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Abstract We classify Jordan G-tori, where G is any torsion-free abelian group.
Using the Zelmanov prime structure theorem, such a class divides into three
types, the Hermitian type, the Clifford type, and the Albert type. We concretely
describe Jordan G-tori of each type.
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1 Introduction

It is a well-known fact that the concept of a “Zn-torus” is of great importance
in the context of classification of Lie tori. This concept was originally defined
by Yoshii [12]. With the appearance of more general extensions of affine Kac-
Moody Lie algebras, such as locally extended affine Lie algebras and invariant
affine reflection algebras, one naturally extends the concept of a Zn-torus to a
G-torus for an abelian group G, where for the algebras under consideration G
is almost always torsion free. In this work, we classify Jordan G-tori, where G
is a torsion free abelian group.

First, we discuss associative G-tori, using the concept of cocycles. Then we
show that a Jordan G-torus is strongly prime, and so one can use the Zelmanov
prime structure theorem [8]. Thus, such a class divides into three types, the
Hermitian type, the Clifford type, and the Albert type. We classify each type
using the result of associative G-tori and similar methods in [11].

This paper is organized as follows. In Section 2, we provide preliminary
concepts, including direct limits and direct unions, pointed reflection subspaces,
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and (involutorial) associative G-tori. In Section 3, using a direct union
approach, we show that a Jordan G-tori J of Hermitian type has one of
involution, plus or extension types (see Definition 3.4) and that J is a direct
union of Jordan tori of Hermitian type, where J and its direct union components
have the same involution, plus or extension type, see Theorem 3.7. In Section
4, we show that a Jordan G-torus J of Clifford type with support S and central
grading group Γ, is graded isomorphic to a Clifford G-torus J(S,Γ, {aε}ε∈I),
introduced explicitly in Example 4.2, for some nonempty index set I and choices
of aε ∈ F×, ε ∈ I, see Theorem 4.3. In Section 5, the final section, we first fully
characterize associative G-tori of central degree 3. Then for two subgroups Δ
and Γ of G satisfying

3G � Γ ⊆ Δ ⊆ G, dimZ3(G/Γ) = 3, dim(Δ/Γ) = 2,

we associate to the triple (G,Δ,Γ), a Jordan algebra At which turns out to be a
Jordan G-torus of Albert type, called an Albert G-torus associated to the triple
(G,Δ,Γ), see Example 5.8. Then we proceed with showing that given a Jordan
G-torus J of Albert type with central grading group Γ, there exists a subgroup
Δ of G such that the groups G, Δ, and Γ satisfy the above interactions and
that J is graded isomorphic to the Albert G-torus At, constructed from the
triple (G,Δ,Γ), see Theorem 5.9.

2 Preliminaries

Throughout this work, F is a filed of characteristic zero and G is an abelian
group. All algebras assumed over F and are unital, unless otherwise mentioned.
For a subset X of an abelian group, by 〈X〉 we mean the subgroup generated
by X. In a graded algebra we speak of invertible (homogeneous) elements,
whenever this notion is defined. The support of a G-graded algebra T, denoted
by supp(T ), is by definition the set of those elements of G for which the
corresponding homogeneous space is nonzero. For a set X, we denote by MX

the class of all finite subsets of X. For an associative algebra A , we denote the
corresponding plus algebra by A +; namely, A + has A as its ground vector
space, with Jordan product

a ◦ b :=
1
2

(ab+ ba).

If A is equipped with an involution θ, then

H(A , θ) := {a ∈ A | θ(a) = a}
is a subalgebra of A +. The field of rational numbers will be denoted by Q.
To indicate that an example is concluded, we put the symbol ♦. We refer the
reader to [7] or [13] for some terminologies on nonassociative algebras used in
the sequel, such as prime, strongly prime, degree, Jordan domain.



Jordan tori for a torsion free abelian group 479

2.1 A brief review of direct limits and direct unions

A set I together with a partially ordering �, referred to (I,�), is called a
directed set if for each two elements i, j ∈ I, there is t ∈ I with i � t and j � t.
Suppose that C is a category and (I,�) is a directed set. A family {Ci | i ∈ I}
of objects of C together with a family {fi,j | i, j ∈ I; i � j} of morphisms
fi,j of Ci to Cj (i, j ∈ I, i � j) is called a direct system in C if for every pair
(i, j) with i � j, fii = 1Ci and fk,i = fk,j ◦ fj,i for i � j � k. A direct limit of
the direct system ({Ci}i∈I , {fi,j}i�j) is an object C together with morphisms
ϕi : Ci → C (i ∈ I) satisfying the following two conditions:

• ϕi = ϕj ◦ fi,j for i, j ∈ I with i � j;
• for any other object D and morphisms ψi (i ∈ I) from Ci to D with

ψi = ψj ◦ fi,j for i, j ∈ I with i � j, there exists a unique morphism ψ from C
to D such that ψ ◦ ϕi = ψi for i ∈ I.

If a direct limit of a direct system ({Ci}i∈I , {fi,j}i�j) in a category C exists, it
is unique up to equivalence, so we refer to as the direct limit and denote it by
lim−→Ci. Suppose that C is the direct limit of a direct system ({Ci}i∈I , {fi,j}i�j)
in a concrete category C such that each Ci is a subset of C and for i, j ∈ I
with i � j, fi,j is the inclusion map, then we say that C is the direct union of
({Ci}i∈I , {fi,j}i�j) if C = ∪i∈ICi.

2.2 Pointed reflection subspaces

In this subsection, we recall the notion of a reflection subspace and record
certain properties of reflection subspaces which will be needed in the sequel.

Definition 2.1 A symmetric reflection subspace of an additive abelian group
G is a subset S of G satisfying 〈S〉 = G and S−2S ⊆ S. A symmetric reflection
subspace is called a pointed reflection subspace (PRS) if 0 ∈ S. For details on
symmetric reflection subspaces, we refer the interested reader to [6] and [2].

If the group G is free abelian of finite rank, a symmetric reflection subspace
in G is also called a translated semilattice in G. In this case, a pointed reflection
subspace is called a semilattice. A non-trivial interesting feature of semilattices
is that any semilattice in G contains a Z-basis of G (see [1, Proposition II.1.11]).

The following lemma, whose proof is straightforward, gives a characteriza-
tion of a PRS in terms of its finitely generated pointed reflection subspaces.

Lemma 2.2 (i) Let S be a PRS in G. Then the following hold.
(a) For T ⊆ S, ST := S∩〈T 〉 is a PRS in 〈T 〉. In particular, if G is torsion

free and T is finite, then ST is a semilattice in 〈T 〉.
(b) S is the union of {ST }T∈MS

.

(ii) Let S be a family of subsets of G such that via the inclusion S is
a directed set, and that each element of S is a PRS in its Z-span in G. If
G = ∪S∈S 〈S〉, then the union ∪S∈SS is a PRS in G.

2.3 G-tori

In this subsection, we study G-tori, where G is assumed to be a torsion free
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abelian group. Since G can be naturally imbedded in G ⊗Z Q, we can make
sense of σ/n for σ ∈ G and n ∈ Z \ {0}. We recall that since G is torsion free,
it is an ordered group in the sense of [5, p. 94].

Definition 2.3 [11, Definition 3.1] A G-graded algebra J =
∑

σ∈G J
σ

satisfying conditions
(T1) G = 〈σ ∈ G | Jσ 
= 0〉,
(T2) all nonzero homogeneous elements of J are invertible,
(T3) dimF(Jσ) � 1 for all σ ∈ G,

is called a G-torus. It is called of strong type, if J is strongly graded, namely,
JσJτ = Jσ+τ for all σ, τ ∈ G. The G-torus J is called an associative or a Jordan
G-torus, if J is associative or Jordan, respectively.

The proof of the following lemma is straightforward.

Lemma 2.4 Suppose that G is an abelian group and Γ is a nonempty index
set. Suppose that {Gγ | γ ∈ Γ} is a class of subgroups of G such that G =
∪γ∈ΓGγ and such that Γ is a directed set under the ordering “�” defined by
γ � η if Gγ is a subgroup of Gη (γ, η ∈ Γ). If ({Aγ}, {ϕγ,η}) is a direct system
of associative algebras and algebra homomorphisms with direct limit (A , {ϕγ})
such that

• each Aγ is equipped with a G-grading Aγ = ⊕g∈G(Aγ)g with supp(Aγ) =
Gγ and dim((Aγ)g) � 1 for all g ∈ G,

• each ϕγ,η is a G-graded homomorphism,
• each ϕγ is monomorphism,

then A as an algebra is equipped with a G-grading A = ⊕g∈GA g with supp(A )
= G and dim(A g) = 1 for all g ∈ G. Moreover, if each Aγ is an associative
Gγ-torus, then A is an associative G-torus.

Lemma 2.5 Let T be a Jordan or an associative G-torus. Let M be the set
of all finite subsets of supp(T ) containing a fixed finite subset m0 of supp(T ).
For m ∈ M , let

Gm := 〈m〉, Tm :=
∑

σ∈Gm

T σ.

Then we have the following :
(i) G = ∪m∈MGm;
(ii) for m ∈ M , Tm is a Gm-torus, and T = ∪m∈MTm;
(iii) supp(T ) = ∪m∈M supp(Tm);
(iv) supp(T ) is a PRS in G;
(v) T is domain, in particular, it has no nilpotents, and it is strongly prime

if T is Jordan;
(vi) a nonzero element of T is invertible if and only if is homogeneous;
(vii) if 0 
= x ∈ T and xm ∈ T σ for some σ ∈ G, m ∈ Z, then σ ∈ mG and

x ∈ T σ/m.
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Proof The proof of (i)–(iii) is immediate. By [11, Lemma 3.5], for each m ∈ M ,
supp(Tm) is a PRS in Gm. Moreover, by (T1),

G = 〈supp(T )〉 =
⋃

m∈M

Gm.

So by part (iii) and Lemma 2.2 (ii), supp(S) is a PRS in G, proving (iv). The
proof of (v)–(vii) is well known. �

We know from Lemma 2.5 that the center Z(T ) of T is an associative
commutative homogeneous subalgebra of T, as well as an integral domain. In
particular, Γ := supp(Z(T )) is a subgroup of G and Z(T ) is Γ-graded. It follows
that Z(T ) is isomorphic to a commutative twisted group algebra. The group Γ
is called the central grading group of T. Let Z be the field of fractions of Z, and
consider T = Z ⊗Z T. If T is an associative (Jordan) algebra, then by Lemma
2.5 (v) and [11, 2.6], T is an associative (Jordan) algebra over Z which is also
an integral domain.

Here is a generalization of [11, Lemma 3.9] to torsion free case.

Lemma 2.6 Let G be a torsion free abelian group, and let T = ⊕α∈GTα be
a Jordan or an associative torus. Let Z = Z(T ) be the center of T with the
central grading group Γ. Let : G→ G/Γ be the canonical map. For α ∈ G, let

Tα := ZTα, Tα := Z ⊗Z ZTα.

Then
(i) ZTα = ZTβ for all α, β ∈ G with α ≡ β mod Γ;
(ii) T = ⊕α∈G/ΓTα is a free Z-module and a G/Γ-graded algebra over Z

with rankTα � 1 for all α ∈ G/Γ;
(iii) T = ⊕α∈G/ΓTα is a G/Γ-graded torus over Z with

dimZ T = |(suppT )/Γ|;

(iv) the quotient group G/Γ cannot be a nontrivial cyclic group.

Proof The proof of (i)–(iii) is straightforward, considering the fact that for
γ ∈ Γ and α ∈ G, Tγ ⊆ Z and Tα+γ = TγTα. By (iii), T is a G/Γ-torus. If G/Γ
is cyclic, T is also commutative and associative. Thus, T embeds in T and so
Z = T and Γ = Λ. This proves (iv). �
2.4 Associative G-tori

Let G be an abelian group. Symbols σ, τ, μ always denote elements of G. Let
A = ⊕σ∈GA σ be an associative G-torus. Since homogeneous non-zero elements
of A are invertible, we have

A σA τ = A σ+τ , σ, τ ∈ supp(A ).



482 Saeid AZAM et al.

It follows that supp(A ) is a subgroup of G and so by (T1), supp(A ) = G. For
σ ∈ G, we choose 0 
= xσ ∈ A σ. Then A = ⊕σ∈GFxσ. Define λ : G ×G → F×
by

xσxτ = λ(σ, τ)xσ+τ , σ, τ ∈ G. (2.1)

Associativity of A implies that λ is a 2-cocycle, namely, for σ, τ, μ ∈ G,

λ(σ + τ, μ)λ(σ, τ) = λ(σ, τ + μ)λ(τ, μ). (2.2)

Conversely, let λ : G×G→ F× be a 2-cocycle. Consider the abstract vector
space A := ⊕σ∈GFxσ with basis {xσ | σ ∈ G}. Then the multiplication on A
induced from (2.1) makes A into an associative G-torus with supp(A ) = G. We
denote A by (Ft(G), λ) and call it the associative G-torus determined by the 2-
cocycle λ. We note that the associative G-torus (Ft[G], λ) can be characterized
as the unital associative algebra defined by the set of generators {xσ | σ ∈ g}
and relations (2.1). The associative G-torus (Ft[G], λ) is called elementary
if img(λ) ⊆ {1,−1}. In the literature, A = (Ft[G], λ) is also known as the
twisted group algebra determined by λ (see [10] or [9]). We summarize the
above discussion as follows.

Lemma 2.7 Let G be an abelian group, and let A be an associative algebra.
Then A is a G-torus if and only if A ∼=G (Ft[G], λ) for a 2-cocycle λ.

Let A = (Ft[G), λ) be an associative G-torus. Note that for σ, τ ∈ G, xσ

and xτ commute up to a “twisting”, namely,

xσxτ = λt(σ, τ)xτxσ, (2.3)

where
λt(σ, τ) := λ(σ, τ)λ(τ, σ)−1. (2.4)

We clearly have
λt(σ, σ) = 1, λt(σ, τ) = λt(τ, σ)−1.

Moreover, one can check that λt : G×G→ F× is a group bihomomorphism.

Remark 2.8 Suppose in the above discussion that we replace the basis {xσ |
σ ∈ G} of A by another basis {yσ | σ ∈ G}. Then for σ ∈ G, yσ = d(σ)xσ ,
where d : G → F× is a map. Denote the corresponding 2-cocycle as in (2.1) by
λ̂ : G×G→ F×. Then we have

λ̂(σ, τ) = d(σ)d(τ)d(σ + τ)−1λ(σ, τ).

Therefore, λ and λ̂ are equivalent, up to a coboundary. That is, the product on
A is uniquely determined up to H2(G,F×) (see [9, §1]).
Example 2.9 (Quantum tori) Let Λ be a free abelian group of rank |I|, where
I is a nonempty index set with a fixed total ordering < . Let A = (Ft[Λ], λ) be
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a Λ-torus determined by a 2-cocycle λ. We fix a basis {σi | i ∈ I} of Λ, and set
qij = λt(σi, σj). Since λt is a bihomomorphism, for

σ =
∑
i∈I

niσi, τ =
∑
i∈I

miσi,

we have
λt(σ, τ) =

∏
i,j

q
nimj

ij ,

with qij = q−1
ji and qii = 1 for all i, j ∈ I. We note that as ni’s and mi’s are

zero almost for all i, the above product makes sense. In the literature, a matrix
(qij)i,j∈I (possibly of infinite rank), satisfying qii = 1 and qij = q−1

ji for all
i, j, is called a quantum matrix. A quantum matrix q is called elementary if
qij ∈ {±1} for all i, j. For i ∈ I, we set yi := xσi . Also for σ =

∑
i∈I niσi, we

set yσ = 1 if σ = 0 and if σ 
= 0, we set yσ := y
ni1
i1

· · · ynik
ik
, where i1 < · · · < ik

are all indices for which nij 
= 0. Then we have

A =
⊕
σ∈Λ

Fyσ,

and for all i, j ∈ I,

yiyj = qijyjyi, yiy
−1
i = y−1

i yi = 1. (2.5)

The Λ-torus A can be described as the unital associative algebra defined by
generators 1, yi, y

−1
i and relations (2.5), induced from the quantum matrix q :=

(qij). In this case, we denote A by A = (Ft[Λ],q) and call it the quantum torus
determined by the quantum matrix q. ♦

Here is a generalization of [11, Lemma 4.6] to the torsion free case.

Lemma 2.10 Let G be a torsion free abelian group, and let A be an
associative algebra. If A + is a Jordan G-torus, then A ∼=G (Ft[G], λ) for
some 2-cocycle λ. In particular, if G is free abelian, then A ∼=G (Ft[G],q) for
some quantum matrix q.

Proof By Lemma 2.7, we must show that A is an associative G-torus. Since
A + is a Jordan torus, we have

A + = A =
⊕
σ∈g

A σ,

with G = 〈σ ∈ G | A σ 
= 0〉 and dimA σ � 1 for all σ ∈ G. So it only remains to
show that A is G-graded, namely, A σA τ ⊆ A σ+τ for all σ, τ ∈ G. We proceed
with showing this for fixed σ, τ ∈ G. We may assume without loss of generality
that both A σ and A τ are non-zero. Let 0 
= x ∈ A σ and 0 
= y ∈ A τ . By
Lemma 2.5, x and y are invertible in A + and so they are invertible in A .
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Therefore, xy and yx are invertible in A and so in A +. Then by Lemma 2.5,
both xy and yx are homogeneous in A . Now, as

x ◦ y = xy + yx ∈ A σ+τ ,

we conclude that xy ∈ A σ+τ if x ◦ y 
= 0. Suppose now that x ◦ y = 0. Then
xy = −yx ∈ A δ for some δ ∈ G and as A is associative,

(xy)2 = −x2y2 = −y2x2.

Therefore,

0 
= (xy)2 = −1
2

(x2y2 + y2x2) = −1
2

(x2 ◦ y2) ∈ A 2δ ∩ A 2σ+2τ .

Thus, δ = σ+ τ. The second statement follows immediately from Example 2.9.
�

2.5 Involutorial associative G-tori

Let A = (Ft[G], λ) be an associative G-torus. Assume further that A is
equipped with a graded involution , namely, a period 2 anti-automorphism

satisfying A σ = A σ, σ ∈ G. Then, for σ ∈ G, we have xσ = aσx
σ, where

aσ ∈ F× satisfies a2
σ = 1. So, for σ ∈ G,

xσ = (−1)q(σ)xσ,

where q is a map from G into the field F2 of 2 elements. We note that

(−1)q(σ+τ)xσ+τ = xσ+τ = λ(σ, τ)−1xτ xσ = λ(σ, τ)−1λ(τ, σ)(−1)q(σ)+q(τ)xσ+τ .

Thus,
(−1)βq(σ,τ) = λt(σ, τ), (2.6)

where βq : G×G→ F2 is defined by

βq(σ, τ) = q(σ) + q(τ) − q(σ + τ).

Now, λt being a bihomomorphism implies that βq is also a group
bihomomorphism. Therefore, by definition, q : G→ F2 is a quadratic map.

Conversely, starting from an associative G-torus A = (Ft[G], λ) and a
quadratic map q : G → F2 satisfying (−1)βq(σ,τ) = λt(σ, τ), one can define a
graded involution on A by xσ = (−1)q(σ)xσ. In fact, it is clear that is a
period 2 isomorphism of F-vector spaces. Moreover, for σ, τ ∈ G, we have

xσxτ = λ(σ, τ)xσ+τ

= λ(σ, τ)(−1)q(σ+τ)xσ+τ

= λ(σ, τ)(−1)q(σ+τ)λ(τ, σ)−1xτxσ

= (−1)βq(σ,τ)+q(σ,τ)xτxσ

= (−1)q(σ)+q(τ)xτxσ

= xτ xσ.
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Definition 2.11 Let A = (Ft[G], λ) be a G-torus, and let q : G → F2 be a
quadratic map satisfying (2.6). We denote the induced involution on A by θq.
We recall that in this case, H(A , θq) = H((Ft[G], λ), θq) is a subalgebra of A +.

Let J be a Jordan G-torus. By Lemma 2.5, J is strongly prime, so by
Zelmanov’s Prime Structure Theorem [8, p. 200], J has one of the types,
Hermitian, Clifford, or Albert. We recall that J is of Hermitian type if J
is special and q48(J) 
= {0} (the term q48(J) will be explained in the next
section). Also J is of Clifford type if the central closure J is a Jordan algebra
over Z of a symmetric bilinear form. Finally, J is of Albert type if the central
closure J is an Albert algebra over Z. In the remaining sections, we study each
of the mentioned types separately.

3 Jordan tori of Hermitian type

Throughout this section, G is a torsion free abelian group, unless otherwise
mentioned. All associative algebras are assumed to be unital. We assume that
any algebra homomorphism from a unital algebra to a unital algebra maps
1 to 1. We recall that a Jordan torus J is called a Hermitian torus if there
exists an involutorial associative algebra (A , ∗) which is ∗-prime such that A
is generated by J and J = H(A , ∗).

We make a convention that for two elements x, y of an associative algebra,
by [x, y], we mean xy − yx and by x ◦ y, we mean xy + yx. Suppose that X is
an infinite set and a(X) is the free associative algebra on X. We consider the
special Jordan algebra a(X)+ and take fsj(X) to be the subalgebra of a(X)+

generated by X. This is the free special Jordan algebra on X. We recall that an
ideal I of fsj(X) is called formal if for each polynomial p(x1, . . . , xn) ∈ I with
x1, . . . , xn ∈ X, and each permutation σ of X, one has p(σ(x1), . . . , σ(xn)) ∈ I.
A formal idealH of fsj(X) is called Hermitian if it is closed under n-tads for each
natural number n greater than 3, i.e., for n ∈ N with n > 3 and x1, . . . , xn ∈ H,

{x1, . . . , xn} := x1 · · · xn + xn · · · x1 ∈ H.

Now, suppose that H(X) is a Hermitian ideal of fsj(X). For an i-special Jordan
algebra (i.e., a quotient algebra of a special Jordan algebra) J, byH(J), we mean
the evaluation of H(X) on J ; H(J) is an ideal of J and called a Hermitian part
of J.

Now, for x, y, z, w ∈ X, we take

Dx,y(z) := [[x, y], z]

and set
p16(x, y, z, w) := [[D2

x,y(z)
2,Dx,y(w)],Dx,y(w)].

Then

q48 := [[p16(x1, y1, z1, w1), p16(x2, y2, z2, w2)], p16(x3, y3, z3, w3)]
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is a polynomial in the free associative algebra on X in 12 variables xi, yi, zi, wi,
1 � i � 3. Take Q48 to be the linearization-invariant T -ideal of fsj(X) generated
by q48. It means that Q48 is the smallest ideal of fsj(X) containing q48 with the
following two properties. If p is a polynomial in Q48, then each linearization
of p is also an element of Q48 and that Q48 is invariant under all algebra
endomorphisms of fsj(X). We note that for 12 variables xi, yi, zi, wi, 1 � i � 3,
each monomial of q48 is a product of 12 variables xi, yi, zi, wi, 1 � i � 3, and
monomials have the same number of x ∈ {xi, yi, zi, wi | 1 � i � 3}. So each
polynomial in Q48 is a summation of monomials having the same partial degree.

Lemma 3.1 Suppose that J is a Jordan G-torus of Hermitian type. Then
J = H(P, ∗) for an associative algebra P with an involution ∗ such that P is
∗-prime and is generated by J.

Proof Since J is of Hermitian type, we have q48(J) 
= {0}. Fix a basis B of
J consisting of homogeneous elements. If Q48(B) = {0}, we get q48(J) = {0},
which is a contradiction. So there is a polynomial p ∈ Q48 and b1, . . . , bm ∈
B such that p(b1, . . . , bm) 
= 0. We know that p is a linear combination of
monomials having the same partial degree. This together with the fact that
b1, . . . , bm are homogeneous elements implies that p(b1, . . . , bm) is homogeneous
and so it is invertible. So Q48(J) = J. �
Lemma 3.2 Suppose that J is a Jordan G-torus. Suppose that E is a quadratic
field extension of F, σE is the nontrivial Galois automorphism, and λ : G ×
G → E× is a 2-cocycle. Assume E ⊗F J �G (Et[G], λ)+, say via ϕ. Then
either there is a 2-cocycle μ : G × G → F× such that (Et[G], λ) �G (Et[G], μ)
and J �G (Ft[G], μ)+, or J �G H((Et[G], μ), θ) for some 2-cocycle μ
satisfying σE(μ(g1, g2)) = μ(g2, g1) for g1, g2 ∈ G, and an σE-semilinear anti-
automorphism θ, where (Et[G], μ) is considered as an F-algebra.

Proof Since E is a quadratic field extension of F, there is an irreducible poly-
nomial on F of degree 2 with distinct roots e, f. Then E = F+eF and σE : E → E

is the Galois automorphism mapping e to f. Set

τ := σE ⊗ id : E ⊗ J → E ⊗ J.

Since for x, y ∈ E and a ∈ J, we have

τ(xy ⊗ a) = σE(xy) ⊗ a = σE(x)σE(y) ⊗ a = σE(x)(σE(y) ⊗ a),

we get that τ is a σE-semilinear automorphism of the Jordan algebra E ⊗ J.
Consider the E-Jordan algebra isomorphism ϕ : E ⊗F J → (Et[G], λ)+. Then
θ := ϕτϕ−1 is a Jordan σE-semilinear automorphism on (Et[G], λ)+. Next, we
note that as θ = ϕτϕ−1 is a Jordan σE-semilinear automorphism on (Et[G], λ)+,
it is also an F-linear automorphism of the F-Jordan algebra (Et[G], λ)+. So by
[3, Lemma 1.1.7] either θ is a σE-semilinear associative algebra automorphism of
(Et[G], λ) or it is a σE-semilinear anti-automorphism of the associative algebra
(Et[G], λ) which is not an automorphism. We know that

J � spanF{r ⊗ x | r ∈ F, x ∈ J} = H(E ⊗ J, τ)
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and the restriction of ϕ to H(E⊗J, τ) is an F-Jordan algebra isomorphism from
J � H(E ⊗ J, τ) to H((Et[G], λ), θ). So to complete the proof, we show that
either

H((Et[G], λ), θ) = (Ft[G], μ)+

for a 2-cocycle μ : G×G→ F or

H((Et[G], λ), θ) = H((Et[G], μ), θ)

for some 2-cocycle μ satisfying σE(μ(g1, g2)) = μ(g2, g1) for g1, g2 ∈ G.
We fix 0 
= xg ∈ Jg (g ∈ G), so {xg | g ∈ G} is an F-basis for J and an

E-basis for E⊗F J (here, we identify J with {1⊗ x | x ∈ J} ⊆ E ⊗ J). Now, as
for g ∈ G, τ(xg) = xg and ϕ is a G-graded isomorphism, {yg := ϕ(xg) | g ∈ G}
is a basis for the E-vector space Et[G] consisting of homogeneous elements fixed
by θ. Now, let μ : G×G→ E be the 2-cocycle corresponding to this new basis;
see Remark 2.8. We note that

(Et[G], λ) =
(⊕

g∈G

Eyσ, μ

)
=

⊕
g∈G

Fyσ +
⊕
g∈G

eFyσ

and
H((Et[G], λ), θ) =

⊕
g∈G

Fyσ.

Now, we consider the two cases that either θ is a σE-semilinear associative
algebra automorphism of (Et[G], λ) = (Et[G], μ) or it is a σE-semilinear anti-
automorphism of the associative algebra (Et[G], λ) = (Et[G], μ) which is not an
automorphism. In the former case, for g1, g2 ∈ G, we have

0 = θ(yg1yg2 − μ(g1, g2)yg1+g2) = yg1yg2 − σE(μ(g1, g2))yg1+g2.

So we have
μ(g1, g2)yg1+g2 = yg1yg2 = σE(μ(g1, g2))yg1+g2.

Therefore, μ(g1, g2) ∈ F. Now, we have

(Et[G], λ) =
⊕
g∈G

Eyσ =
⊕
g∈G

Fyσ +
⊕
g∈G

eFyσ.

Since μ(G,G) ⊆ F,⊕g∈GFyσ is closed under the associative product on (Et[G], μ)
and

H((Et[G], λ)) = H((Et[G], μ), θ) =
⊕
g∈G

Fyσ

can be identified with (Ft[G], μ)+. In the latter case, for g1, g2 ∈ G, we have

0 = θ(yg1yg2 − μ(g1, g2)yg1+g2) = yg2yg1 − σE(μ(g1, g2))yg1+g2.

So σE(μ(g1, g2)) = μ(g2, g1). This completes the proof. �
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The following generalizes [11, Proposition 4.7] to the torsion free case.

Proposition 3.3 Let A be an involutorial associative algebra and assume
that J := H(A , ∗) is a Jordan G-torus generating A .

(a) Suppose that there exists a ∈ A such that aa∗ = 0 and a + a∗ is
invertible in J. Then J ∼=G (Ft[G], λ)+ for some 2-cocycle λ.

(b) Suppose that there exists an invertible element a ∈ A such that a∗ = −a
and 0 
= y ∈ Jγ for some γ ∈ G such that a2 ∈ J2γ , ay

−1a ∈ Jγ , and [a, y] ∈ J2γ .
Then J ∼=G (Ft[G], λ)+ or E ⊗F J ∼=G (Et[G], λ)+ for some 2-cocycle λ.

Proof (a) By Lemma 2.5 (v), J is domain. By [11, Lemma 4.5], J ∼= A + for
some associative algebra A . Then by Lemma 2.10, we are done. The proof of
part (b) is exactly the same as [11, Proposition 4.7 (b)]. �
Definition 3.4 A Jordan G-torus J is said to be of involution type if we have
J ∼=G H((Ft[G], λ), θq) (λ a 2-cocycle and q a quadratic map), it is said to be
of plus type if J ∼=G (Ft[G], λ)+ (λ a 2-cocycle), and it is said to be of extension
type if J ∼=G H((Et[G], λ), σ) (E a quadratic field extension of F, λ a 2-cocycle,
and σ an involution). If G is free abelian of finite rank, we call a Jordan G-torus
of one of the above types, simply a Jordan torus of that type.

Lemma 3.5 Suppose that G is a free abelian group of finite rank and J =
⊕g∈GJ

g is a Jordan G-torus. Suppose that P is an associative algebra with
involution ∗ and J = H(P, ∗). For g ∈ supp(J), fix 0 
= xg ∈ Jg. If for all
g, h ∈ supp(J), xgxh = ±xhxg (product in P ), then one of the following occurs.

(a) P is isomorphic to (Ft[G], λ) for a 2-cocycle λ : G×G → F; in particular,
P is a G-graded algebra. Moreover, ∗ is a G-graded involution and J is graded
isomorphic to H((Ft[G], λ), θq), where q : G × G → F2 is the quadratic map
arising from the involution on (Ft[G], λ) induced via the isomorphism form P
to (Ft[G], λ) (see Section 2.5); in particular, P g = Jg for all g ∈ supp(J).

(b) There are an invertible element u of P and a nonzero element y of Jγ

for some γ ∈ G such that the following four conditions hold :

u∗ = −u, u2 ∈ J2γ , uy−1u ∈ Jγ , [u, y] ∈ J2γ . (3.1)

Proof One knows from Lemma 2.5 and [1, Proposition II.1.11] that there
is a basis B = {σ1, . . . , σn} ⊆ supp(J) for G. If J is generated by r-tads
{xε1

σi1
· · · xεr

σir
} for r ∈ Z>0, 1 � i1, . . . , ir � n, ε1, . . . , εr ∈ {±1}, conditions (A)

and (B) of the proof of [11, Thm. 4.11] hold and so by the proof of the same
theorem, all the statements in (a) are fulfilled. But if J is not generated by r-
tads {xε1

σi1
· · · xεr

σir
} for r ∈ Z>0, 1 � i1, . . . , ir � n, ε1, . . . , εr ∈ {±1}, condition

(A) but not (B) of the proof of [11, Thm. 4.11] holds and again by the proof of
the same theorem, there are an invertible element u of P and a nonzero element
y of Jγ for some γ ∈ G such that (3.1) is satisfied. �
Proposition 3.6 Suppose that P is an associative algebra with an involution
∗. Suppose that J := H(P, ∗) generates P. Suppose that {Gi | i ∈ I } is a
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class of free abelian subgroups of G such that G = ∪i∈IGi. Also assume that
J = ⊕g∈GJ

g is a Jordan G-torus. Set

Ji :=
⊕
g∈Gi

Jg, i ∈ I .

Assume that ∗i, the restriction of ∗ to the subalgebra Pi (i ∈ I ) of P generated
by Ji is an involution of Pi and that Ji = H(Pi, ∗). If P is ∗-prime, then one
of the following holds for J :

• J � H((Ft[G], λ), θq), λ a 2-cocycle and q a quadratic map;
• J � (Ft[G], λ)+, λ a 2-cocycle;
• J � H((Et[G], λ), σ), E a quadratic field extension of F, λ a 2-cocycle

and σ an involution.
Moreover, if J is of involution (resp. plus or extension) type, it is a direct union
of Jordan tori of involution (resp. plus or extension) type.

Proof We know that J = ⊕g∈GJ
g is a Jordan G-torus. For g ∈ supp(J), we

fix 0 
= xg ∈ Jg. We consider the following two cases.
Case 1 For all g, h ∈ supp(J), xgxh = ±xhxg.

By Lemma 3.5, one of the following occurs:
(a) for all i ∈ I ,

• Pi is equipped with a Gi-grading ⊕g∈GP
g
i with P g

i = Jg
i for all g ∈

supp(Ji),
• Pi = ⊕g∈GiP

g
i is an associative Gi-torus,

• ∗i = ∗ |Pi is a Gi-graded involution;
(b) there is i ∈ I for which there are an invertible element u of Pi and a

nonzero element y of Jγ
i for some γ ∈ Gi such that (3.1) holds.

We now assume that (a) is satisfied, i, j ∈ I with i � j, and g ∈ Gi. If
g ∈ supp(Ji), then

P g
i = Jg

i = Jg
j = P g

j .

Also we know that Pi is generated by Ji and so Pi is generated by⋃
g∈Gi

Jg
i =

⋃
g∈supp(Ji)

Jg
i .

In particular, for g ∈ Gi, there are τ1, . . . , τt ∈ supp(Ji) such that g = τ1+· · ·+τt
and

P g
i = Jτ1

i · · · Jτt
i = P τ1

i · · ·P τt
i = P τ1

j · · ·P τt
j ⊆ P g

j .

Therefore, we have proved

P g
i = P g

j , i, j ∈ I , i � j, g ∈ Gi.

So by Lemma 2.4, P is an associative G-torus with P g = Jg for all g ∈ supp(J).
Therefore, J is graded isomorphic toH((Ft[G], λ), θq) for a 2-cocycle λ : G×G→
F× and a quadratic map q : G×G→ F2.



490 Saeid AZAM et al.

Next, we assume that (b) is satisfied. Then we are done by Proposition 3.3.
Case 2 There are g, h ∈ supp(J) such that xgxh 
= ±xhxg.

Set
u := [xg, xh] 
= 0, d := xg ◦ xh 
= 0.

Then we have one of the following conditions.
• u2 = 0.
We have u = −u∗ and so uu∗ = 0, then there exists y ∈ J such that for

v := yu, v + v∗ 
= 0. Otherwise, for all y ∈ J, we have v + v∗ = 0 in which
v := yu. So we have

yu = v = −v∗ = −u∗y∗ = uy.

Therefore, for w ∈ P, we have

(uy)(uw) = u(yu)w = u(uy)w = u2w = 0.

This implies that (uJ)(uP ) = {0}. Now, as J generates P, we get (uP )2 = {0}.
So we have

(PuP )2 = PuPPuP ⊆ PuPuP = P (uP )2 = {0}.

Also (PuP )∗ = PuP and so PuP is a nonzero ∗-ideal of P with (PuP )2 = {0},
a contradiction, as P is ∗-prime. Therefore, there exists y ∈ J such that for
v := yu, v + v∗ 
= 0. Since y ∈ J, we have

y =
∑
g∈G

yg, yg ∈ Jg.

For g ∈ G, set vg := ygu. If for all g ∈ G, vg + v∗g = 0, then we get

v + v∗ = [y, u] =
⊕
g∈G

[yg, u] =
⊕
g∈G

(ygu− uyg) =
⊕
g∈G

vg + v∗g = 0,

which is a contradiction. So there is g∗ ∈ G with vg∗ +v∗g∗ 
= 0. Now, as vg∗ +v∗g∗
is a homogeneous element of J (see [11, (2.7)]), it is invertible. Also vg∗v

∗
g∗ = 0.

So setting c := vg∗ ∈ P, we get that cc∗ = 0 and c+ c∗ is invertible in J. Now,
fix r∗ ∈ I with y ∈ Jr∗ and u ∈ Pr∗ . For all i ∈ I with r∗ � i, we have c ∈ Jr∗ ,
cc∗ = 0, and c + c∗ is invertible in Jr∗ . We know that P = ∪i∈I∗Pi in which
I∗ = {i ∈ I | r∗ � i} and J = ∪i∈I∗Ji. So J is the direct union of Jordan tori
Ji’s, each of which contains the element c. Since c+ c∗ is invertible in Jr∗ , this
is invertible in each Ji (i ∈ I∗). Now, as cc∗ = 0, we get that J as well as each
Ji, i ∈ I , is of plus type by Proposition 3.3.

• u2 
= 0.
We have d = xg ◦ xh ∈ Jg+h. So there is j∗ ∈ I with d ∈ Jg+h

i∗ . Now, we
have

u2 ∈ (Ji∗)2γ , ud−1u ∈ (Ji∗)γ , [u, d] ∈ (Ji∗)2γ
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(see [11, Page 24]). Then P is the direct union of Pi’s (i ∈ I∗), where I∗ :=
{i ∈ I | i∗ � i} and J is the direct union of Ji’s for i ∈ I∗. Now, using the
proof of [11, Prop. 4.7] together with [11, Prop. 4.9] either each Ji (i ∈ I∗) is
of plus type or each Ji (i ∈ I∗) is of extension type. Moreover, by Proposition
3.3 and Lemma 3.2, either J is of plus type or of extension type, respectively.

�
Theorem 3.7 Suppose that J is a Jordan G-torus of Hermitian type. Then J
is a direct union of Jordan tori of Hermitian type and it is of one of involution,
plus, or extension types. Moreover, if J is of involution (resp. plus, extension)
type, it is a direct union of Jordan tori of involution (resp. plus, extension)
type.

Proof The group G is a torsion free abelian group and J = ⊕g∈GJ
g is a Jordan

G-torus of Hermitian type. Let S be the support of J. Since J is of Hermitian
type, q48(J) 
= 0. Fix x1, . . . , x12 ∈ J such that q48(x1, . . . , x12) 
= 0. Since
J = ⊕σ∈GJ

σ, there are σ1, . . . , σn ∈ G such that x1, . . . , x12 ∈ Jσ1 ⊕ · · · ⊕ Jσn .
Now, let

I := {T ⊆ S | σ1, . . . , σn ∈ T, |T | <∞}.
Set

GT := 〈T 〉, ST := S ∩GT , T ∈ I .

Then
S =

⋃
T∈I

ST , GT = 〈ST 〉.

Next, set
JT :=

⊕
σ∈GT

Jσ, T ∈ I .

One has J = ∪T∈I JT and that each JT is a Jordan GT -torus. Since x1, . . . , x12

∈ JT for all T ∈ I , we get that q48(JT ) 
= 0 and so JT is of Hermitian type.
So J is a direct union of Jordan tori of Hermitian type.

We know that J is special, so by [8], there is an associative algebra A
equipped with an involution ∗ such that

• J ⊆ H(A , ∗),
• A , as an associative algebra, is generated by J,
• if I is a ∗-ideal of A , then I ∩ J 
= {0}.

Also by the Special Hermitian Structure Theorem [8, §1.6] and Lemma 3.1, the
associative subalgebra P of A generated by J is ∗-prime and J = H(P, ∗).
Now, if for T ∈ I , PT is the associative subalgebra of A generated by JT ,
then we have JT = H(PT , ∗). We also have

P =
⋃

T∈I

PT .

We next note that for T ∈ I , GT is a finitely generated torsion free abelian
group and so it is a free abelian group of finite rank. Now, we get the result by
using Proposition 3.6. �
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4 Jordan tori of Clifford type

Let R be a unital commutative associative ring, and let V be an R-module. Let
(·, ·) : V × V → R be a symmetric R-bilinear form. Define a linear R-algebra
structure on J := R1 ⊕ V by having 1 as the identity element and requiring
v · w = (v,w)1 for v,w ∈ V. Then J is a Jordan algebra called the Jordan
algebra of the bilinear form (·, ·) (or a Jordan spin factor if R is a field). We
recall that a Jordan algebra is called of Clifford type if its central closure is a
Jordan algebra of a symmetric bilinear form.

The following example is a generalization of a Clifford torus that appeared in
[1, Theorem III.2.9] as the coordinate algebra of an extended affine Lie algebra
of type A1. The setting is based on [11, Example 5.2] and [12].

Definition 4.1 Let G be an abelian group, let S be a pointed reflection
subspace of G, and let Γ be a subgroup of G such that

2G ⊆ Γ � S ⊆ G, S + Γ = S. (4.1)

Let I be a set of coset representatives for {σ + Γ | σ ∈ S} \ {Γ}. Then for a
collection {aε}ε∈I , aε ∈ F×, we call the triple (S,Γ, {aε}) a Clifford triple.

Example 4.2 Let G be an abelian group, not necessarily torsion free, and
let (S,Γ, {aε}) be a Clifford triple. Let Z be a commutative associative Γ-torus
(a commutative twisted group algebra) with basis {zγ | γ ∈ Γ}. Let V be a
free Z-module with basis {tε}ε∈I . Define a Z-bilinear form f : V × V → Z by
Z-linear extension of

f(tε, tη) =

{
aεz

2ε, ε = η,

0, otherwise,
(4.2)

for all ε, η ∈ I (here, we note that 2ε ∈ Γ by (4.1)). Let

J := J(S,Γ, {aε}ε∈I) := Z ⊕ V

be the Jordan algebra over Z of f. We note that

V =
⊕
ε∈I

Ztε =
⊕

ε∈I, γ∈Γ

Fzγtε.

We also note that for σ ∈ S, there exists a unique εσ ∈ I ∪ {0} such that
σ − εσ ∈ Γ. Set t0 := 1 ∈ J. Now, for σ ∈ G, we set

Jσ :=

{
Fzσ−εσ tεσ , σ ∈ S,

0, otherwise.

Then J = ⊕σ∈GJσ and supp(J) = S.
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We next show that J is G-graded. Let σ, τ ∈ S. If εσ = ετ = 0, then

JσJτ = Fzσzτ = Fzσ+τ = Jσ+τ .

If εσ = 0 and ετ 
= 0, then

JσJτ = Fzσzτ−ετ tετ = Fzσ+τ−ετ tετ = Jσ+τ .

Finally, suppose εσ 
= 0 and ετ 
= 0. We note that if εσ = ετ , then σ+τ ∈ Γ ⊆ S
and Jσ+τ = Fzσ+τ . Then

JσJτ = Fzσ−εσ tεσz
τ−ετ tετ = Fzσ+τ−εσ−ετf(tεσ , tετ )z2εσ =

{
Fzσ+τ , εσ = ετ ,

0, otherwise.

So JσJτ = Jσ+τ if εσ = ετ , and JσJτ = {0} otherwise. This completes the
proof that J is a G-graded Jordan algebra over Z. Thus, J is a Jordan G-torus
with Z(J) = Z. If G is torsion free, then we can consider the central closure
J of J. If V := Z ⊗Z V, then J can be identified with Z ⊕ V . Extending f to
f : V × V → Z by

f(α⊗ v, β ⊗ w) := αβf(v,w),

one can see that J is the Jordan algebra of the extended bilinear form f. Hence,
J is of Clifford type, which we call it the Clifford G-torus associated to the
Clifford triple (S,Γ, {aε}). ♦
Theorem 4.3 Let G be a torsion free abelian group, and let J be a Jordan
G-torus of Clifford type with support S and central grading group Γ. Let I be
a set of coset representatives for {σ + Γ | σ ∈ S} \ {Γ}. Then for each ε ∈ I,
there exists aε ∈ F× such that (S,Γ, {aε}) is a Clifford triple and J is graded
isomorphic to the Clifford G-torus J(S,Γ, {aε}ε∈I) associated to the Clifford
triple (S,Γ, {aε}).
Proof By assumption, the central closure J = Z ⊗Z J is a Jordan algebra
over Z of a symmetric bilinear form, where Z is the field of fractions of the
center Z = Z(J) of J. Thus, J has degree less than or equal 2 over Z, that is,
there exists a Z-linear form tr : J → Z and a Z-quadratic map n : J → Z with
n(1) = 1 such that for all x ∈ J,

x2 − tr(x)x+ n(x)1 = 0.

Let n : J×J → Z be the symmetric Z-bilinear form associated to the quadratic
map n. Let W := {x ∈ J | tr(x) = 0}. Then J = Z1⊕W is the Jordan algebra
over Z of the bilinear form

h := −1
2
n(·, ·)|W×W

.

If dimZ J = 1, then by Lemma 2.6 (iii), supp(J) = Γ = G and so J = Z.
Hence, J is a commutative associative torus and so is G-graded isomorphic to
the group algebra of G over F.
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We assume from now on that dimZ J 
= 1. The same argument as in [11,
Claim 1] shows that

tr(Jα) = {0} (α ∈ G\Γ), 2G ⊆ Γ � supp(J), supp(J)+Γ = supp(J). (4.3)

Moreover,
G/Γ cannot be a nontrivial cyclic group. (4.4)

Recall from Lemma 2.6 (ii) that J = ⊕α∈G/ΓJα is a G/Γ-graded algebra
over Z. Then tr(Jα) ⊆ tr(Jα) = {0} for α 
= 0, by (4.3). So

V :=
⊕
α�=0

Jα =
⊕

α∈G\Γ
ZJα ⊆W.

Then
J =

⊕
α∈G/Γ

Jα =
⊕

0�=α∈G/Γ

Jα + J0 = V ⊕ Z,

as a direct sum of Z-modules. For x, y ∈ V,

x · y = h(x, y) · 1 ∈ J ∩ Z · 1 = J ∩ Z(J) = Z.

Therefore, J = Z ⊕ V is the Jordan algebra over Z of f := h|V ×V
. Let S :=

supp(J). By Lemma 2.5, S is a pointed reflection space in G. By (4.3), Γ is
a proper subset of S and the pair (S,Γ) satisfies (4.1). Next, let I be a set of
coset representatives for {σ + Γ \ σ ∈ S} \ {Γ}, namely,

S =
⋃

ε∈I∪{0}
(ε+ Γ).

For ε ∈ I, let 0 
= tε ∈ Jε. Then using Lemma 2.6 (ii), we have

V =
⊕
α �=0

Jα =
⊕
ε∈I

Ztε,

as direct sum of Z-modules. We note that Z = ⊕γ∈ΓJγ is a commutative
associative Γ-torus. If ε 
= ε′ ∈ I, we have e+ ε′ 
∈ Γ (since ε and ε′ are distinct
coset representatives of Γ in S). Therefore,

tεtε′ = f(tε, tε′) ∈ Jε+ε′ ∩ J0 = {0}.
Also,

0 
= t2ε = f(tε, tε) ∈ J2ε = Fz2ε,

say f(tε, tε) = aε for some 0 
= aε ∈ F. (We note that 2ε ∈ 2G ⊆ Γ.) Now, since
V = ⊕ε∈IZtε, it is clear that the bilinear form f here coincides with the one
given in Example 4.2 (see (4.2)). Thus, J is graded isomorphic to the Clifford
G-torus J(S,Γ, {aε}ε∈I) of Example 4.2 associated to (S,Γ, {aε}). �
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5 Jordan tori of Albert type

Throughout this section, we assume that G is a torsion free abelian group. We
recall that an Albert algebra is by definition a form of a 27-dimensional central
simple exceptional Jordan algebra of degree 3. We also recall that a Jordan
torus of Albert type is by definition a Jordan torus whose central closure is an
Albert algebra.

Definition 5.1 [11, Definition 6.4] A prime Jordan or associative algebra P
over F is said to have central degree 3, if the central closure P = Z ⊗Z P is
finite dimensional and has (generic) degree 3.

The following is a generalization of [11, Proposition 6.7] to our case. Its
proof is almost the same, but for completeness, we present the proof here.

Proposition 5.2 Let G be a torsion free abelian group, and let T = ⊕α∈GTα

be a Jordan or an associative G-torus over F of central degree 3. Let tr be the
generic trace of the central closure T , and let Γ be the central grading group of
T. Then 3G ⊆ Γ � G and supp(T ) = G. Moreover, for any α ∈ G \ Γ, we have
tr(Tα) = {0}.
Proof If G = Γ, then dimZ T = 1, and hence, T does not have central degree
3. Therefore, Γ 
= G and supp(T )/Γ 
= {0}. Let

0 
= β ∈ supp(T )/Γ, 0 
= x ∈ T β.

Since T = ⊕α∈G/ΓTα (see Lemma 2.6 (iii)) has generic degree 3, we have

x3 + z1x
2 + z2x+ z31 = 0

for some z1, z2, z3 ∈ Z and z1 = −tr(x). If 2β = 0, then 3β = β, and therefore,

x3 + z2x = −z1x2 − z31 ∈ T β ∩ T 0 = {0}.

Hence, we get
x3 + z2x = x(x2 + z21) = 0.

Since T is a Jordan or an associative domain, the subalgebra Z[x] of T generated
by x is a commutative associative algebra domain over Z and so x2 + z21 = 0.
Since x 
∈ T 0, the polynomial f(λ) = λ2 + z2 is the minimal polynomial of x
over Z. If f(λ) is reducible over Z, say

f(λ) = (λ− a)(λ− b), a, b ∈ Z,

then
(x− a1)(x − b1) = 0

in Z[x]. Hence, x = a1 or x = b1, and so x ∈ Z1 = T 0, that is, β = 0, which is
absurd. Therefore, f(λ) is irreducible over Z. Note that the minimal polynomial
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and the generic minimal polynomial of an element have the same irreducible
factors. Since f(λ) is the irreducible minimal polynomial of x, the generic
minimal polynomial of x has to be a power of f(λ). However, this is impossible
since the degree of the generic minimal polynomial of x is 3. Therefore, 2β 
= 0.
This implies that 3β 
= β. Since β 
= 0, we have 3β 
= 2β. Hence,

{3β, 0} ∩ {2β, β} = ∅.
So

(T 3β + T 0) ∩ (T 2β ⊕ T β) = {0}.
Since

x3 + z31 = −z1x2 − z2x ∈ (T 3β + T 0) ∩ (T 2β ⊕ T β),

we get two equalities

x3 + z31 = 0, −z1x2 − z2x = 0.

From the first equality, we have

0 
= x3 = −z31 ∈ T 3β ∩ T 0,

and hence, 3β = 0. Thus, 3G ⊆ Γ, and so the exponent of G/Γ is 3. Also, we
have 3G ⊆ supp(T ). Since supp(T ) is a pointed reflection space,

G = 3G− 2G ⊆ supp(T ) + 2G ⊆ supp(T ).

Thus, G = supp(T ).
From the second equality and by the same reason above, we have

−z1x− z21 = 0.

Then
−z1x = z21 ∈ T β ∩ T 0 = {0}.

Hence, z1 = 0; that is, tr(x) = 0. Therefore, for any α ∈ G/Γ, we have tr(Tα) =
{0}. �

The following example gives a construction of an associative algebra which
will be crucial in the classification of Jordan tori of Albert type. In what follows,
for n ∈ Z�0, we let ε(n) ∈ {0, 1, 2} be congruent mod 3 of n and η(n) := n−ε(n).

Example 5.3 Consider the pair (G,Γ), whereG is a torsion free abelian group
and Γ is a subgroup of G satisfying 3G ⊆ Γ and |G/Γ| = 9. Let μ : Γ×Γ → F×
be a symmetric 2-cocycle, that is, a 2-cocycle with μ(σ, τ) = μ(τ, σ) for all σ, τ.
Assume that F contains a primitive 3rd root of unity q. We fix σ1 and σ2 in G
such that {σ1 +G,σ2 +G} is a basis for G/Γ over the field of 3 elements. Then

G =
⋃

0�i,j�2

(iσ1 + jσ2 + Γ).
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Define λ : G×G→ F× by

λ(iσ1 + jσ2 + γ, i′σ1 + j′σ2 + γ′) = qji′μ
(
η(i + i′)σ1, η(j + j′)σ2

)
μ(γ, γ′)

·μ(η(i + i′)σ1 + η(j + j′)σ2, γ + γ′) (5.1)

for 0 � i, j, i′, j′ � 2, γ, γ′ ∈ Γ. We claim that λ is a 2-cocycle on G. To see this,
we must show that for any three fixed elements

σ := iσ1 + jσ2 + γ, τ := i′σ1 + j′σ2 + γ′, δ := i′′σ1 + j′′σ2 + γ′′

of the above form, the 2-cocycle identity (2.2) holds, namely,

qε(j+j′)i′′qji′A = qjε(i′+i′′)qj′i′′B,

where

A := μ(η(ε(i + i′) + i′′)σ1, η(ε(j + j′) + j′′)σ2) · μ(γ + γ′ + η(i+ i′)σ1

+ η(j + j′)σ2, γ
′′) · μ(η(ε(i + i′) + i′′)σ1 + η(ε(j + j′) + j′′)σ2, γ + γ′

+ η(i + i′)σ1 + η(j + j′)σ2 + γ′′) · μ(η(i+ i′)σ1, η(j + j′)σ2)μ(γ, γ′)
· μ(η(i+ i′)σ1 + η(j + j′)σ2, γ + γ′),

B := μ(η(i + ε(i′ + i′′))σ1, η(j + ε(j′ + j′′))σ2) · μ(γ′ + γ′′ + η(i′ + i′′)σ1

+ η(j′ + j′′)σ2, γ) · μ(η(i + ε(i′ + i′′))σ1 + η(j + ε(j + j′′))σ2, γ
′ + γ′′

+ η(i′ + i′′)σ1 + η(j′ + j′′)σ2 + γ) · μ(η(i′ + i′′)σ1, η(j′ + j′′)σ2)
· μ(γ′, γ′′) · μ(η(i′ + i′′)σ1 + η(j′ + j′′)σ2, γ

′ + γ′′).

Since
qε(j+j′)i′′qji′ = qjε(i′+i′′)qj′i′′ ,

λ is a 2-cocycle if and only if A = B. Let

a := η(ε(i + i′) + i′′)σ1 + η(ε(j + j′) + j′′)σ2

+ η(i+ i′)σ1 + η(j + j′)σ2 + γ + γ′ + γ′′,

b := η(i+ ε(i′ + i′′))σ1 + η(j + ε(j′ + j′′))σ2

+ η(i′ + i′′)σ1 + η(j′ + j′′)σ2 + γ′ + γ′′ + γ.

Then in the commutative associative torus (Ft[Γ] := ⊕γ∈ΓFxγ, μ), we have

(xη(ε(i+i′)+i′′)σ1xη(ε(j+j′)+j′′)σ2)(xη(i+i′)σ1xη(j+j′)σ2)(xγxγ′
)xγ′′

= Axa,

(xη(i+ε(i′+i′′))σ1xη(j+ε(j′+j′′))(xη(i′+i′′)σ1xη(j′+j′′)σ2)(xγ′
xγ′′

)xγ = Bxb.

Therefore, if we show that a = b, then we get A = B if and only if

(xη(ε(i+i′)+i′′)σ1xη(ε(j+j′)+j′′)σ2)(xη(i+i′)σ1xη(j+j′)σ2)

= (xη(i+ε(i′+i′′))σ1xη(j+ε(j′+j′′))(xη(i′+i′′)σ1xη(j′+j′′)σ2) (5.2)
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for any 0 � i, i′, i′′, j, j′, j′′ � 2. Now, a = b if and only if

η(ε(i + i′) + i′′)σ1 + η(ε(j + j′) + j′′)σ2

+ η(i+ i′)σ1 + η(j + j′)σ2 + γ + γ′ + γ′′

= η(i+ ε(i′ + i′′))σ1 + η(j + ε(j′ + j′′)σ2

+ η(i′ + i′′)σ1 + η(j′ + j′′)σ2 + γ′ + γ′′ + γ,

which in turn holds if and only if for any i, i′, i′′,

η(ε(i + i′) + i′′) + η(i + i′) = η(i+ ε(i′ + i′′)) + η(i′ + i′′). (5.3)

To see that this last equality holds, we note that

ε(i+ i′) + i′′ + η(i+ i′) = (i+ i′) + i′′ = i+ (i′ + i′′) = i+ ε(i′ + i′′) + η(i′ + i′′)

and so

η(ε(i + i′) + i′′) + η(i+ i′) = η(ε(i + i′) + i′′ + η(i+ i′))
= η(i+ ε(i′ + i′′) + η(i′ + i′′))
= η(i+ ε(i′ + i′′)) + η(i′ + i′′).

Then (5.3) holds and a = b. Thus, A = B if and only if (5.2) holds. Now, the
left-hand side in (5.2) is equal to

μ(η(ε(i + i′) + i′′)σ1, η(i + i′)σ1)xc1σ1μ(η(ε(j + j′) + j′′)σ2, η(j + j′)σ2)xc2σ2

where

c1 := η(ε(i + i′) + i′′) + η(i+ i′), c2 := η(ε(j + j′) + j′′) + η(j + j′).

Also the right hand side in (5.2) is equal to

μ(η(i + ε(i′ + i′′))σ1, η(i′ + i′′)σ2)xc′1σ1μ(η(j + ε(j′ + j′′))σ2, η(j′ + j′′)σ2)xc′2σ2 ,

where

c′1 := η(i + ε(i′ + i′′) + η(i′ + i′′), c′2 := η(j + ε(j′ + j′′)) + η(j′ + j′′).

By (5.3), c1 = c2 and c′1 = c′2. So A = B if and only if

μ(η(ε(i + i′) + i′′)σ1, η(i + i′)σ1)μ(η(ε(j + j′) + j′′)σ2, η(j + j′)σ2)
= μ(η(i+ ε(i′ + i′′)σ1), η(i′ + i′′)σ1)μ(η(j + ε(j′ + j′′)σ2), η(j′ + j′′)σ2)

for all 0 � i, i′, i′′, j, j′, j′′ � 2. But clearly, the latter holds if and only if

μ(η(ε(i + i′) + i′′)σ, η(i + i′)σ) = μ(η(i+ ε(i′ + i′′)σ, η(i′ + i′′)σ) (5.4)
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for all σ ∈ G and 0 � i, i′, i′′ � 2. Let

α := ε(i+ i′) + i′′, β := i+ i′, α′ := i+ ε(i′ + i′′), β′ := i′ + i′′.

Then
η(α) + η(β) = η(α+ η(β)) = η(i+ i′ + i′′).

Similarly,
η(α′) + η(β′) = η(i+ i′ + i′′).

So
η(α) + η(β) = η(α′) + η(β′).

From this and the fact that η(α), η(β), η(α′), η(β′) ∈ {0, 3}, we get

η(α)η(β) = η(α′)η(β′) ∈ {0, 9}.

Therefore, (5.4) holds. Hence, A = B and λ is a 2-cocycle.
We denote the 2-cocycle λ by λ := λ(q, μ) and the corresponding associative

G-torus by (Ft[G], λ(q, μ))Γ, and call it the associative G-torus associated to
the pair (G,Γ). Let T = (Ft[G], λ(q, μ))Γ. Note that if we fix xi := xσi ∈ Tσi ,

i = 1, 2, and xγ ∈ T γ , for each γ ∈ Γ, then the elements xi1
1 x

i2
2 x

γ , 0 � i1, i2 � 2,
γ ∈ Γ form a basis of T over F. Moreover, we have

(xi
1x

j
2x

γ)(xi′
1 x

j′
2 x

γ′
) = λ(iσ1 + jσ2 + γ, i′σ1 + j′σ2 + γ′)xε(i+i′)

1 x
ε(j+j′)
2 xγ′′

,

where 0 � i, j, i′, j′ � 2, γ, γ′ ∈ Γ, and γ′′ = γ + γ′ + η(i+ i′) + η(j + j′). Using
this, it is easy to see that

Z(T ) =
⊕
γ∈Γ

Fxγ , x2x1 = qx1x2, xi
1x

j
2 ∈ Z(T ) (5.5)

for all i, j ∈ Z with i ≡ j ≡ 0 (mod 3). It follows that the central closure of T
is 9-dimensional, namely,

J := Z ⊗Z T ∼=
⊕

0�i,j�2

Fxi
1x

j
2.

Since T is domain, it is a division algebra and so is an associative algebra of
central degree 3 (see Definition 5.1). Note that Z(T+) = Z(T ). Then

T+ = T+ ⊗Z(T+) Z(T+) = T+ ⊗Z(T ) Z(T ) = T
+

.

So T+ is a 9-dimensional central special Jordan division algebra over Z(T ).
Hence, by [11, Lemma 2.11], it has degree 3. ♦

The following proposition gives a characterization of associative G-tori of
central degree 3.
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Proposition 5.4 Let G be a torsion free abelian group, and let T be an
associative G-torus over F with central grading group Γ. Then T has central
degree 3 if and only if 3G ⊆ Γ, supp(T ) = G, and G/Γ is a vector space of
dimension 2 over the field of 3 elements. If T has central degree 3, then F

contains a primitive third root of unity, say ω, and T ∼= (Ft[G], λ(ω, μ))Γ,
where μ is a symmetric 2-cocycle on Γ. Moreover, if Γ is free abelian or F is
algebraically closed, then T ∼= (Ft[G], λ(ω, 1)).

Conversely, suppose that F contains a primitive third root of unity ω.
Also suppose that G is a torsion free abelian group and Γ is a subgroup
satisfying 3G ⊆ Γ and |G/Γ| = 9. Let μ be a symmetric 2-cocycle on Γ.
Then (Ft[G], λ(ω, μ))Γ is an associative G-torus of central degree 3 with central
grading group Γ.

Proof Let T = ⊕α∈GT
α be an associative torus over F of central degree 3, and

let T be its central closure over Z. By Proposition 5.2, supp(T ) = G and G/Γ
is a nontrivial vector space over the field of 3 elements. By Lemma 2.6 (iii), we
have dimZ T = |G/Γ|. Since, by definition, T is finite dimensional over Z, we
have dimZ T = 3m for some positive integer m. Now, T as a finite-dimensional
associative domain is a division algebra, by Wedderburn’s structure theorem.
So as TZ is a central simple associative algebra with dimTZ = 3m, we have
m = 2. It is also clear that an associative torus whose central grading group Γ
satisfies |G/Γ| = 9 has central degree 3. In fact, T has dimension 9 over Z and
is a division associative algebra. So by Lemma [11, Lemma 2.11], it has degree
3.

Next, we assume that T = ⊕α∈GT
α is an associative torus whose central

grading group satisfies 3G ⊆ Γ � G, |G/Γ| = 9, and supp(T ) = G. We fix σ1,
σ2 in G such that {σi + Γ | i = 1, 2} is a basis for the vector space G/Γ. Then

G =
⋃

0�i,j�2

(iσ1 + jσ2 + Γ).

We fix xi := xσi ∈ T σi , i = 1, 2, and xγ ∈ T γ for each γ ∈ Γ. Then x1x2 
= x2x1

and the elements xi1
1 x

i2
2 x

γ , 0 � i1, i2 � 2, γ ∈ Γ form a basis for T over F.
Moreover, as 3G ⊆ Γ,

(xi1
1 x

i2
2 )3xγ ∈ Z(T ) (5.6)

for all 0 � i1, i2 � 2 and γ ∈ Γ. Since x1x2, x2x1 ∈ T σ1+σ2, there exists
q ∈ F× such that x2x1 = qx1x2. Then as x3

1 is central, we get q3 = 1. Thus,
F must contain a primitive third root of unity, say ω. Then q = ω or ω2. Let
λ : G×G→ F× be the corresponding 2-cocycle for T with respect to the basis
mentioned above. Then we have

(xi
1x

j
2x

γ)(xi′
1 x

j′
2 x

γ′
) = λ(iσ1 + jσ2 + γ, i′σ1 + j′σ2 + γ′)xε(i+i′)

1 x
ε(j+j′)
2 xγ′′

,

where 0 � i, j, i′, j′ � 2, γ, γ′ ∈ Γ, γ′′ = γ + γ′ + η(i + i′) + η(j + j′), and ε
and η are defined as in Example 5.3. Denote by μ : Γ× Γ → F× the symmetric
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2-cocycle obtained from λ by restriction to Γ. Then using (5.6), the facts that
x2x1 = qx1x2, and η(n)G ⊆ 3G ⊆ Γ for all n ∈ Z, we see that

λ(iσ1 + jσ2 + γ, i′σ1 + j′σ2 + γ′) = qji′μ(η(i+ i′)σ1, η(j + j′)σ2)μ(γ, γ′)
·μ(η(i + i′)σ1 + η(j + j′)σ2, γ + γ′) (5.7)

for 0 � i, j, i′, j′ � 2, γ, γ′ ∈ Γ. Then, in the notation of Example 5.3, we have
T = (Ft[G], λ(q, μ))Γ. But one can see that the corresponding associative tori
(Ft[G], λ(ω, μ))Γ and (Ft[G], λ(ω2, μ))Γ are isomorphic, under the isomorphism
induced by xi1

1 x
i2
2 x

γ �→ xi1
2 x

i2
1 x

γ . So we may assume that q = ω, namely, T =
(Ft[G], λ(ω, μ))Γ. We recall from [9, Lemma 1.1] that if Γ is free abelian or
F is algebraically closed, then any commutative twisted group algebra on Γ
is isomorphic to the commutative untwisted group algebra. Thus, if Γ is free
abelian or F is algebraically closed, then μ can be taken to be 1. The converse
part follows from Example 5.3. �
Remark 5.5 In the notation of Proposition 5.4, let G be free abelian of rank
� 2 with a basis indexed by a set, say J. Assume, 1, 2 ∈ J. By Proposition 5.4,
T ∼= (Ft[G], λ(ω, 1)). However, by Example 2.9, we may assume λ(ω, 1) = qω,
where qω = (qij)i,j∈J is the quantum matrix satisfying

qij =

⎧⎪⎨⎪⎩
ω, i = 1, j = 2,

ω−1, i = 2, j = 1,

1, otherwise.

(5.8)

Using our earlier results and a modified reasoning of [11, Proposition 6.13],
we get the following result. To be precise, we provide details of the proof.

Proposition 5.6 Let ω be a third root of unity. Let J be a special Jordan G-
torus over F of central degree 3 with central grading group Γ. Then 3G ⊆ Γ � G
and |G/Γ| = 9. Also,

J ∼=G

{
(Ft[G], λ(ω, μ))+Γ , ω ∈ F,

H((Et[G], λ(ω, μ))Γ, σ), ω 
∈ F,

where μ is a 2-cocycle on Γ, E = F(ω) = F(
√−3 ), and σ is the unique non-

trivial Galois automorphism of E.

Proof Since J is special, it is either a Hermitian torus or a Clifford torus. We
have already seen that if J is a Clifford torus, then deg(J) � 2 (see § 4). So J
can only be a Hermitian torus. By Proposition 5.2, supp(J) = G. Therefore,
by Theorem 3.7, we have one of the following three possibilities:

J ∼= H((Ft[G], λ), θq), λ a 2-cocycle, and q a quadratic map,
J ∼= (Ft[G], λ)+, λ a 2-cocycle,
J ∼= H((Et[G], λ), θ), E a quadratic field extension of F, λ a 2-cocycle, and

θ an involution, as defined in Lemma 3.2.
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We begin by showing that the first possibility cannot happen. Consider the
center Z of J = H((Ft[G], λ), θq). By Proposition 5.2,

3G ⊆ Γ � G = supp(J).

But as q is a quadratic map, we have (xσ)2 is central for any σ ∈ G implying
that 2G ⊆ Γ. Now, 2G ∪ 3G ⊆ Γ implies Γ = G, which is absurd.

We now consider the second and the third possibilities. By definition, J
is a finite-dimensional central special Jordan division algebra over Z of degree
3. By [11, 2.11] and Proposition 2.6 (iii), we have dimZ J = 9 and G/Γ is a
2-dimensional vector space over the field of 3 elements.

If J ∼=G (Ft[G], λ)+, λ a 2-cocycle, then taking this isomorphism as an
identification, we get

Z(J) = Z((Ft[G], λ)+) = Z((Ft[G], λ)),

and so Γ is the central grading group of (Ft[G], λ). Then by Proposition 5.4, F

contains a primitive third root of unity ω and

(Ft[G], λ) ∼= (Ft[G], λ(ω, μ))Γ,

where μ is a symmetric 2-cocycle on Γ. Thus,

J ∼= (Ft[G], λ(ω, μ))+Γ .

Finally, we suppose that the third possibility holds and we take it as an
identification. Then

Z((Et[G], λ)) = Z((Et[G], λ)+) = Z(J ⊗F E) ∼= Z(J) ⊗F E.

So (Et[G], λ) is an associative G-torus with central grading group Γ such that
3G ⊆ Γ � G and G/Γ is a 2-dimensional vector space over Z3. Then by
Proposition 5.4, (Et[G], λ) has central degree 3 and E contains a primitive third
root of unity ω such that

(Et[G], λ) ∼= (Et[G], λ(ω, μ))Γ,

where μ is a 2-cocycle on Γ. It follows from Lemma 3.2 that θ(xi) = xi for
i = 1, 2 and that θ acts as an anti-automorphism on (Et[G], λ(ω, μ))Γ. Therefore,

x1x2 = θ(x2x1) = θ(ωx1x2) = θ(ω)ωx1x2.

Thus, θ(ω) = ω−1 
= ω and so ω 
∈ F. Finally, as [E : F] = 2, we have

E = F(ω) = F(
√−3 ). �

Definition 5.7 Let G be a torsion free abelian group, and let Δ, Γ be two
subgroups of G satisfying

3G � Γ ⊆ Δ ⊆ G, dimZ3(G/Γ) = 3, dimZ3(Δ/Γ) = 2.
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Then we call the triple (G,Δ,Γ) an Albert triple.

Example 5.8 Let (G,Δ,Γ) be an Albert triple. We take σ1, σ2, σ3 ∈ G such
that {σi + Γ | 1 � i � 3} is a basis for G/Γ and {σi + Γ | 1 � i � 2} is a basis
for Δ/Γ. Then

G =
⋃

0�i,j,k�2

(iσ1 + jσ2 + kσ3 + Γ), Δ =
⋃

0�i,j�2

(iσ1 + jσ2 + Γ).

Let
A := (Ft[Δ], λ(ω, μ))Γ =

⊕
σ∈Δ

A σ

be the Δ-tori associated to the pair (Δ,Γ) (see Example 5.3), where μ is a
2-cocycle on Γ and ω is a third root of unity. Let Z = Z(A ), and let tr be
the generic trace of the central closure A . We fix nonzero elements u1 ∈ A σ1 ,
u2 ∈ A σ2 , and u3 ∈ A 3σ3 . We note that A is a free Z-module with free basis
{ui

1u
j
2 | 0 � i, j � 2}. Since tr is Z-linear, for any z ∈ Z and a basis element

ui
1u

j
2, we have

tr(ui
1u

j
2z) = ztr(ui

1u
j
2) = 0 ((i, j) 
= (0, 0))

by Proposition 5.2, and so tr(A ) ⊆ Z. Since u3 is an invertible element of Z,
we consider the first Tits construction At = (A , u3) (see [11, 6.5]). We call At

the Jordan algebra associated to the Albert triple (G,Δ,Γ).
Claim At is a Jordan G-torus of strong type.

To see this, we first give a G-grading to At as follows. Recall that ui ∈ A σi

for i = 1, 2 and u3 ∈ A 3σ3 . We now fix u0 = 1 ∈ F = A 0 and nonzero elements
uγ ∈ A γ for γ ∈ Γ \ {0, 3σ3}. For α = iσ1 + jσ2 + γ ∈ Δ, 0 � i, j � 2, γ ∈ Γ,
set uα := ui

1u
j
2uγ . Then we have

A =
⊕
α∈Δ

Fuα.

Next, for α = iσ1 + jσ2 + kσ3 + γ ∈ G, 0 � i, j, k � 2, γ ∈ Γ, we set

tα :=

⎧⎪⎨⎪⎩
(uα, 0, 0), k = 0,

(0, uα−σ3 , 0), k = 1,

(0, 0, uα+σ3), k = 2.

We have

tσ3 = (0, 1, 0), t2σ3 = (0, 0, u3), t−σ3 = t−1
σ3

= (0, 0, 1).

One easily checks that, as a vector space, we have

At =
⊕
α∈G

Ftα.
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Moreover, considering the multiplication rule in At, it is not hard, even though
tedious, to see that At is strongly G-graded as a Jordan algebra and so At is a
G-torus of strong type. To be more precise on this, we give a rough outline of
the argument as follows. Let us recall that, as a vector space, we have

At = A ⊕ A ⊕ A .

Now, for a ∈ A , we set

a(0) := (a, 0, 0), a(1) := (0, a, 0), a(2) := (0, 0, a).

Also for α = iσ1 + jσ2 + kσ3 + γ ∈ G of the above form, we set

(α) :=

⎧⎪⎨⎪⎩
0, k = 0,

−1, k = 1,

1, k = 2.

Then we have
tα = u

(k)
α+(α)σ3

.

Now, if α′ = i′σ1 + j′σ2 + k′σ3 + γ′ is another element in G of the above form,
then it is easy to see that

u
(k)
α+(α)σ3

× u
(k′)
α′+(α′)σ3

= ru
(k)
α+(α)σ3

· u(k′)
α′+(α′)σ3

for some s ∈ Z/2. Therefore,

tαtα′ = r(u(α)(α′)(α+α′)
3 u

(k)
α+(α)σ3

· u(k′)
α′+(α′)σ3

)(ε(k+k′)).

But
u

(α)(α′)(α+α′)
3 u

(k)
α+(α)σ3

· u(k′)
α′+(α′)σ3

is a homogeneous element of degree

3(α)(α′)(α+ α′)σ3 + α+ α′ + (α)σ3 + (α′)σ3 = α+ α′ + (α+ α′)σ3.

It follows that
tαtα′ = ru

ε(k+k′)
α+α′+(α+α′) = rtα+α′

for some scalar r. This shows that At is G-graded. To see that it is of strong
type, we need to show that r is nonzero, or equivalently,

a× b 
= 0

if
a := u

(k)
α+(α)σ3

, b := u
(k′)
α′+(α′)σ3

.
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Suppose to the contrary that a× b = 0. Then we must have

tr(a · b) = tr(a)tr(b).

Now, if both a and b are central, then this gives ab = 3ab as tr(1) = 3, which is
absurd. If a is central but b not, then we get tr(a · b) = 0, which in turn implies
ab = 0, which is again absurd. Finally, if both a and b are non-central, then
again we get tr(a · b) = 0, which together with a × b = 0 implies a · b = 0, or
equivalently, ab = −ba. Then

ab = −ba = ωtba

for some integer t, which is absurd as ω is a third root of unity.
By [11, Lemma 6.5], the central closure At of At is an Albert algebra over

Z, and so At is a Jordan G-torus of Albert type. We refer to At as an Albert
G-torus constructed from an Albert triple (G,Δ,Γ). ♦
Theorem 5.9 Let J be a Jordan G-torus of Albert type over F with central
grading group Γ. Then G contains a subgroup Δ such that (G,Δ,Γ) is an Albert
triple and J is graded isomorphic to the Albert G-torus At, constructed from
the Albert triple (G,Δ,Γ) (see Example 5.8). Conversely, given an Albert triple
(G,Δ,Γ), the associated Jordan algebra At is an Albert G-torus.

Proof Let J = ⊕σ∈GJ
σ be a Jordan G-torus as in the statement. Then the

central closure J is an Albert algebra over Z, Z := Z(J). We recall that an
Albert algebra is a 27-dimensional central simple exceptional Jordan algebra of
degree 3. By Proposition 5.2,

3G � Γ ⊆ G, supp(J) = G.

Moreover, by Lemma 2.6,

27 = dimZ J = |G/Γ|.
Since G/Γ is a vector space over the field of 3 elements, we have

dimZ3(G/Γ) = 3.

Fix σ1, σ2, σ3 ∈ G such that {σi + Γ | i = 1, 2, 3} is a basis for G/Γ. Then

G =
⋃

0�i,j,k�2

(iσ1 + jσ2 + kσ3 + Γ).

Set
Δ :=

⋃
1�i,j�2

(iσ1 + jσ2 + Γ), U :=
⊕
σ∈Δ

Jσ.

Since 3G ⊆ Γ, Δ is a subgroup of G and so U is a subalgebra of J. We now
show that Z(U) = Z(J). Since Γ ⊆ Δ, we have Z(J) ⊆ Z(U). Thus, we must
show Z(U) ⊆ Z(J). Let Δ1 be the central grading group of U. Then

3G ⊆ Γ ⊆ Δ1 ⊆ Δ ⊆ G.
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We now note that Δ1 � Δ, because otherwise U is commutative and associative
and as J is an Albert division algebra, the subfield Z⊗ZU of J is 9-dimensional,
since |Δ/Γ| = 9. But it follows from [4, Lemma 1] that this is impossible.

By Lemma 2.6, the central closure

U := Z(U) ⊗Z(U) U

is (Δ/Δ1)-graded and Δ/Δ1 cannot be a non-trivial cyclic group. Thus,

2 � dim(Δ/Δ1) � dim(Δ/Γ) = 2.

This gives
dim(Δ/Δ1) = 2, Δ1 = Γ.

That is,
Z(U) = Z = Z(J).

Since Z(U) = Z(J), we have

U = Z ⊗Z U ↪→ J.

By [11, 2.6 (ii)], U is central. Thus, U is a central subalgebra of the division
algebra J and is 9-dimensional as |Δ/Γ| = 9. So by the classification of finite-
dimensional central simple Jordan algebras, U is special (see [4, Corollary 2,
pp. 204–207]). Then by [11, 2.11], U has degree 3. Thus, U is a special Jordan
G-torus of central degree 3. So we may use the characterization given in
Proposition 5.6 for U, in terms of a primitive third root of unity ω and a
2-cocycle μ on Γ, namely,

U ∼=G

{
(Ft[Δ], λ(ω, μ))+Γ , ω ∈ F,

H((Et[Δ], λ(ω, μ))Γ, σ), ω 
∈ F,

where E = F(ω) and σ is the non-trivial Galois automorphism of E.
We assume first that ω ∈ F. Then U = (Ft[Δ], λ(ω, μ))+Γ . We fix nonzero

elements
u1 := uσ1 ∈ Jσ1 , u2 := uσ2 ∈ Jσ2 , x ∈ Jσ3 .

Set
u3 := u3σ3 := x3 ∈ J3σ3 .

Let tr be the generic trace of J. We have

U =
⊕
σ∈Δ

Jσ

=
⊕

0�i,j�2, γ∈Γ

J iσ1+jσ2+γ

=
⊕

0�i,j�2, γ∈Γ

JγJ iσ1+jσ2

=
⊕

0�i,j�2

ZJ iσ1+jσ2 ,
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where the second equality follows from Lemma 2.6 (i). Thus, U is a free Z-
module with basis {ui

1u
j
2 | 0 � i, j � 2}. Now, for z ∈ Z and 0 � i, j � 2,

tr(zui
1u

j
2) = ztr(ui

1u
j
2) = 0 ((i, j) 
= (0, 0))

by Proposition 5.2, and is equal to ztr(1) if i = j = 0. Thus,

Tr(Ft[Δ], λ(ω, μ))Γ ⊆ Z.

Since x3 = u3 is an invertible element of Z, we may consider the first Tits
construction At := (A , u3) over Z, where A := (Ft[Δ], λ(ω, μ))Γ (see [11, 6.5]).
As we have seen in Example 5.8, At is a Jordan G-torus of strong type.

Next, let
U⊥ := {y ∈ J | Tr(Uy) = 0}.

We show that Jσ3 ,J2σ3 ⊆ U⊥. Now, for 0 � i, j � 2 and k = 1, 2, we have
(ui

1u
j
2)x

k ∈ G \ Γ, so Tr((ui
1u

j
2)x

k) = 0, again by Proposition 5.2. Since tr is
Z-linear, we are done.

Now, setting
J := J, U := A +, z := u3,

we see that the conditions of [11, 6.14] hold for the mentioned elements.
Therefore, J contains a subalgebra J ′ such that one of the following holds:

(I) there exists a Z-isomorphism ϕ : (A , u3) → J ′, which acts as identity
on A and ϕ((0, 1, 0)) = x;

(II) there exists a Z-isomorphism ϕ : (A , u−1
3 ) → J ′, which acts as identity

on A and ϕ((0, 0, 1)) = x.

We assume first that (I) holds and take σ ∈ G. Then

σ = iσ1 + jσ2 + kσ3 + γ,

where 0 � i, j, k � 2 and γ ∈ Γ. Since At is of strong type,

u0 := tiσ1
· (tjσ2

· (tkσ3
· tγ))

is a nonzero element of At and

0 
= ϕ(u0) = ui
1u

j
2x

kuγ ∈ Jα.

Thus, ϕ is an isomorphism over Z, in particular, J ∼=G At.
Next, we assume that (II) holds. We note that the F-linear map

f : A =
⊕
α∈Δ

Fuα → A op

induced by
ui

1u
j
2uγ �→ ui

2u
j
1uγ
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is an algebra isomorphism over F. We note that f(u3) = u3 and Tr◦ f = f ◦Tr.
It follows that J ∼=G At. This takes care of the case ω ∈ F.

Finally, we consider the case ω 
∈ F. Then we have

U ∼=G H((Et[Δ], λ(ω, μ))Γ, σ),

where E = F(ω) and σ is the non-trivial Galois automorphism of E over F. Let
JE = E ⊗F J be the Jordan torus over E. Let τ := σ ⊗ id be a σ-semilinear
involution of JE over F. Then UE = E ⊗F U is a subalgebra of JE. Since J is
exceptional, so is JE. Hence, the Jordan G-torus JE is of Albert type since the
other two types are special. Then taking u3 := x3, where

0 
= x ∈ Jσ3 ⊆ E ⊗F J
σ3 ,

we can consider, as in the previous case, the Albert torus Ãt := (B,u3),
where B := (Et[Δ], λ(ω, μ))Γ for t = (0, 1, 0) ∈ Ãt, and corresponding two
isomorphisms ϕ1 : JE → Ãt with ϕ1|U

E

= ϕ1|B = id, ϕ1(x) = t; and ϕ2 : JE → Ãt

with ϕ2(x) = t, ϕ2(u1) = u2, ϕ2(u2) = u1, ϕ2|UE

= ϕ2|B is an automorphism
of the associative algebra B. Now, considering these isomorphisms as identifi-
cations and using the fact that

τ(u1u2) = σ(u1u2) = u2u1,

we get
(u1u2) · t = (ωu1u2) · t = ω(u1u2) · t,

which contradicts (u1u2) · t 
= 0. Thus, ω 
∈ F cannot happen and so there is no
second Tits construction in this case. �
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