
.

In case of ordinary oseenlet, the parameter k is replaced with a half of Reynolds
number. Here, we replace k with Ha/2. Using the compressed coordinate (12), we
obtain the following approximation.

ψo+ + ψo−

2
' 1− exp

[
−Ha

2|z|
2

(
1 +

r2

2Ha2z2

)]
×
[
cosh

(
Ha2z

2

)
+

z

|z|

(
1− r2

2Ha2z2

)
sinh

(
Ha2z

2

)]
= 1− exp

(
− r2

4|z|

)[
1− r2

2Ha2z|z|
exp

(
−Ha

2|z|
2

)
sinh

(
Ha2z

2

)]
' 1− exp

(
− r2

4|z|

)
, (26)

where Ha is assumed to be much larger then 1. According to the above relation,
we call the solution (24) and (25) “MHD oseenlet.”

MHD oseenlet gives double wake as shown in Fig. 3. Double wake along the
magnetic field is unique to MHD flows [8]. It is noticeable that the flow rate of
MHD oseenlet across any horizontal plane is a finite value π (πa2U0 in dimensional
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Figure 3: Streamlines of MHD oseenlet.
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Figure 4: Distribution of uzm of MHD
oseenlet. (White: smaller than 0.01,
Black: greater than 0.2.)
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Figure 5: Distribution of urm of MHD
oseenlet. (White: smaller than -0.1,
Black: greater than 0.1.)
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Figure 6: Distribution of pm of MHD
oseenlet. (White: smaller than -0.2,
Black: greater than 0.2.)

form). This fact contrasts with divergent flow rate for stokeslet and zero flow rate
for source doublet.

In the same manner as the other singularities, the derivatives of MHD oseenlet

ψ
(n)
m =

∂n

∂zn
exp

(
− r2

4|z|

)
(n = 1, 2, 3, · · ·) (27)

also satisfy Eq.(16). Furthermore, non-axisymmetric solution

uz
(k,m,n)
m =

∂k+m+n

∂xk∂ym∂zn
1

|z|
exp

(
−x

2 + y2

4|z|

)  k = 1, 2, 3, · · ·
m = 1, 2, 3, · · ·
n = 1, 2, 3, · · ·

 (28)

satisfy the following equation:[(
∂2

∂x2
+

∂2

∂y2

)2

− ∂2

∂z2

]
uz = 0, (29)

which is a replacement of Eq.(16). Linear combination of MHD oseenlet and its
derivatives constructs solutions for various boundary conditions.
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Figure 7: Streamlines of near wake.
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Figure 8: Distribution of uz in near
wake (white: uz < 0, Black: uz > 1).

5. Near wake of the rising sphere We assume the solution around a
sphere as follows.

ψ =
1

2
−

∞∑
n=0

c+n
2

∂n

∂zn
exp

(
− r

2

4z

)
, uz =

∞∑
n=0

c+n
∂n

∂zn
1

4z
exp

(
− r

2

4z

)
for z > 0,

ψ =
1

2
−

∞∑
n=0

c−n
2

∂n

∂zn
exp

(
r2

4z

)
, uz =

∞∑
n=0

c−n
∂n

∂zn
(−1)

4z
exp

(
r2

4z

)
for z < 0.

(30)
This solution satisfies the governing equation (16) or (29). In addition, the bound-
ary condition (17) or

lim
|z|→0

uz = 1 for 0 ≤ r ≤ 1 (31)

is required. Each term of the series in Eq.(30) has a singular point at (r, z) = (0, 0).
Consequently, we can not take termwise limit for |z| → 0. Therefore, we require
the following alternative condition on determination of the constant c+n , c

−
n .

lim
|z|→0

∫ 1

0

uzr
2k+1 dr =

∫ 1

0

r2k+1 dr (k = 0, 1, 2, · · ·). (32)

Substituting Eq.(30) into (32), We obtain c+n and c−n as follows.

c+n =
1

22nn!(n+ 1)!
, c−n =

(−1)n

22nn!(n+ 1)!
. (33)

Figure 7 and 8 show streamlines and distribution of uz around the sphere.
(The sphere is reduced to a disk at z = 0, 0 ≤ r ≤ 1 in the compressed coordinate
r, z.) On drawing these figures, we truncate the series after 51 terms. Therefore,
these figures include remarkable truncation error in the vicinity of z = 0. There
is a cylindrical share layer at r = 1, |z| � 1 as mentioned in Ref.[3]–[6]. Velocity
uz in −0.1(1− r2) < z < 0.1(1− r2) is greater than 0.9. Here, we call this region
the conical-shape near wake. Fluid in the near wake moves at almost the same
velocity with the rising sphere. In dimensional space r̂θ̂ẑ, vertical height ±0.1Haa
of the conical-shape near wake is much larger than its radius a.

The nth derivative of MHD oseenlet has the factor |z|−n. Consequently, higher
order derivatives rapidly decrease with |z|. Therefore, the flow field is reduced to
MHD oseenlet (the leading term of the series (30) ) in far wake |z| � 1. This
result agrees with the result of Chang [5].
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6. Drag of the sphere We try to derive the drag of the sphere from
the above solution. Let us integrate the left-hand side of Eq.(14) over a volume
0 ≤ r ≤ r1, −z1 ≤ z ≤ z1 which includes the sphere. Using Gauss’s divergence
theorem, we obtain

−
∫ r1

0

2π(p)z=z1r dr +

∫ r1

0

2π(p)z=−z1r dr +

∫ z1

−z1

2π

(
r
∂uz
∂r

)
r=r1

dz. (34)

This shows z component of inward momentum flux to the volume. In case of
steady flow, the sphere sucks the same amount of momentum flux from the fluid
around it. (The coordinate system moving with the sphere is suitable for this
discussion. But, we omit coordinate transformation because this problem has no
essential difference between the moving system and the rest system.) Because
drag D is outward momentum flux form the sphere to the fluid, −D is equal to
Eq.(34). Velocity uz is an even function of z, while pressure p is an odd function
of z. Therefore,

D = 4π

∫ r1

0

(p)z=z1r dr − 4π

∫ z1

0

(
r
∂uz
∂r

)
r=r1

dz. (35)

Taking account of p = uz for z > 0, we obtain

D = −2π

[
exp

(
− r2

4z1

)]r1
0

+ 2π

[
exp

(
−r1

2

4z

)]z1
0

= 2π (36)

from the near wake solution (30), where derivatives of MHD oseenlet have no
contribution. Drag D̂ in dimensional form is 2πηaU0Ha. This result is identical
to the result of Chester [3].

7. Conclusions Flow field of electrically conducting fluid around a rising
sphere is discussed when uniform magnetic field is aligned with the gravity. We
propose an asymptotic solution for Ha� 1.

• We derive MHD oseenlet from a simplified momentum equation with Lorentz
force term. It is practically equal to the superposition of two ordinary oseen-
lets.

• MHD oseenlet gives double wake unique to MHD flows. Flow rate of MHD
oseenlet across any horizontal plane is a finite value πa2U0. This fact contrasts
with divergent flow rate for stokeslet and zero flow rate for source doublet.

• We obtain the flow field around a sphere in form of a series of MHD oseenlet
and its derivatives.

• The fluid in the conical-shape near wake moves with the rising sphere. The
vertical height ±0.1Haa of the near wake is much larger than its radius a.

• Flow field is reduced to MHD oseenlet in far wake.
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