RESEARCH ARTICLE

Jordan tori for a torsion free abelian group

Saeid AZAM^{1,2}, Yoji YOSHII³, Malihe YOUSOFZADEH^{1,2}

- 1 Department of Mathematics, University of Isfahan, P. O. Box 81745-163, Isfahan, Iran
- 2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran
- 3 Department of Mathematics Education, Iwate University, Ueda 3-18-33, Morioka, Iwate 020-8550, Japan
- © Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Abstract We classify Jordan G-tori, where G is any torsion-free abelian group. Using the Zelmanov prime structure theorem, such a class divides into three types, the Hermitian type, the Clifford type, and the Albert type. We concretely describe Jordan G-tori of each type.

Keywords Jordan tori, extended affine Lie algebra, invariant affine reflection algebra

MSC 17B67, 17C50

1 Introduction

It is a well-known fact that the concept of a " \mathbb{Z}^n -torus" is of great importance in the context of classification of Lie tori. This concept was originally defined by Yoshii [12]. With the appearance of more general extensions of affine Kac-Moody Lie algebras, such as locally extended affine Lie algebras and invariant affine reflection algebras, one naturally extends the concept of a \mathbb{Z}^n -torus to a G-torus for an abelian group G, where for the algebras under consideration G is almost always torsion free. In this work, we classify Jordan G-tori, where G is a torsion free abelian group.

First, we discuss associative G-tori, using the concept of cocycles. Then we show that a Jordan G-torus is strongly prime, and so one can use the Zelmanov prime structure theorem [8]. Thus, such a class divides into three types, the Hermitian type, the Clifford type, and the Albert type. We classify each type using the result of associative G-tori and similar methods in [11].

This paper is organized as follows. In Section 2, we provide preliminary concepts, including direct limits and direct unions, pointed reflection subspaces,

and (involutorial) associative G-tori. In Section 3, using a direct union approach, we show that a Jordan G-tori J of Hermitian type has one of involution, plus or extension types (see Definition 3.4) and that J is a direct union of Jordan tori of Hermitian type, where J and its direct union components have the same involution, plus or extension type, see Theorem 3.7. In Section 4, we show that a Jordan G-torus J of Clifford type with support S and central grading group Γ , is graded isomorphic to a Clifford G-torus $J(S, \Gamma, \{a_{\varepsilon}\}_{\varepsilon \in I})$, introduced explicitly in Example 4.2, for some nonempty index set I and choices of $a_{\varepsilon} \in \mathbb{F}^{\times}$, $\varepsilon \in I$, see Theorem 4.3. In Section 5, the final section, we first fully characterize associative G-tori of central degree 3. Then for two subgroups Δ and Γ of G satisfying

$$3G \subseteq \Gamma \subseteq \Delta \subseteq G$$
, $\dim_{\mathbb{Z}_3}(G/\Gamma) = 3$, $\dim(\Delta/\Gamma) = 2$,

we associate to the triple (G, Δ, Γ) , a Jordan algebra \mathbb{A}_t which turns out to be a Jordan G-torus of Albert type, called an Albert G-torus associated to the triple (G, Δ, Γ) , see Example 5.8. Then we proceed with showing that given a Jordan G-torus J of Albert type with central grading group Γ , there exists a subgroup Γ of G such that the groups G, Γ , and Γ satisfy the above interactions and that Γ is graded isomorphic to the Albert Γ -torus \mathbb{A}_t , constructed from the triple Γ -torus Γ -torus

2 Preliminaries

Throughout this work, \mathbb{F} is a filed of characteristic zero and G is an abelian group. All algebras assumed over \mathbb{F} and are unital, unless otherwise mentioned. For a subset X of an abelian group, by $\langle X \rangle$ we mean the subgroup generated by X. In a graded algebra we speak of invertible (homogeneous) elements, whenever this notion is defined. The support of a G-graded algebra T, denoted by $\sup(T)$, is by definition the set of those elements of G for which the corresponding homogeneous space is nonzero. For a set X, we denote by \mathscr{M}_X the class of all finite subsets of X. For an associative algebra \mathscr{A} , we denote the corresponding plus algebra by \mathscr{A}^+ ; namely, \mathscr{A}^+ has \mathscr{A} as its ground vector space, with Jordan product

$$a \circ b := \frac{1}{2} \left(ab + ba \right).$$

If \mathscr{A} is equipped with an involution θ , then

$$H(\mathscr{A}, \theta) := \{ a \in \mathscr{A} \mid \theta(a) = a \}$$

is a subalgebra of \mathcal{A}^+ . The field of rational numbers will be denoted by \mathbb{Q} . To indicate that an example is concluded, we put the symbol \diamondsuit . We refer the reader to [7] or [13] for some terminologies on nonassociative algebras used in the sequel, such as prime, strongly prime, degree, Jordan domain.

2.1 A brief review of direct limits and direct unions

A set I together with a partially ordering \preceq , referred to (I, \preceq) , is called a directed set if for each two elements $i, j \in I$, there is $t \in I$ with $i \preceq t$ and $j \preceq t$. Suppose that $\mathscr C$ is a category and (I, \preceq) is a directed set. A family $\{C_i \mid i \in I\}$ of objects of $\mathscr C$ together with a family $\{f_{i,j} \mid i, j \in I; i \preceq j\}$ of morphisms $f_{i,j}$ of C_i to C_j $(i, j \in I, i \preceq j)$ is called a direct system in $\mathscr C$ if for every pair (i,j) with $i \preceq j$, $f_{ii} = 1_{C_i}$ and $f_{k,i} = f_{k,j} \circ f_{j,i}$ for $i \preceq j \preceq k$. A direct limit of the direct system $(\{C_i\}_{i \in I}, \{f_{i,j}\}_{i \preceq j})$ is an object C together with morphisms $\varphi_i \colon C_i \to C$ $(i \in I)$ satisfying the following two conditions:

- $\varphi_i = \varphi_j \circ f_{i,j}$ for $i, j \in I$ with $i \leq j$;
- for any other object D and morphisms ψ_i $(i \in I)$ from C_i to D with $\psi_i = \psi_j \circ f_{i,j}$ for $i, j \in I$ with $i \leq j$, there exists a unique morphism ψ from C to D such that $\psi \circ \varphi_i = \psi_i$ for $i \in I$.

If a direct limit of a direct system $(\{C_i\}_{i\in I}, \{f_{i,j}\}_{i\leq j})$ in a category \mathscr{C} exists, it is unique up to equivalence, so we refer to as the direct limit and denote it by $\varinjlim C_i$. Suppose that C is the direct limit of a direct system $(\{C_i\}_{i\in I}, \{f_{i,j}\}_{i\leq j})$ in a concrete category \mathscr{C} such that each C_i is a subset of C and for $i, j \in I$ with $i \leq j$, $f_{i,j}$ is the inclusion map, then we say that C is the direct union of $(\{C_i\}_{i\in I}, \{f_{i,j}\}_{i\prec j})$ if $C = \bigcup_{i\in I} C_i$.

2.2 Pointed reflection subspaces

In this subsection, we recall the notion of a reflection subspace and record certain properties of reflection subspaces which will be needed in the sequel.

Definition 2.1 A symmetric reflection subspace of an additive abelian group G is a subset S of G satisfying $\langle S \rangle = G$ and $S - 2S \subseteq S$. A symmetric reflection subspace is called a *pointed reflection subspace* (PRS) if $0 \in S$. For details on symmetric reflection subspaces, we refer the interested reader to [6] and [2].

If the group G is free abelian of finite rank, a symmetric reflection subspace in G is also called a *translated semilattice* in G. In this case, a pointed reflection subspace is called a *semilattice*. A non-trivial interesting feature of semilattices is that any semilattice in G contains a \mathbb{Z} -basis of G (see [1, Proposition II.1.11]).

The following lemma, whose proof is straightforward, gives a characterization of a PRS in terms of its finitely generated pointed reflection subspaces.

Lemma 2.2 (i) Let S be a PRS in G. Then the following hold.

- (a) For $T \subseteq S$, $S_T := S \cap \langle T \rangle$ is a PRS in $\langle T \rangle$. In particular, if G is torsion free and T is finite, then S_T is a semilattice in $\langle T \rangle$.
 - (b) S is the union of $\{S_T\}_{T \in \mathcal{M}_S}$.
- (ii) Let $\mathscr S$ be a family of subsets of G such that via the inclusion $\mathscr S$ is a directed set, and that each element of $\mathscr S$ is a PRS in its $\mathbb Z$ -span in G. If $G = \bigcup_{S \in \mathscr S} \langle S \rangle$, then the union $\bigcup_{S \in \mathscr S} S$ is a PRS in G.

2.3 G-tori

In this subsection, we study G-tori, where G is assumed to be a torsion free

abelian group. Since G can be naturally imbedded in $G \otimes_{\mathbb{Z}} \mathbb{Q}$, we can make sense of σ/n for $\sigma \in G$ and $n \in \mathbb{Z} \setminus \{0\}$. We recall that since G is torsion free, it is an ordered group in the sense of [5, p.94].

Definition 2.3 [11, Definition 3.1] A G-graded algebra $J = \sum_{\sigma \in G} J^{\sigma}$ satisfying conditions

- (T1) $G = \langle \sigma \in G \mid J^{\sigma} \neq 0 \rangle$,
- (T2) all nonzero homogeneous elements of J are invertible,
- (T3) $\dim_{\mathbb{F}}(J^{\sigma}) \leq 1$ for all $\sigma \in G$,

is called a G-torus. It is called of $strong\ type$, if J is $strongly\ graded$, namely, $J^{\sigma}J^{\tau}=J^{\sigma+\tau}$ for all $\sigma,\tau\in G$. The G-torus J is called an associative or a Jordan G-torus, if J is associative or Jordan, respectively.

The proof of the following lemma is straightforward.

Lemma 2.4 Suppose that G is an abelian group and Γ is a nonempty index set. Suppose that $\{G_{\gamma} \mid \gamma \in \Gamma\}$ is a class of subgroups of G such that $G = \bigcup_{\gamma \in \Gamma} G_{\gamma}$ and such that Γ is a directed set under the ordering " \preccurlyeq " defined by $\gamma \preccurlyeq \eta$ if G_{γ} is a subgroup of G_{η} ($\gamma, \eta \in \Gamma$). If ($\{\mathscr{A}_{\gamma}\}, \{\varphi_{\gamma, \eta}\}$) is a direct system of associative algebras and algebra homomorphisms with direct limit ($\mathscr{A}, \{\varphi_{\gamma}\}$) such that

- each \mathscr{A}_{γ} is equipped with a G-grading $\mathscr{A}_{\gamma} = \bigoplus_{g \in G} (\mathscr{A}_{\gamma})^g$ with $\operatorname{supp}(\mathscr{A}_{\gamma}) = G_{\gamma}$ and $\dim((\mathscr{A}_{\gamma})^g) \leqslant 1$ for all $g \in G$,
 - each $\varphi_{\gamma,\eta}$ is a G-graded homomorphism,
 - $each \varphi_{\gamma}$ is monomorphism,

then \mathscr{A} as an algebra is equipped with a G-grading $\mathscr{A} = \bigoplus_{g \in G} \mathscr{A}^g$ with $\operatorname{supp}(\mathscr{A}) = G$ and $\dim(\mathscr{A}^g) = 1$ for all $g \in G$. Moreover, if each \mathscr{A}_{γ} is an associative G_{γ} -torus, then \mathscr{A} is an associative G-torus.

Lemma 2.5 Let T be a Jordan or an associative G-torus. Let \mathscr{M} be the set of all finite subsets of $\operatorname{supp}(T)$ containing a fixed finite subset \mathfrak{m}_0 of $\operatorname{supp}(T)$. For $\mathfrak{m} \in \mathscr{M}$, let

$$G_{\mathfrak{m}} := \langle \mathfrak{m} \rangle, \quad T_{\mathfrak{m}} := \sum_{\sigma \in G_{\mathfrak{m}}} T^{\sigma}.$$

Then we have the following:

- (i) $G = \bigcup_{\mathfrak{m} \in \mathscr{M}} G_{\mathfrak{m}};$
- (ii) for $\mathfrak{m} \in \mathcal{M}$, $T_{\mathfrak{m}}$ is a $G_{\mathfrak{m}}$ -torus, and $T = \bigcup_{\mathfrak{m} \in \mathcal{M}} T_{\mathfrak{m}}$;
- (iii) $\operatorname{supp}(T) = \bigcup_{\mathfrak{m} \in \mathscr{M}} \operatorname{supp}(T_{\mathfrak{m}});$
- (iv) supp(T) is a PRS in G;
- (v) T is domain, in particular, it has no nilpotents, and it is strongly prime if T is Jordan;
 - (vi) a nonzero element of T is invertible if and only if is homogeneous;
- (vii) if $0 \neq x \in T$ and $x^m \in T^{\sigma}$ for some $\sigma \in G$, $m \in \mathbb{Z}$, then $\sigma \in mG$ and $x \in T^{\sigma/m}$.

Proof The proof of (i)–(iii) is immediate. By [11, Lemma 3.5], for each $\mathfrak{m} \in \mathcal{M}$, supp $(T_{\mathfrak{m}})$ is a PRS in $G_{\mathfrak{m}}$. Moreover, by (T1),

$$G = \langle \operatorname{supp}(T) \rangle = \bigcup_{\mathfrak{m} \in \mathscr{M}} G_{\mathfrak{m}}.$$

So by part (iii) and Lemma 2.2 (ii), supp(S) is a PRS in G, proving (iv). The proof of (v)–(vii) is well known.

We know from Lemma 2.5 that the center Z(T) of T is an associative commutative homogeneous subalgebra of T, as well as an integral domain. In particular, $\Gamma := \operatorname{supp}(Z(T))$ is a subgroup of G and Z(T) is Γ -graded. It follows that Z(T) is isomorphic to a commutative twisted group algebra. The group Γ is called the *central grading group* of T. Let \overline{Z} be the field of fractions of Z, and consider $\overline{T} = \overline{Z} \otimes_Z T$. If T is an associative (Jordan) algebra, then by Lemma 2.5 (v) and [11, 2.6], \overline{T} is an associative (Jordan) algebra over \overline{Z} which is also an integral domain.

Here is a generalization of [11, Lemma 3.9] to torsion free case.

Lemma 2.6 Let G be a torsion free abelian group, and let $T = \bigoplus_{\alpha \in G} T_{\alpha}$ be a Jordan or an associative torus. Let Z = Z(T) be the center of T with the central grading group Γ . Let $\overline{-}: G \to G/\Gamma$ be the canonical map. For $\alpha \in G$, let

$$T_{\overline{\alpha}} := ZT_{\alpha}, \quad \overline{T}_{\overline{\alpha}} := \overline{Z} \otimes_Z ZT_{\alpha}.$$

Then

- (i) $ZT_{\alpha} = ZT_{\beta}$ for all $\alpha, \beta \in G$ with $\alpha \equiv \beta \mod \Gamma$;
- (ii) $T = \bigoplus_{\overline{\alpha} \in G/\Gamma} T_{\overline{\alpha}}$ is a free Z-module and a G/Γ -graded algebra over Z with rank $T_{\overline{\alpha}} \leq 1$ for all $\overline{\alpha} \in G/\Gamma$;
 - (iii) $\overline{T} = \bigoplus_{\overline{\alpha} \in G/\Gamma} \overline{T}_{\overline{\alpha}}$ is a G/Γ -graded torus over \overline{Z} with

$$\dim_{\overline{Z}} \overline{T} = |(\operatorname{supp} T)/\Gamma|;$$

(iv) the quotient group G/Γ cannot be a nontrivial cyclic group.

Proof The proof of (i)–(iii) is straightforward, considering the fact that for $\gamma \in \Gamma$ and $\alpha \in G$, $T_{\gamma} \subseteq Z$ and $T_{\alpha+\gamma} = T_{\gamma}T_{\alpha}$. By (iii), \overline{T} is a G/Γ -torus. If G/Γ is cyclic, \overline{T} is also commutative and associative. Thus, T embeds in \overline{T} and so Z = T and $\Gamma = \Lambda$. This proves (iv).

2.4 Associative G-tori

Let G be an abelian group. Symbols σ, τ, μ always denote elements of G. Let $\mathscr{A} = \bigoplus_{\sigma \in G} \mathscr{A}^{\sigma}$ be an associative G-torus. Since homogeneous non-zero elements of \mathscr{A} are invertible, we have

$$\mathscr{A}^{\sigma} \mathscr{A}^{\tau} = \mathscr{A}^{\sigma+\tau}, \quad \sigma, \tau \in \operatorname{supp}(\mathscr{A}).$$

It follows that $\operatorname{supp}(\mathscr{A})$ is a subgroup of G and so by (T1), $\operatorname{supp}(\mathscr{A}) = G$. For $\sigma \in G$, we choose $0 \neq x^{\sigma} \in \mathscr{A}^{\sigma}$. Then $\mathscr{A} = \bigoplus_{\sigma \in G} \mathbb{F} x^{\sigma}$. Define $\lambda \colon G \times G \to \mathbb{F}^{\times}$ by

$$x^{\sigma}x^{\tau} = \lambda(\sigma, \tau)x^{\sigma+\tau}, \quad \sigma, \tau \in G.$$
 (2.1)

Associativity of \mathscr{A} implies that λ is a 2-cocycle, namely, for $\sigma, \tau, \mu \in G$,

$$\lambda(\sigma + \tau, \mu)\lambda(\sigma, \tau) = \lambda(\sigma, \tau + \mu)\lambda(\tau, \mu). \tag{2.2}$$

Conversely, let $\lambda\colon G\times G\to \mathbb{F}^\times$ be a 2-cocycle. Consider the abstract vector space $\mathscr{A}:=\oplus_{\sigma\in G}\mathbb{F} x^\sigma$ with basis $\{x^\sigma\mid \sigma\in G\}$. Then the multiplication on \mathscr{A} induced from (2.1) makes \mathscr{A} into an associative G-torus with $\operatorname{supp}(\mathscr{A})=G$. We denote \mathscr{A} by $(\mathbb{F}^t(G),\lambda)$ and call it the associative G-torus determined by the 2-cocycle λ . We note that the associative G-torus $(\mathbb{F}^t[G],\lambda)$ can be characterized as the unital associative algebra defined by the set of generators $\{x^\sigma\mid \sigma\in g\}$ and relations (2.1). The associative G-torus $(\mathbb{F}^t[G],\lambda)$ is called elementary if $\operatorname{img}(\lambda)\subseteq\{1,-1\}$. In the literature, $\mathscr{A}=(\mathbb{F}^t[G],\lambda)$ is also known as the twisted group algebra determined by λ (see [10] or [9]). We summarize the above discussion as follows.

Lemma 2.7 Let G be an abelian group, and let $\mathscr A$ be an associative algebra. Then $\mathscr A$ is a G-torus if and only if $\mathscr A \cong_G (\mathbb F^t[G], \lambda)$ for a 2-cocycle λ .

Let $\mathscr{A}=(\mathbb{F}^t[G),\lambda)$ be an associative G-torus. Note that for $\sigma,\tau\in G,\,x^\sigma$ and x^τ commute up to a "twisting", namely,

$$x^{\sigma}x^{\tau} = \lambda_t(\sigma, \tau)x^{\tau}x^{\sigma}, \tag{2.3}$$

where

$$\lambda_t(\sigma,\tau) := \lambda(\sigma,\tau)\lambda(\tau,\sigma)^{-1}. \tag{2.4}$$

We clearly have

$$\lambda_t(\sigma,\sigma) = 1, \quad \lambda_t(\sigma,\tau) = \lambda_t(\tau,\sigma)^{-1}.$$

Moreover, one can check that $\lambda_t \colon G \times G \to \mathbb{F}^{\times}$ is a group bihomomorphism.

Remark 2.8 Suppose in the above discussion that we replace the basis $\{x^{\sigma} \mid \sigma \in G\}$ of \mathscr{A} by another basis $\{y^{\sigma} \mid \sigma \in G\}$. Then for $\sigma \in G$, $y^{\sigma} = d(\sigma)x^{\sigma}$, where $d: G \to \mathbb{F}^{\times}$ is a map. Denote the corresponding 2-cocycle as in (2.1) by $\hat{\lambda}: G \times G \to \mathbb{F}^{\times}$. Then we have

$$\hat{\lambda}(\sigma,\tau) = d(\sigma)d(\tau)d(\sigma+\tau)^{-1}\lambda(\sigma,\tau).$$

Therefore, λ and $\hat{\lambda}$ are *equivalent*, up to a coboundary. That is, the product on \mathscr{A} is uniquely determined up to $H^2(G, \mathbb{F}^{\times})$ (see [9, §1]).

Example 2.9 (Quantum tori) Let Λ be a free abelian group of rank |I|, where I is a nonempty index set with a fixed total ordering <. Let $\mathscr{A} = (\mathbb{F}^t[\Lambda], \lambda)$ be

a Λ -torus determined by a 2-cocycle λ . We fix a basis $\{\sigma_i \mid i \in I\}$ of Λ , and set $q_{ij} = \lambda_t(\sigma_i, \sigma_j)$. Since λ_t is a bihomomorphism, for

$$\sigma = \sum_{i \in I} n_i \sigma_i, \quad \tau = \sum_{i \in I} m_i \sigma_i,$$

we have

$$\lambda_t(\sigma,\tau) = \prod_{i,j} q_{ij}^{n_i m_j},$$

with $q_{ij} = q_{ji}^{-1}$ and $q_{ii} = 1$ for all $i, j \in I$. We note that as n_i 's and m_i 's are zero almost for all i, the above product makes sense. In the literature, a matrix $(q_{ij})_{i,j\in I}$ (possibly of infinite rank), satisfying $q_{ii} = 1$ and $q_{ij} = q_{ji}^{-1}$ for all i, j, is called a quantum matrix. A quantum matrix \mathbf{q} is called elementary if $q_{ij} \in \{\pm 1\}$ for all i, j. For $i \in I$, we set $y_i := x^{\sigma_i}$. Also for $\sigma = \sum_{i \in I} n_i \sigma_i$, we set $y^{\sigma} = 1$ if $\sigma = 0$ and if $\sigma \neq 0$, we set $y^{\sigma} := y_{i_1}^{n_{i_1}} \cdots y_{i_k}^{n_{i_k}}$, where $i_1 < \cdots < i_k$ are all indices for which $n_{ij} \neq 0$. Then we have

$$\mathscr{A} = \bigoplus_{\sigma \in \Lambda} \mathbb{F} y^{\sigma},$$

and for all $i, j \in I$,

$$y_i y_j = q_{ij} y_j y_i, \quad y_i y_i^{-1} = y_i^{-1} y_i = 1.$$
 (2.5)

The Λ -torus \mathscr{A} can be described as the unital associative algebra defined by generators $1, y_i, y_i^{-1}$ and relations (2.5), induced from the quantum matrix $\mathbf{q} := (q_{ij})$. In this case, we denote \mathscr{A} by $\mathscr{A} = (\mathbb{F}^t[\Lambda], \mathbf{q})$ and call it the quantum torus determined by the quantum matrix \mathbf{q} .

Here is a generalization of [11, Lemma 4.6] to the torsion free case.

Lemma 2.10 Let G be a torsion free abelian group, and let \mathscr{A} be an associative algebra. If \mathscr{A}^+ is a Jordan G-torus, then $\mathscr{A} \cong_G (\mathbb{F}^t[G], \lambda)$ for some 2-cocycle λ . In particular, if G is free abelian, then $\mathscr{A} \cong_G (\mathbb{F}^t[G], \mathbf{q})$ for some quantum matrix \mathbf{q} .

Proof By Lemma 2.7, we must show that \mathscr{A} is an associative G-torus. Since \mathscr{A}^+ is a Jordan torus, we have

$$\mathscr{A}^+ = \mathscr{A} = \bigoplus_{\sigma \in g} \mathscr{A}^\sigma,$$

with $G = \langle \sigma \in G \mid \mathscr{A}^{\sigma} \neq 0 \rangle$ and $\dim \mathscr{A}^{\sigma} \leqslant 1$ for all $\sigma \in G$. So it only remains to show that \mathscr{A} is G-graded, namely, $\mathscr{A}^{\sigma} \mathscr{A}^{\tau} \subseteq \mathscr{A}^{\sigma+\tau}$ for all $\sigma, \tau \in G$. We proceed with showing this for fixed $\sigma, \tau \in G$. We may assume without loss of generality that both \mathscr{A}^{σ} and \mathscr{A}^{τ} are non-zero. Let $0 \neq x \in \mathscr{A}^{\sigma}$ and $0 \neq y \in \mathscr{A}^{\tau}$. By Lemma 2.5, x and y are invertible in \mathscr{A}^+ and so they are invertible in \mathscr{A} .

Therefore, xy and yx are invertible in \mathscr{A} and so in \mathscr{A}^+ . Then by Lemma 2.5, both xy and yx are homogeneous in \mathscr{A} . Now, as

$$x \circ y = xy + yx \in \mathscr{A}^{\sigma + \tau}$$
,

we conclude that $xy \in \mathscr{A}^{\sigma+\tau}$ if $x \circ y \neq 0$. Suppose now that $x \circ y = 0$. Then $xy = -yx \in \mathscr{A}^{\delta}$ for some $\delta \in G$ and as \mathscr{A} is associative,

$$(xy)^2 = -x^2y^2 = -y^2x^2.$$

Therefore,

$$0 \neq (xy)^2 = -\frac{1}{2}(x^2y^2 + y^2x^2) = -\frac{1}{2}(x^2 \circ y^2) \in \mathscr{A}^{2\delta} \cap \mathscr{A}^{2\sigma + 2\tau}.$$

Thus, $\delta = \sigma + \tau$. The second statement follows immediately from Example 2.9.

2.5 Involutorial associative G-tori

Let $\mathscr{A}=(\mathbb{F}^t[G],\lambda)$ be an associative G-torus. Assume further that \mathscr{A} is equipped with a graded involution $\bar{}$, namely, a period 2 anti-automorphism $\bar{}$ satisfying $\bar{\mathscr{A}}^\sigma=\mathscr{A}^\sigma,\,\sigma\in G$. Then, for $\sigma\in G$, we have $\bar{x}^\sigma=a_\sigma x^\sigma$, where $a_\sigma\in\mathbb{F}^\times$ satisfies $a_\sigma^2=1$. So, for $\sigma\in G$,

$$\overline{x^{\sigma}} = (-1)^{q(\sigma)} x^{\sigma}$$

where q is a map from G into the field \mathbb{F}_2 of 2 elements. We note that

$$(-1)^{q(\sigma+\tau)}x^{\sigma+\tau} = \overline{x^{\sigma+\tau}} = \lambda(\sigma,\tau)^{-1}\overline{x^{\tau}}\ \overline{x^{\sigma}} = \lambda(\sigma,\tau)^{-1}\lambda(\tau,\sigma)(-1)^{q(\sigma)+q(\tau)}x^{\sigma+\tau}.$$

Thus,

$$(-1)^{\beta_q(\sigma,\tau)} = \lambda_t(\sigma,\tau), \tag{2.6}$$

where $\beta_q \colon G \times G \to \mathbb{F}_2$ is defined by

$$\beta_q(\sigma, \tau) = q(\sigma) + q(\tau) - q(\sigma + \tau).$$

Now, λ_t being a bihomomorphism implies that β_q is also a group bihomomorphism. Therefore, by definition, $q: G \to \mathbb{F}_2$ is a quadratic map.

Conversely, starting from an associative G-torus $\mathscr{A} = (\mathbb{F}^t[G], \lambda)$ and a quadratic map $q: G \to \mathbb{F}_2$ satisfying $(-1)^{\beta_q(\sigma,\tau)} = \lambda_t(\sigma,\tau)$, one can define a graded involution $\overline{}$ on \mathscr{A} by $\overline{x^{\sigma}} = (-1)^{q(\sigma)}x^{\sigma}$. In fact, it is clear that $\overline{}$ is a period 2 isomorphism of \mathbb{F} -vector spaces. Moreover, for $\sigma, \tau \in G$, we have

$$\begin{split} \overline{x^{\sigma}x^{\tau}} &= \lambda(\sigma,\tau)\overline{x^{\sigma+\tau}} \\ &= \lambda(\sigma,\tau)(-1)^{q(\sigma+\tau)}x^{\sigma+\tau} \\ &= \lambda(\sigma,\tau)(-1)^{q(\sigma+\tau)}\lambda(\tau,\sigma)^{-1}x^{\tau}x^{\sigma} \\ &= (-1)^{\beta_q(\sigma,\tau)+q(\sigma,\tau)}x^{\tau}x^{\sigma} \\ &= (-1)^{q(\sigma)+q(\tau)}x^{\tau}x^{\sigma} \\ &= \overline{x^{\tau}}\,\overline{x^{\sigma}}. \end{split}$$

Definition 2.11 Let $\mathscr{A} = (\mathbb{F}^t[G], \lambda)$ be a G-torus, and let $q: G \to \mathbb{F}_2$ be a quadratic map satisfying (2.6). We denote the induced involution on \mathscr{A} by θ_q . We recall that in this case, $H(\mathscr{A}, \theta_q) = H((\mathbb{F}^t[G], \lambda), \theta_q)$ is a subalgebra of \mathscr{A}^+ .

Let J be a Jordan G-torus. By Lemma 2.5, J is strongly prime, so by Zelmanov's Prime Structure Theorem [8, p. 200], J has one of the types, Hermitian, Clifford, or Albert. We recall that J is of Hermitian type if J is special and $q_{48}(J) \neq \{0\}$ (the term $q_{48}(J)$ will be explained in the next section). Also J is of Clifford type if the central closure \overline{J} is a Jordan algebra over \overline{Z} of a symmetric bilinear form. Finally, J is of Albert type if the central closure \overline{J} is an Albert algebra over \overline{Z} . In the remaining sections, we study each of the mentioned types separately.

3 Jordan tori of Hermitian type

Throughout this section, G is a torsion free abelian group, unless otherwise mentioned. All associative algebras are assumed to be unital. We assume that any algebra homomorphism from a unital algebra to a unital algebra maps 1 to 1. We recall that a Jordan torus J is called a *Hermitian torus* if there exists an involutorial associative algebra $(\mathscr{A}, *)$ which is *-prime such that \mathscr{A} is generated by J and $J = H(\mathscr{A}, *)$.

We make a convention that for two elements x, y of an associative algebra, by [x, y], we mean xy - yx and by $x \circ y$, we mean xy + yx. Suppose that X is an infinite set and $\mathfrak{a}(X)$ is the free associative algebra on X. We consider the special Jordan algebra $\mathfrak{a}(X)^+$ and take $\mathfrak{fsj}(X)$ to be the subalgebra of $\mathfrak{a}(X)^+$ generated by X. This is the free special Jordan algebra on X. We recall that an ideal I of $\mathfrak{fsj}(X)$ is called formal if for each polynomial $p(x_1,\ldots,x_n) \in I$ with $x_1,\ldots,x_n \in X$, and each permutation σ of X, one has $p(\sigma(x_1),\ldots,\sigma(x_n)) \in I$. A formal ideal H of $\mathfrak{fsj}(X)$ is called Hermitian if it is closed under n-tads for each natural number n greater than 3, i.e., for $n \in \mathbb{N}$ with n > 3 and $x_1,\ldots,x_n \in H$,

$$\{x_1,\ldots,x_n\}:=x_1\cdots x_n+x_n\cdots x_1\in H.$$

Now, suppose that H(X) is a Hermitian ideal of $\mathfrak{fsj}(X)$. For an *i*-special Jordan algebra (i.e., a quotient algebra of a special Jordan algebra) J, by H(J), we mean the evaluation of H(X) on J; H(J) is an ideal of J and called a Hermitian part of J.

Now, for $x, y, z, w \in X$, we take

$$D_{x,y}(z) := [[x,y],z]$$

and set

$$p_{16}(x, y, z, w) := [[D_{x,y}^2(z)^2, D_{x,y}(w)], D_{x,y}(w)].$$

Then

$$q_{48} := [[p_{16}(x_1, y_1, z_1, w_1), p_{16}(x_2, y_2, z_2, w_2)], p_{16}(x_3, y_3, z_3, w_3)]$$

is a polynomial in the free associative algebra on X in 12 variables $x_i, y_i, z_i, w_i, 1 \le i \le 3$. Take Q_{48} to be the linearization-invariant T-ideal of $\mathfrak{fsj}(X)$ generated by q_{48} . It means that Q_{48} is the smallest ideal of $\mathfrak{fsj}(X)$ containing q_{48} with the following two properties. If p is a polynomial in Q_{48} , then each linearization of p is also an element of Q_{48} and that Q_{48} is invariant under all algebra endomorphisms of $\mathfrak{fsj}(X)$. We note that for 12 variables $x_i, y_i, z_i, w_i, 1 \le i \le 3$, each monomial of q_{48} is a product of 12 variables $x_i, y_i, z_i, w_i, 1 \le i \le 3$, and monomials have the same number of $x \in \{x_i, y_i, z_i, w_i \mid 1 \le i \le 3\}$. So each polynomial in Q_{48} is a summation of monomials having the same partial degree.

Lemma 3.1 Suppose that J is a Jordan G-torus of Hermitian type. Then J = H(P, *) for an associative algebra P with an involution * such that P is *-prime and is generated by J.

Proof Since J is of Hermitian type, we have $q_{48}(J) \neq \{0\}$. Fix a basis B of J consisting of homogeneous elements. If $Q_{48}(B) = \{0\}$, we get $q_{48}(J) = \{0\}$, which is a contradiction. So there is a polynomial $p \in Q_{48}$ and $b_1, \ldots, b_m \in B$ such that $p(b_1, \ldots, b_m) \neq 0$. We know that p is a linear combination of monomials having the same partial degree. This together with the fact that b_1, \ldots, b_m are homogeneous elements implies that $p(b_1, \ldots, b_m)$ is homogeneous and so it is invertible. So $Q_{48}(J) = J$.

Lemma 3.2 Suppose that J is a Jordan G-torus. Suppose that \mathbb{E} is a quadratic field extension of \mathbb{F} , $\sigma_{\mathbb{E}}$ is the nontrivial Galois automorphism, and $\lambda \colon G \times G \to \mathbb{E}^{\times}$ is a 2-cocycle. Assume $\mathbb{E} \otimes_{\mathbb{F}} J \simeq_G (\mathbb{E}^t[G], \lambda)^+$, say via φ . Then either there is a 2-cocycle $\mu \colon G \times G \to \mathbb{F}^{\times}$ such that $(\mathbb{E}^t[G], \lambda) \simeq_G (\mathbb{E}^t[G], \mu)$ and $J \simeq_G (\mathbb{F}^t[G], \mu)^+$, or $J \simeq_G H((\mathbb{E}^t[G], \mu), \theta)$ for some 2-cocycle μ satisfying $\sigma_{\mathbb{E}}(\mu(g_1, g_2)) = \mu(g_2, g_1)$ for $g_1, g_2 \in G$, and an $\sigma_{\mathbb{E}}$ -semilinear antiautomorphism θ , where $(\mathbb{E}^t[G], \mu)$ is considered as an \mathbb{F} -algebra.

Proof Since \mathbb{E} is a quadratic field extension of \mathbb{F} , there is an irreducible polynomial on \mathbb{F} of degree 2 with distinct roots e, f. Then $\mathbb{E} = \mathbb{F} + e\mathbb{F}$ and $\sigma_{\mathbb{E}} \colon \mathbb{E} \to \mathbb{E}$ is the Galois automorphism mapping e to f. Set

$$\tau := \sigma_{\mathbb{E}} \otimes id \colon \mathbb{E} \otimes J \to \mathbb{E} \otimes J.$$

Since for $x, y \in E$ and $a \in J$, we have

$$\tau(xy \otimes a) = \sigma_{\mathbb{E}}(xy) \otimes a = \sigma_{\mathbb{E}}(x)\sigma_{\mathbb{E}}(y) \otimes a = \sigma_{\mathbb{E}}(x)(\sigma_{\mathbb{E}}(y) \otimes a),$$

we get that τ is a $\sigma_{\mathbb{E}}$ -semilinear automorphism of the Jordan algebra $\mathbb{E} \otimes J$. Consider the \mathbb{E} -Jordan algebra isomorphism $\varphi \colon \mathbb{E} \otimes_{\mathbb{F}} J \to (\mathbb{E}^t[G], \lambda)^+$. Then $\theta := \varphi \tau \varphi^{-1}$ is a Jordan $\sigma_{\mathbb{E}}$ -semilinear automorphism on $(\mathbb{E}^t[G], \lambda)^+$. Next, we note that as $\theta = \varphi \tau \varphi^{-1}$ is a Jordan $\sigma_{\mathbb{E}}$ -semilinear automorphism on $(\mathbb{E}^t[G], \lambda)^+$, it is also an \mathbb{F} -linear automorphism of the \mathbb{F} -Jordan algebra $(\mathbb{E}^t[G], \lambda)^+$. So by [3, Lemma 1.1.7] either θ is a $\sigma_{\mathbb{E}}$ -semilinear associative algebra automorphism of $(\mathbb{E}^t[G], \lambda)$ or it is a $\sigma_{\mathbb{E}}$ -semilinear anti-automorphism of the associative algebra $(\mathbb{E}^t[G], \lambda)$ which is not an automorphism. We know that

$$J \simeq \operatorname{span}_{\mathbb{F}} \{ r \otimes x \mid r \in \mathbb{F}, \ x \in J \} = H(\mathbb{E} \otimes J, \tau)$$

and the restriction of φ to $H(\mathbb{E} \otimes J, \tau)$ is an \mathbb{F} -Jordan algebra isomorphism from $J \simeq H(\mathbb{E} \otimes J, \tau)$ to $H((\mathbb{E}^t[G], \lambda), \theta)$. So to complete the proof, we show that either

$$H((\mathbb{E}^t[G], \lambda), \theta) = (\mathbb{F}^t[G], \mu)^+$$

for a 2-cocycle $\mu \colon G \times G \to \mathbb{F}$ or

$$H((\mathbb{E}^t[G], \lambda), \theta) = H((\mathbb{E}^t[G], \mu), \theta)$$

for some 2-cocycle μ satisfying $\sigma_{\mathbb{E}}(\mu(g_1,g_2)) = \mu(g_2,g_1)$ for $g_1,g_2 \in G$.

We fix $0 \neq x^g \in J_g$ $(g \in G)$, so $\{x^g \mid g \in G\}$ is an \mathbb{F} -basis for J and an \mathbb{E} -basis for $\mathbb{E} \otimes_{\mathbb{F}} J$ (here, we identify J with $\{1 \otimes x \mid x \in J\} \subseteq \mathbb{E} \otimes J$). Now, as for $g \in G$, $\tau(x^g) = x^g$ and φ is a G-graded isomorphism, $\{y^g := \varphi(x^g) \mid g \in G\}$ is a basis for the \mathbb{E} -vector space $\mathbb{E}^t[G]$ consisting of homogeneous elements fixed by θ . Now, let $\mu \colon G \times G \to \mathbb{E}$ be the 2-cocycle corresponding to this new basis; see Remark 2.8. We note that

$$(\mathbb{E}^t[G], \lambda) = \left(\bigoplus_{g \in G} \mathbb{E}y^{\sigma}, \mu\right) = \bigoplus_{g \in G} \mathbb{F}y^{\sigma} + \bigoplus_{g \in G} e\mathbb{F}y^{\sigma}$$

and

$$H((\mathbb{E}^t[G], \lambda), \theta) = \bigoplus_{g \in G} \mathbb{F} y^{\sigma}.$$

Now, we consider the two cases that either θ is a $\sigma_{\mathbb{E}}$ -semilinear associative algebra automorphism of $(\mathbb{E}^t[G], \lambda) = (\mathbb{E}^t[G], \mu)$ or it is a $\sigma_{\mathbb{E}}$ -semilinear anti-automorphism of the associative algebra $(\mathbb{E}^t[G], \lambda) = (\mathbb{E}^t[G], \mu)$ which is not an automorphism. In the former case, for $g_1, g_2 \in G$, we have

$$0 = \theta(y^{g_1}y^{g_2} - \mu(g_1, g_2)y^{g_1+g_2}) = y^{g_1}y^{g_2} - \sigma_{\mathbb{E}}(\mu(g_1, g_2))y^{g_1+g_2}.$$

So we have

$$\mu(g_1, g_2)y^{g_1+g_2} = y^{g_1}y^{g_2} = \sigma_{\mathbb{E}}(\mu(g_1, g_2))y^{g_1+g_2}.$$

Therefore, $\mu(g_1, g_2) \in \mathbb{F}$. Now, we have

$$(\mathbb{E}^t[G], \lambda) = \bigoplus_{g \in G} \mathbb{E} y^{\sigma} = \bigoplus_{g \in G} \mathbb{F} y^{\sigma} + \bigoplus_{g \in G} e \mathbb{F} y^{\sigma}.$$

Since $\mu(G,G) \subseteq \mathbb{F}$, $\bigoplus_{g \in G} \mathbb{F} y^{\sigma}$ is closed under the associative product on $(\mathbb{E}^t[G], \mu)$ and

$$H((\mathbb{E}^t[G], \lambda)) = H((\mathbb{E}^t[G], \mu), \theta) = \bigoplus_{g \in G} \mathbb{F} y^{\sigma}$$

can be identified with $(\mathbb{F}^t[G], \mu)^+$. In the latter case, for $g_1, g_2 \in G$, we have

$$0 = \theta(y^{g_1}y^{g_2} - \mu(g_1, g_2)y^{g_1+g_2}) = y^{g_2}y^{g_1} - \sigma_{\mathbb{E}}(\mu(g_1, g_2))y^{g_1+g_2}.$$

So $\sigma_{\mathbb{E}}(\mu(g_1,g_2)) = \mu(g_2,g_1)$. This completes the proof.

The following generalizes [11, Proposition 4.7] to the torsion free case.

Proposition 3.3 Let \mathscr{A} be an involutorial associative algebra and assume that $J := H(\mathscr{A}, *)$ is a Jordan G-torus generating \mathscr{A} .

- (a) Suppose that there exists $a \in \mathscr{A}$ such that $aa^* = 0$ and $a + a^*$ is invertible in J. Then $J \cong_G (\mathbb{F}^t[G], \lambda)^+$ for some 2-cocycle λ .
- (b) Suppose that there exists an invertible element $a \in \mathcal{A}$ such that $a^* = -a$ and $0 \neq y \in J_{\gamma}$ for some $\gamma \in G$ such that $a^2 \in J_{2\gamma}$, $ay^{-1}a \in J_{\gamma}$, and $[a, y] \in J_{2\gamma}$. Then $J \cong_G (\mathbb{F}^t[G], \lambda)^+$ or $E \otimes_{\mathbb{F}} J \cong_G (\mathbb{E}^t[G], \lambda)^+$ for some 2-cocycle λ .
- *Proof* (a) By Lemma 2.5 (v), J is domain. By [11, Lemma 4.5], $J \cong \mathscr{A}^+$ for some associative algebra \mathscr{A} . Then by Lemma 2.10, we are done. The proof of part (b) is exactly the same as [11, Proposition 4.7 (b)].
- **Definition 3.4** A Jordan G-torus J is said to be of *involution type* if we have $J \cong_G H((\mathbb{F}^t[G], \lambda), \theta_q)$ (λ a 2-cocycle and q a quadratic map), it is said to be of *plus type* if $J \cong_G (\mathbb{F}^t[G], \lambda)^+$ (λ a 2-cocycle), and it is said to be of *extension type* if $J \cong_G H((\mathbb{E}^t[G], \lambda), \sigma)$ (\mathbb{E} a quadratic field extension of \mathbb{F} , λ a 2-cocycle, and σ an involution). If G is free abelian of finite rank, we call a Jordan G-torus of one of the above types, simply a Jordan torus of that type.
- **Lemma 3.5** Suppose that G is a free abelian group of finite rank and $J = \bigoplus_{g \in G} J^g$ is a Jordan G-torus. Suppose that P is an associative algebra with involution * and J = H(P, *). For $g \in \text{supp}(J)$, fix $0 \neq x_g \in J^g$. If for all $g, h \in \text{supp}(J)$, $x^g x^h = \pm x^h x^g$ (product in P), then one of the following occurs.
- (a) P is isomorphic to $(\mathbb{F}^t[G], \lambda)$ for a 2-cocycle $\lambda \colon G \times G \to \mathbb{F}$; in particular, P is a G-graded algebra. Moreover, * is a G-graded involution and J is graded isomorphic to $H((\mathbb{F}^t[G], \lambda), \theta_q)$, where $q \colon G \times G \to \mathbb{F}_2$ is the quadratic map arising from the involution on $(\mathbb{F}^t[G], \lambda)$ induced via the isomorphism form P to $(\mathbb{F}^t[G], \lambda)$ (see Section 2.5); in particular, $P^g = J^g$ for all $g \in \text{supp}(J)$.
- (b) There are an invertible element u of P and a nonzero element y of J^{γ} for some $\gamma \in G$ such that the following four conditions hold:

$$u^* = -u, \quad u^2 \in J^{2\gamma}, \quad uy^{-1}u \in J^{\gamma}, \quad [u, y] \in J^{2\gamma}.$$
 (3.1)

Proof One knows from Lemma 2.5 and [1, Proposition II.1.11] that there is a basis $B = \{\sigma_1, \ldots, \sigma_n\} \subseteq \operatorname{supp}(J)$ for G. If J is generated by r-tads $\{x_{\sigma_{i_1}}^{\varepsilon_1} \cdots x_{\sigma_{i_r}}^{\varepsilon_r}\}$ for $r \in \mathbb{Z}^{>0}, 1 \leqslant i_1, \ldots, i_r \leqslant n, \varepsilon_1, \ldots, \varepsilon_r \in \{\pm 1\}$, conditions (A) and (B) of the proof of [11, Thm. 4.11] hold and so by the proof of the same theorem, all the statements in (a) are fulfilled. But if J is not generated by r-tads $\{x_{\sigma_{i_1}}^{\varepsilon_1} \cdots x_{\sigma_{i_r}}^{\varepsilon_r}\}$ for $r \in \mathbb{Z}^{>0}, 1 \leqslant i_1, \ldots, i_r \leqslant n, \varepsilon_1, \ldots, \varepsilon_r \in \{\pm 1\}$, condition (A) but not (B) of the proof of [11, Thm. 4.11] holds and again by the proof of the same theorem, there are an invertible element u of P and a nonzero element u of u of u for some u of u such that (3.1) is satisfied.

Proposition 3.6 Suppose that P is an associative algebra with an involution *. Suppose that J := H(P, *) generates P. Suppose that $\{G_i \mid i \in \mathscr{I}\}$ is a

class of free abelian subgroups of G such that $G = \bigcup_{i \in \mathscr{I}} G_i$. Also assume that $J = \bigoplus_{g \in G} J^g$ is a Jordan G-torus. Set

$$J_i := \bigoplus_{g \in G_i} J^g, \quad i \in \mathscr{I}.$$

Assume that $*_i$, the restriction of * to the subalgebra P_i ($i \in \mathscr{I}$) of P generated by J_i is an involution of P_i and that $J_i = H(P_i, *)$. If P is *-prime, then one of the following holds for J:

- $J \simeq H((\mathbb{F}^t[G], \lambda), \theta_q), \lambda \text{ a 2-cocycle and } q \text{ a quadratic map};$
- $J \simeq (\mathbb{F}^t[G], \lambda)^+, \lambda \ a \ 2\text{-}cocycle};$
- $J \simeq H((\mathbb{E}^t[G], \lambda), \sigma)$, \mathbb{E} a quadratic field extension of \mathbb{F} , λ a 2-cocycle and σ an involution.

Moreover, if J is of involution (resp. plus or extension) type, it is a direct union of Jordan tori of involution (resp. plus or extension) type.

Proof We know that $J = \bigoplus_{g \in G} J^g$ is a Jordan G-torus. For $g \in \text{supp}(J)$, we fix $0 \neq x_g \in J^g$. We consider the following two cases.

Case 1 For all $g, h \in \text{supp}(J), x_g x_h = \pm x_h x_g$.

By Lemma 3.5, one of the following occurs:

- (a) for all $i \in \mathscr{I}$,
- P_i is equipped with a G_i -grading $\bigoplus_{g \in G} P_i^g$ with $P_i^g = J_i^g$ for all $g \in \text{supp}(J_i)$.
 - $P_i = \bigoplus_{g \in G_i} P_i^g$ is an associative G_i -torus,
 - $*_i = * \mid_{P_i}$ is a G_i -graded involution;
- (b) there is $i \in \mathscr{I}$ for which there are an invertible element u of P_i and a nonzero element y of J_i^{γ} for some $\gamma \in G_i$ such that (3.1) holds.

We now assume that (a) is satisfied, $i, j \in \mathscr{I}$ with $i \leq j$, and $g \in G_i$. If $g \in \operatorname{supp}(J_i)$, then

$$P_i^g = J_i^g = J_j^g = P_j^g.$$

Also we know that P_i is generated by J_i and so P_i is generated by

$$\bigcup_{g \in G_i} J_i^g = \bigcup_{g \in \text{supp}(J_i)} J_i^g.$$

In particular, for $g \in G_i$, there are $\tau_1, \ldots, \tau_t \in \text{supp}(J_i)$ such that $g = \tau_1 + \cdots + \tau_t$ and

$$P_i^g = J_i^{\tau_1} \cdots J_i^{\tau_t} = P_i^{\tau_1} \cdots P_i^{\tau_t} = P_j^{\tau_1} \cdots P_j^{\tau_t} \subseteq P_j^g.$$

Therefore, we have proved

$$P_i^g = P_j^g, \quad i, j \in \mathscr{I}, i \preccurlyeq j, g \in G_i.$$

So by Lemma 2.4, P is an associative G-torus with $P^g = J^g$ for all $g \in \text{supp}(J)$. Therefore, J is graded isomorphic to $H((\mathbb{F}^t[G], \lambda), \theta_q)$ for a 2-cocycle $\lambda \colon G \times G \to \mathbb{F}^\times$ and a quadratic map $g \colon G \times G \to \mathbb{F}_2$.

Next, we assume that (b) is satisfied. Then we are done by Proposition 3.3. Case 2 There are $g, h \in \text{supp}(J)$ such that $x_g x_h \neq \pm x_h x_g$. Set

$$u := [x_q, x_h] \neq 0, \quad d := x_q \circ x_h \neq 0.$$

Then we have one of the following conditions.

•
$$u^2 = 0$$
.

We have $u = -u^*$ and so $uu^* = 0$, then there exists $y \in J$ such that for v := yu, $v + v^* \neq 0$. Otherwise, for all $y \in J$, we have $v + v^* = 0$ in which v := yu. So we have

$$yu = v = -v^* = -u^*y^* = uy.$$

Therefore, for $w \in P$, we have

$$(uy)(uw) = u(yu)w = u(uy)w = u^2w = 0.$$

This implies that $(uJ)(uP) = \{0\}$. Now, as J generates P, we get $(uP)^2 = \{0\}$. So we have

$$(PuP)^2 = PuPPuP \subseteq PuPuP = P(uP)^2 = \{0\}.$$

Also $(PuP)^* = PuP$ and so PuP is a nonzero *-ideal of P with $(PuP)^2 = \{0\}$, a contradiction, as P is *-prime. Therefore, there exists $y \in J$ such that for v := yu, $v + v^* \neq 0$. Since $y \in J$, we have

$$y = \sum_{g \in G} y_g, \quad y_g \in J_g.$$

For $g \in G$, set $v_g := y_g u$. If for all $g \in G$, $v_g + v_g^* = 0$, then we get

$$v + v^* = [y, u] = \bigoplus_{g \in G} [y_g, u] = \bigoplus_{g \in G} (y_g u - u y_g) = \bigoplus_{g \in G} v_g + v_g^* = 0,$$

which is a contradiction. So there is $g_* \in G$ with $v_{g_*} + v_{g_*}^* \neq 0$. Now, as $v_{g_*} + v_{g_*}^*$ is a homogeneous element of J (see [11, (2.7)]), it is invertible. Also $v_{g_*}v_{g_*}^* = 0$. So setting $c := v_{g_*} \in P$, we get that $cc^* = 0$ and $c + c^*$ is invertible in J. Now, fix $r_* \in \mathscr{I}$ with $y \in J_{r_*}$ and $u \in P_{r_*}$. For all $i \in \mathscr{I}$ with $r_* \preccurlyeq i$, we have $c \in J_{r_*}$, $cc^* = 0$, and $c + c^*$ is invertible in J_{r_*} . We know that $P = \bigcup_{i \in \mathscr{I}_*} P_i$ in which $\mathscr{I}_* = \{i \in \mathscr{I} \mid r_* \preccurlyeq i\}$ and $J = \bigcup_{i \in \mathscr{I}_*} J_i$. So J is the direct union of Jordan tori J_i 's, each of which contains the element c. Since $c + c^*$ is invertible in J_{r_*} , this is invertible in each J_i ($i \in \mathscr{I}_*$). Now, as $cc^* = 0$, we get that J as well as each J_i , $i \in \mathscr{I}$, is of plus type by Proposition 3.3.

•
$$u^2 \neq 0$$
.

We have $d = x_g \circ x_h \in J^{g+h}$. So there is $j_* \in \mathscr{I}$ with $d \in J_{i_*}^{g+h}$. Now, we have

$$u^2 \in (J_{i_*})_{2\gamma}, \quad ud^{-1}u \in (J_{i_*})_{\gamma}, \quad [u,d] \in (J_{i_*})_{2\gamma}$$

(see [11, Page 24]). Then P is the direct union of P_i 's $(i \in \mathscr{I}_*)$, where $\mathscr{I}_* := \{i \in \mathscr{I} \mid i_* \preccurlyeq i\}$ and J is the direct union of J_i 's for $i \in \mathscr{I}_*$. Now, using the proof of [11, Prop. 4.7] together with [11, Prop. 4.9] either each J_i $(i \in \mathscr{I}_*)$ is of plus type or each J_i $(i \in \mathscr{I}_*)$ is of extension type. Moreover, by Proposition 3.3 and Lemma 3.2, either J is of plus type or of extension type, respectively.

Theorem 3.7 Suppose that J is a Jordan G-torus of Hermitian type. Then J is a direct union of Jordan tori of Hermitian type and it is of one of involution, plus, or extension types. Moreover, if J is of involution (resp. plus, extension) type, it is a direct union of Jordan tori of involution (resp. plus, extension) type.

Proof The group G is a torsion free abelian group and $J=\oplus_{g\in G}J^g$ is a Jordan G-torus of Hermitian type. Let S be the support of J. Since J is of Hermitian type, $q_{48}(J)\neq 0$. Fix $x_1,\ldots,x_{12}\in J$ such that $q_{48}(x_1,\ldots,x_{12})\neq 0$. Since $J=\oplus_{\sigma\in G}J^{\sigma}$, there are $\sigma_1,\ldots,\sigma_n\in G$ such that $x_1,\ldots,x_{12}\in J^{\sigma_1}\oplus\cdots\oplus J^{\sigma_n}$. Now, let

$$\mathscr{I} := \{ T \subseteq S \mid \sigma_1, \dots, \sigma_n \in T, |T| < \infty \}.$$

Set

$$G_T := \langle T \rangle, \quad S_T := S \cap G_T, \quad T \in \mathscr{I}.$$

Then

$$S = \bigcup_{T \in \mathscr{I}} S_T, \quad G_T = \langle S_T \rangle.$$

Next, set

$$J_T := \bigoplus_{\sigma \in G_T} J^{\sigma}, \quad T \in \mathscr{I}.$$

One has $J = \bigcup_{T \in \mathscr{I}} J_T$ and that each J_T is a Jordan G_T -torus. Since $x_1, \ldots, x_{12} \in J_T$ for all $T \in \mathscr{I}$, we get that $q_{48}(J_T) \neq 0$ and so J_T is of Hermitian type. So J is a direct union of Jordan tori of Hermitian type.

We know that J is special, so by [8], there is an associative algebra \mathscr{A} equipped with an involution * such that

- $J \subseteq H(\mathscr{A}, *),$
- \mathcal{A} , as an associative algebra, is generated by J,
- if I is a *-ideal of \mathscr{A} , then $I \cap J \neq \{0\}$.

Also by the Special Hermitian Structure Theorem [8, §1.6] and Lemma 3.1, the associative subalgebra P of \mathscr{A} generated by J is *-prime and J=H(P,*). Now, if for $T\in\mathscr{I}$, \mathscr{P}_T is the associative subalgebra of \mathscr{A} generated by J_T , then we have $J_T=H(\mathscr{P}_T,*)$. We also have

$$\mathscr{P} = \bigcup_{T \in \mathscr{I}} \mathscr{P}_T.$$

We next note that for $T \in \mathscr{I}$, G_T is a finitely generated torsion free abelian group and so it is a free abelian group of finite rank. Now, we get the result by using Proposition 3.6.

4 Jordan tori of Clifford type

Let R be a unital commutative associative ring, and let V be an R-module. Let $(\cdot,\cdot)\colon V\times V\to R$ be a symmetric R-bilinear form. Define a linear R-algebra structure on $J:=R1\oplus V$ by having 1 as the identity element and requiring $v\cdot w=(v,w)1$ for $v,w\in V$. Then J is a Jordan algebra called the *Jordan algebra of the bilinear form* (\cdot,\cdot) (or a *Jordan spin factor* if R is a field). We recall that a Jordan algebra is called of Clifford type if its central closure is a Jordan algebra of a symmetric bilinear form.

The following example is a generalization of a Clifford torus that appeared in [1, Theorem III.2.9] as the coordinate algebra of an extended affine Lie algebra of type A_1 . The setting is based on [11, Example 5.2] and [12].

Definition 4.1 Let G be an abelian group, let S be a pointed reflection subspace of G, and let Γ be a subgroup of G such that

$$2G \subseteq \Gamma \subseteq S \subseteq G, \quad S + \Gamma = S.$$
 (4.1)

Let I be a set of coset representatives for $\{\sigma + \Gamma \mid \sigma \in S\} \setminus \{\Gamma\}$. Then for a collection $\{a_{\varepsilon}\}_{{\varepsilon}\in I}$, $a_{\varepsilon}\in \mathbb{F}^{\times}$, we call the triple $(S,\Gamma,\{a_{\varepsilon}\})$ a Clifford triple.

Example 4.2 Let G be an abelian group, not necessarily torsion free, and let $(S, \Gamma, \{a_{\varepsilon}\})$ be a Clifford triple. Let Z be a commutative associative Γ -torus (a commutative twisted group algebra) with basis $\{z^{\gamma} \mid \gamma \in \Gamma\}$. Let V be a free Z-module with basis $\{t_{\varepsilon}\}_{{\varepsilon}\in I}$. Define a Z-bilinear form $f: V \times V \to Z$ by Z-linear extension of

$$f(t_{\varepsilon}, t_{\eta}) = \begin{cases} a_{\varepsilon} z^{2\varepsilon}, & \varepsilon = \eta, \\ 0, & \text{otherwise,} \end{cases}$$
 (4.2)

for all $\varepsilon, \eta \in I$ (here, we note that $2\varepsilon \in \Gamma$ by (4.1)). Let

$$J := J(S, \Gamma, \{a_{\varepsilon}\}_{{\varepsilon} \in I}) := Z \oplus V$$

be the Jordan algebra over Z of f. We note that

$$V = \bigoplus_{\varepsilon \in I} Zt_{\varepsilon} = \bigoplus_{\varepsilon \in I, \, \gamma \in \Gamma} \mathbb{F}z^{\gamma}t_{\varepsilon}.$$

We also note that for $\sigma \in S$, there exists a unique $\varepsilon_{\sigma} \in I \cup \{0\}$ such that $\sigma - \varepsilon_{\sigma} \in \Gamma$. Set $t_0 := 1 \in J$. Now, for $\sigma \in G$, we set

$$J_{\sigma} := \begin{cases} \mathbb{F}z^{\sigma - \varepsilon_{\sigma}} t_{\varepsilon_{\sigma}}, & \sigma \in S, \\ 0, & \text{otherwise.} \end{cases}$$

Then $J = \bigoplus_{\sigma \in G} J_{\sigma}$ and supp(J) = S.

We next show that J is G-graded. Let $\sigma, \tau \in S$. If $\varepsilon_{\sigma} = \varepsilon_{\tau} = 0$, then

$$J_{\sigma}J_{\tau} = \mathbb{F}z^{\sigma}z^{\tau} = \mathbb{F}z^{\sigma+\tau} = J_{\sigma+\tau}.$$

If $\varepsilon_{\sigma} = 0$ and $\varepsilon_{\tau} \neq 0$, then

$$J_{\sigma}J_{\tau} = \mathbb{F}z^{\sigma}z^{\tau-\varepsilon_{\tau}}t_{\varepsilon_{\tau}} = \mathbb{F}z^{\sigma+\tau-\varepsilon_{\tau}}t_{\varepsilon_{\tau}} = J_{\sigma+\tau}.$$

Finally, suppose $\varepsilon_{\sigma} \neq 0$ and $\varepsilon_{\tau} \neq 0$. We note that if $\varepsilon_{\sigma} = \varepsilon_{\tau}$, then $\sigma + \tau \in \Gamma \subseteq S$ and $J_{\sigma + \tau} = \mathbb{F}z^{\sigma + \tau}$. Then

$$J_{\sigma}J_{\tau} = \mathbb{F}z^{\sigma-\varepsilon_{\sigma}}t_{\varepsilon_{\sigma}}z^{\tau-\varepsilon_{\tau}}t_{\varepsilon_{\tau}} = \mathbb{F}z^{\sigma+\tau-\varepsilon_{\sigma}-\varepsilon_{\tau}}f(t_{\varepsilon_{\sigma}},t_{\varepsilon_{\tau}})z^{2\varepsilon_{\sigma}} = \begin{cases} \mathbb{F}z^{\sigma+\tau}, & \varepsilon_{\sigma} = \varepsilon_{\tau}, \\ 0, & \text{otherwise.} \end{cases}$$

So $J_{\sigma}J_{\tau}=J_{\sigma+\tau}$ if $\varepsilon_{\sigma}=\varepsilon_{\tau}$, and $J_{\sigma}J_{\tau}=\{0\}$ otherwise. This completes the proof that J is a G-graded Jordan algebra over Z. Thus, J is a Jordan G-torus with Z(J)=Z. If G is torsion free, then we can consider the central closure \overline{J} of J. If $\overline{V}:=\overline{Z}\otimes_{Z}V$, then \overline{J} can be identified with $\overline{Z}\oplus\overline{V}$. Extending f to $\overline{f}\colon\overline{V}\times\overline{V}\to\overline{Z}$ by

$$\overline{f}(\alpha \otimes v, \beta \otimes w) := \alpha \beta f(v, w),$$

one can see that \overline{J} is the Jordan algebra of the extended bilinear form \overline{f} . Hence, J is of Clifford type, which we call it the *Clifford G-torus* associated to the Clifford triple $(S, \Gamma, \{a_{\varepsilon}\})$. \diamondsuit

Theorem 4.3 Let G be a torsion free abelian group, and let J be a Jordan G-torus of Clifford type with support S and central grading group Γ . Let I be a set of coset representatives for $\{\sigma + \Gamma \mid \sigma \in S\} \setminus \{\Gamma\}$. Then for each $\varepsilon \in I$, there exists $a_{\varepsilon} \in \mathbb{F}^{\times}$ such that $(S, \Gamma, \{a_{\varepsilon}\})$ is a Clifford triple and J is graded isomorphic to the Clifford G-torus $J(S, \Gamma, \{a_{\varepsilon}\}_{\varepsilon \in I})$ associated to the Clifford triple $(S, \Gamma, \{a_{\varepsilon}\})$.

Proof By assumption, the central closure $\overline{J}=\overline{Z}\otimes_Z J$ is a Jordan algebra over \overline{Z} of a symmetric bilinear form, where \overline{Z} is the field of fractions of the center Z=Z(J) of J. Thus, \overline{J} has degree less than or equal 2 over \overline{Z} , that is, there exists a \overline{Z} -linear form $\operatorname{tr}\colon \overline{J}\to \overline{Z}$ and a \overline{Z} -quadratic map $n\colon \overline{J}\to \overline{Z}$ with n(1)=1 such that for all $x\in \overline{J}$,

$$x^2 - \operatorname{tr}(x)x + n(x)1 = 0.$$

Let $n \colon \overline{J} \times \overline{J} \to \overline{Z}$ be the symmetric \overline{Z} -bilinear form associated to the quadratic map n. Let $W := \{x \in \overline{J} \mid \operatorname{tr}(x) = 0\}$. Then $\overline{J} = \overline{Z} 1 \oplus W$ is the Jordan algebra over \overline{Z} of the bilinear form

$$h := -\frac{1}{2} \, n(\cdot, \cdot)_{|_{W \times W}}.$$

If $\dim_{\overline{Z}} \overline{J} = 1$, then by Lemma 2.6 (iii), $\operatorname{supp}(J) = \Gamma = G$ and so J = Z. Hence, J is a commutative associative torus and so is G-graded isomorphic to the group algebra of G over \mathbb{F} .

We assume from now on that $\dim_{\overline{Z}} \overline{J} \neq 1$. The same argument as in [11, Claim 1] shows that

$$\operatorname{tr}(\overline{J}_{\alpha}) = \{0\} \ (\alpha \in G \setminus \Gamma), \quad 2G \subseteq \Gamma \subseteq \operatorname{supp}(J), \quad \operatorname{supp}(J) + \Gamma = \operatorname{supp}(J).$$
 (4.3)

Moreover,

$$G/\Gamma$$
 cannot be a nontrivial cyclic group. (4.4)

Recall from Lemma 2.6 (ii) that $J = \bigoplus_{\overline{\alpha} \in G/\Gamma} J_{\overline{\alpha}}$ is a G/Γ -graded algebra over Z. Then $\operatorname{tr}(J_{\overline{\alpha}}) \subseteq \operatorname{tr}(\overline{J_{\overline{\alpha}}}) = \{0\}$ for $\overline{\alpha} \neq \overline{0}$, by (4.3). So

$$V := \bigoplus_{\overline{\alpha} \neq \overline{0}} J_{\overline{\alpha}} = \bigoplus_{\alpha \in G \setminus \Gamma} Z J_{\alpha} \subseteq W.$$

Then

$$J = \bigoplus_{\overline{\alpha} \in G/\Gamma} J_{\overline{\alpha}} = \bigoplus_{0 \neq \overline{\alpha} \in G/\Gamma} J_{\overline{\alpha}} + J_{\overline{0}} = V \oplus Z,$$

as a direct sum of Z-modules. For $x, y \in V$,

$$x \cdot y = h(x, y) \cdot 1 \in J \cap \overline{Z} \cdot 1 = J \cap Z(\overline{J}) = Z.$$

Therefore, $J = Z \oplus V$ is the Jordan algebra over Z of $f := h_{|V \times V}$. Let $S := \sup(J)$. By Lemma 2.5, S is a pointed reflection space in G. By (4.3), Γ is a proper subset of S and the pair (S,Γ) satisfies (4.1). Next, let I be a set of coset representatives for $\{\sigma + \Gamma \setminus \sigma \in S\} \setminus \{\Gamma\}$, namely,

$$S = \bigcup_{\varepsilon \in I \cup \{0\}} (\varepsilon + \Gamma).$$

For $\varepsilon \in I$, let $0 \neq t_{\varepsilon} \in J_{\varepsilon}$. Then using Lemma 2.6 (ii), we have

$$V = \bigoplus_{\overline{\alpha} \neq 0} J_{\overline{\alpha}} = \bigoplus_{\varepsilon \in I} Zt_{\varepsilon},$$

as direct sum of Z-modules. We note that $Z=\oplus_{\gamma\in\Gamma}J_{\gamma}$ is a commutative associative Γ -torus. If $\varepsilon\neq\varepsilon'\in I$, we have $e+\varepsilon'\not\in\Gamma$ (since ε and ε' are distinct coset representatives of Γ in S). Therefore,

$$t_{\varepsilon}t_{\varepsilon'}=f(t_{\varepsilon},t_{\varepsilon'})\in J_{\overline{\varepsilon+\varepsilon'}}\cap J_{\overline{0}}=\{0\}.$$

Also,

$$0 \neq t_{\varepsilon}^2 = f(t_{\varepsilon}, t_{\varepsilon}) \in J_{2\varepsilon} = \mathbb{F}z^{2\varepsilon},$$

say $f(t_{\varepsilon}, t_{\varepsilon}) = a_{\varepsilon}$ for some $0 \neq a_{\varepsilon} \in \mathbb{F}$. (We note that $2\varepsilon \in 2G \subseteq \Gamma$.) Now, since $V = \bigoplus_{\varepsilon \in I} Zt_{\varepsilon}$, it is clear that the bilinear form f here coincides with the one given in Example 4.2 (see (4.2)). Thus, J is graded isomorphic to the Clifford G-torus $J(S, \Gamma, \{a_{\varepsilon}\}_{\varepsilon \in I})$ of Example 4.2 associated to $(S, \Gamma, \{a_{\varepsilon}\})$.

5 Jordan tori of Albert type

Throughout this section, we assume that G is a torsion free abelian group. We recall that an Albert algebra is by definition a form of a 27-dimensional central simple exceptional Jordan algebra of degree 3. We also recall that a Jordan torus of Albert type is by definition a Jordan torus whose central closure is an Albert algebra.

Definition 5.1 [11, Definition 6.4] A prime Jordan or associative algebra P over \mathbb{F} is said to have *central degree* 3, if the central closure $\overline{P} = \overline{Z} \otimes_Z P$ is finite dimensional and has (generic) degree 3.

The following is a generalization of [11, Proposition 6.7] to our case. Its proof is almost the same, but for completeness, we present the proof here.

Proposition 5.2 Let G be a torsion free abelian group, and let $T = \bigoplus_{\alpha \in G} T_{\alpha}$ be a Jordan or an associative G-torus over \mathbb{F} of central degree 3. Let tr be the generic trace of the central closure \overline{T} , and let Γ be the central grading group of T. Then $3G \subseteq \Gamma \subsetneq G$ and $\operatorname{supp}(T) = G$. Moreover, for any $\alpha \in G \setminus \Gamma$, we have $\operatorname{tr}(T_{\alpha}) = \{0\}$.

Proof If $G = \Gamma$, then $\dim_{\overline{Z}} \overline{T} = 1$, and hence, T does not have central degree 3. Therefore, $\Gamma \neq G$ and $\operatorname{supp}(T)/\Gamma \neq \{0\}$. Let

$$\overline{0} \neq \overline{\beta} \in \operatorname{supp}(T)/\Gamma, \quad 0 \neq x \in \overline{T}_{\overline{\beta}}.$$

Since $\overline{T} = \bigoplus_{\overline{\alpha} \in G/\Gamma} \overline{T}_{\overline{\alpha}}$ (see Lemma 2.6 (iii)) has generic degree 3, we have

$$x^3 + z_1 x^2 + z_2 x + z_3 1 = 0$$

for some $z_1, z_2, z_3 \in \overline{Z}$ and $z_1 = -\operatorname{tr}(x)$. If $2\overline{\beta} = \overline{0}$, then $3\overline{\beta} = \overline{\beta}$, and therefore,

$$x^{3} + z_{2}x = -z_{1}x^{2} - z_{3}1 \in \overline{T}_{\overline{\beta}} \cap \overline{T}_{\overline{0}} = \{0\}.$$

Hence, we get

$$x^3 + z_2 x = x(x^2 + z_2 1) = 0.$$

Since \overline{T} is a Jordan or an associative domain, the subalgebra $\overline{Z}[x]$ of \overline{T} generated by x is a commutative associative algebra domain over \overline{Z} and so $x^2 + z_2 1 = 0$. Since $x \notin \overline{T}_0$, the polynomial $f(\lambda) = \lambda^2 + z_2$ is the minimal polynomial of x over \overline{Z} . If $f(\lambda)$ is reducible over \overline{Z} , say

$$f(\lambda) = (\lambda - a)(\lambda - b), \quad a, b \in \overline{Z},$$

then

$$(x-a1)(x-b1) = 0$$

in $\overline{Z}[x]$. Hence, x=a1 or x=b1, and so $x\in\overline{Z}1=\overline{T}_{\overline{0}}$, that is, $\overline{\beta}=\overline{0}$, which is absurd. Therefore, $f(\lambda)$ is irreducible over \overline{Z} . Note that the minimal polynomial

and the generic minimal polynomial of an element have the same irreducible factors. Since $f(\lambda)$ is the irreducible minimal polynomial of x, the generic minimal polynomial of x has to be a power of $f(\lambda)$. However, this is impossible since the degree of the generic minimal polynomial of x is 3. Therefore, $2\overline{\beta} \neq \overline{0}$. This implies that $3\overline{\beta} \neq \overline{\beta}$. Since $\overline{\beta} \neq \overline{0}$, we have $3\overline{\beta} \neq 2\overline{\beta}$. Hence,

$$\{3\overline{\beta}, \overline{0}\} \cap \{2\overline{\beta}, \overline{\beta}\} = \emptyset.$$

So

$$(\overline{T}_{3\overline{\beta}}+\overline{T}_{\overline{0}})\cap(\overline{T}_{2\overline{\beta}}\oplus\overline{T}_{\overline{\beta}})=\{0\}.$$

Since

$$x^{3} + z_{3}1 = -z_{1}x^{2} - z_{2}x \in (\overline{T}_{3\overline{\beta}} + \overline{T}_{0}) \cap (\overline{T}_{2\overline{\beta}} \oplus \overline{T}_{\overline{\beta}}),$$

we get two equalities

$$x^3 + z_3 1 = 0$$
, $-z_1 x^2 - z_2 x = 0$.

From the first equality, we have

$$0 \neq x^3 = -z_3 1 \in \overline{T}_{3\overline{\beta}} \cap \overline{T}_{\overline{0}},$$

and hence, $3\overline{\beta} = \overline{0}$. Thus, $3G \subseteq \Gamma$, and so the exponent of G/Γ is 3. Also, we have $3G \subseteq \text{supp}(T)$. Since supp(T) is a pointed reflection space,

$$G = 3G - 2G \subseteq \operatorname{supp}(T) + 2G \subseteq \operatorname{supp}(T)$$
.

Thus, $G = \operatorname{supp}(T)$.

From the second equality and by the same reason above, we have

$$-z_1x - z_21 = 0.$$

Then

$$-z_1x = z_21 \in \overline{T}_{\overline{\beta}} \cap \overline{T}_{\overline{0}} = \{0\}.$$

Hence, $z_1 = 0$; that is, $\operatorname{tr}(x) = 0$. Therefore, for any $\alpha \in G/\Gamma$, we have $\operatorname{tr}(T_\alpha) = \{0\}$.

The following example gives a construction of an associative algebra which will be crucial in the classification of Jordan tori of Albert type. In what follows, for $n \in \mathbb{Z}_{\geq 0}$, we let $\varepsilon(n) \in \{0, 1, 2\}$ be congruent mod 3 of n and $\eta(n) := n - \varepsilon(n)$.

Example 5.3 Consider the pair (G, Γ) , where G is a torsion free abelian group and Γ is a subgroup of G satisfying $3G \subseteq \Gamma$ and $|G/\Gamma| = 9$. Let $\mu \colon \Gamma \times \Gamma \to \mathbb{F}^{\times}$ be a symmetric 2-cocycle, that is, a 2-cocycle with $\mu(\sigma, \tau) = \mu(\tau, \sigma)$ for all σ, τ . Assume that \mathbb{F} contains a primitive 3rd root of unity q. We fix σ_1 and σ_2 in G such that $\{\sigma_1 + G, \sigma_2 + G\}$ is a basis for G/Γ over the field of 3 elements. Then

$$G = \bigcup_{0 \le i, j \le 2} (i\sigma_1 + j\sigma_2 + \Gamma).$$

Define $\lambda \colon G \times G \to \mathbb{F}^{\times}$ by

$$\lambda(i\sigma_1 + j\sigma_2 + \gamma, i'\sigma_1 + j'\sigma_2 + \gamma') = q^{ji'}\mu(\eta(i+i')\sigma_1, \eta(j+j')\sigma_2)\mu(\gamma, \gamma')$$
$$\cdot \mu(\eta(i+i')\sigma_1 + \eta(j+j')\sigma_2, \gamma + \gamma') \quad (5.1)$$

for $0 \le i, j, i', j' \le 2$, $\gamma, \gamma' \in \Gamma$. We claim that λ is a 2-cocycle on G. To see this, we must show that for any three fixed elements

$$\sigma := i\sigma_1 + j\sigma_2 + \gamma, \quad \tau := i'\sigma_1 + j'\sigma_2 + \gamma', \quad \delta := i''\sigma_1 + j''\sigma_2 + \gamma''$$

of the above form, the 2-cocycle identity (2.2) holds, namely,

$$a^{\varepsilon(j+j')i''}a^{ji'}A = a^{j\varepsilon(i'+i'')}a^{j'i''}B.$$

where

$$\begin{split} A := \mu(\eta(\varepsilon(i+i')+i'')\sigma_{1}, \eta(\varepsilon(j+j')+j'')\sigma_{2}) \cdot \mu(\gamma+\gamma'+\eta(i+i')\sigma_{1} \\ + \eta(j+j')\sigma_{2}, \gamma'') \cdot \mu(\eta(\varepsilon(i+i')+i'')\sigma_{1} + \eta(\varepsilon(j+j')+j'')\sigma_{2}, \gamma+\gamma' \\ + \eta(i+i')\sigma_{1} + \eta(j+j')\sigma_{2} + \gamma'') \cdot \mu(\eta(i+i')\sigma_{1}, \eta(j+j')\sigma_{2})\mu(\gamma,\gamma') \\ \cdot \mu(\eta(i+i')\sigma_{1} + \eta(j+j')\sigma_{2}, \gamma+\gamma'), \\ B := \mu(\eta(i+\varepsilon(i'+i''))\sigma_{1}, \eta(j+\varepsilon(j'+j''))\sigma_{2}) \cdot \mu(\gamma'+\gamma''+\eta(i'+i'')\sigma_{1} \\ + \eta(j'+j'')\sigma_{2}, \gamma) \cdot \mu(\eta(i+\varepsilon(i'+i''))\sigma_{1} + \eta(j+\varepsilon(j+j''))\sigma_{2}, \gamma'+\gamma'' \\ + \eta(i'+i'')\sigma_{1} + \eta(j'+j'')\sigma_{2} + \gamma) \cdot \mu(\eta(i'+i'')\sigma_{1}, \eta(j'+j'')\sigma_{2}) \\ \cdot \mu(\gamma', \gamma'') \cdot \mu(\eta(i'+i'')\sigma_{1} + \eta(j'+j'')\sigma_{2}, \gamma'+\gamma''). \end{split}$$

Since

$$q^{\varepsilon(j+j')i''}q^{ji'} = q^{j\varepsilon(i'+i'')}q^{j'i''},$$

 λ is a 2-cocycle if and only if A = B. Let

$$a := \eta(\varepsilon(i+i') + i'')\sigma_1 + \eta(\varepsilon(j+j') + j'')\sigma_2 + \eta(i+i')\sigma_1 + \eta(j+j')\sigma_2 + \gamma + \gamma' + \gamma'',$$

$$b := \eta(i+\varepsilon(i'+i''))\sigma_1 + \eta(j+\varepsilon(j'+j''))\sigma_2 + \eta(i'+i'')\sigma_1 + \eta(j'+j'')\sigma_2 + \gamma' + \gamma'' + \gamma.$$

Then in the commutative associative torus $(\mathbb{F}^t[\Gamma] := \bigoplus_{\gamma \in \Gamma} \mathbb{F}x^{\gamma}, \mu)$, we have

$$(x^{\eta(\varepsilon(i+i')+i'')\sigma_1}x^{\eta(\varepsilon(j+j')+j'')\sigma_2})(x^{\eta(i+i')\sigma_1}x^{\eta(j+j')\sigma_2})(x^{\gamma}x^{\gamma'})x^{\gamma''} = Ax^a,$$
$$(x^{\eta(i+\varepsilon(i'+i''))\sigma_1}x^{\eta(j+\varepsilon(j'+j'')})(x^{\eta(i'+i'')\sigma_1}x^{\eta(j'+j'')\sigma_2})(x^{\gamma'}x^{\gamma''})x^{\gamma} = Bx^b.$$

Therefore, if we show that a = b, then we get A = B if and only if

$$(x^{\eta(\varepsilon(i+i')+i'')\sigma_1}x^{\eta(\varepsilon(j+j')+j'')\sigma_2})(x^{\eta(i+i')\sigma_1}x^{\eta(j+j')\sigma_2})$$

$$= (x^{\eta(i+\varepsilon(i'+i''))\sigma_1}x^{\eta(j+\varepsilon(j'+j'')})(x^{\eta(i'+i'')\sigma_1}x^{\eta(j'+j'')\sigma_2})$$
(5.2)

for any $0 \le i, i', i'', j, j', j'' \le 2$. Now, a = b if and only if

$$\eta(\varepsilon(i+i')+i'')\sigma_{1} + \eta(\varepsilon(j+j')+j'')\sigma_{2}
+ \eta(i+i')\sigma_{1} + \eta(j+j')\sigma_{2} + \gamma + \gamma' + \gamma''
= \eta(i+\varepsilon(i'+i''))\sigma_{1} + \eta(j+\varepsilon(j'+j'')\sigma_{2}
+ \eta(i'+i'')\sigma_{1} + \eta(j'+j'')\sigma_{2} + \gamma' + \gamma'' + \gamma,$$

which in turn holds if and only if for any i, i', i'',

$$\eta(\varepsilon(i+i')+i'') + \eta(i+i') = \eta(i+\varepsilon(i'+i'')) + \eta(i'+i'').$$
(5.3)

To see that this last equality holds, we note that

$$\varepsilon(i+i')+i''+\eta(i+i')=(i+i')+i''=i+(i'+i'')=i+\varepsilon(i'+i'')+\eta(i'+i'')$$

and so

$$\begin{split} \eta(\varepsilon(i+i')+i'') + \eta(i+i') &= \eta(\varepsilon(i+i')+i''+\eta(i+i')) \\ &= \eta(i+\varepsilon(i'+i'')+\eta(i'+i'')) \\ &= \eta(i+\varepsilon(i'+i'')) + \eta(i'+i''). \end{split}$$

Then (5.3) holds and a = b. Thus, A = B if and only if (5.2) holds. Now, the left-hand side in (5.2) is equal to

$$\mu(\eta(\varepsilon(i+i')+i'')\sigma_1,\eta(i+i')\sigma_1)x^{c_1\sigma_1}\mu(\eta(\varepsilon(j+j')+j'')\sigma_2,\eta(j+j')\sigma_2)x^{c_2\sigma_2}$$

where

$$c_1 := \eta(\varepsilon(i+i')+i'') + \eta(i+i'), \quad c_2 := \eta(\varepsilon(i+i')+i'') + \eta(i+i').$$

Also the right hand side in (5.2) is equal to

$$\mu(\eta(i+\varepsilon(i'+i''))\sigma_1,\eta(i'+i'')\sigma_2)x^{c_1'\sigma_1}\mu(\eta(j+\varepsilon(j'+j''))\sigma_2,\eta(j'+j'')\sigma_2)x^{c_2'\sigma_2},$$

where

$$c'_1 := \eta(i + \varepsilon(i' + i'') + \eta(i' + i''), \quad c'_2 := \eta(j + \varepsilon(j' + j'')) + \eta(j' + j'').$$

By (5.3), $c_1 = c_2$ and $c'_1 = c'_2$. So A = B if and only if

$$\mu(\eta(\varepsilon(i+i')+i'')\sigma_1,\eta(i+i')\sigma_1)\mu(\eta(\varepsilon(j+j')+j'')\sigma_2,\eta(j+j')\sigma_2)$$

= $\mu(\eta(i+\varepsilon(i'+i'')\sigma_1),\eta(i'+i'')\sigma_1)\mu(\eta(j+\varepsilon(j'+j'')\sigma_2),\eta(j'+j'')\sigma_2)$

for all $0 \le i, i', i'', j, j', j'' \le 2$. But clearly, the latter holds if and only if

$$\mu(\eta(\varepsilon(i+i')+i'')\sigma,\eta(i+i')\sigma) = \mu(\eta(i+\varepsilon(i'+i'')\sigma,\eta(i'+i'')\sigma)$$
 (5.4)

for all $\sigma \in G$ and $0 \leq i, i', i'' \leq 2$. Let

$$\alpha := \varepsilon(i + i') + i'', \quad \beta := i + i', \quad \alpha' := i + \varepsilon(i' + i''), \quad \beta' := i' + i''.$$

Then

$$\eta(\alpha) + \eta(\beta) = \eta(\alpha + \eta(\beta)) = \eta(i + i' + i'').$$

Similarly,

$$\eta(\alpha') + \eta(\beta') = \eta(i + i' + i'').$$

So

$$\eta(\alpha) + \eta(\beta) = \eta(\alpha') + \eta(\beta').$$

From this and the fact that $\eta(\alpha), \eta(\beta), \eta(\alpha'), \eta(\beta') \in \{0, 3\}$, we get

$$\eta(\alpha)\eta(\beta) = \eta(\alpha')\eta(\beta') \in \{0, 9\}.$$

Therefore, (5.4) holds. Hence, A = B and λ is a 2-cocycle.

We denote the 2-cocycle λ by $\lambda := \lambda(q, \mu)$ and the corresponding associative G-torus by $(\mathbb{F}^t[G], \lambda(q, \mu))_{\Gamma}$, and call it the associative G-torus associated to the pair (G, Γ) . Let $T = (\mathbb{F}^t[G], \lambda(q, \mu))_{\Gamma}$. Note that if we fix $x_i := x^{\sigma_i} \in T_{\sigma_i}$, i = 1, 2, and $x^{\gamma} \in T^{\gamma}$, for each $\gamma \in \Gamma$, then the elements $x_1^{i_1} x_2^{i_2} x^{\gamma}$, $0 \le i_1, i_2 \le 2$, $\gamma \in \Gamma$ form a basis of T over \mathbb{F} . Moreover, we have

$$(x_1^i x_2^j x^{\gamma})(x_1^{i'} x_2^{j'} x^{\gamma'}) = \lambda(i\sigma_1 + j\sigma_2 + \gamma, i'\sigma_1 + j'\sigma_2 + \gamma')x_1^{\varepsilon(i+i')} x_2^{\varepsilon(j+j')} x^{\gamma''},$$

where $0 \le i, j, i', j' \le 2$, $\gamma, \gamma' \in \Gamma$, and $\gamma'' = \gamma + \gamma' + \eta(i+i') + \eta(j+j')$. Using this, it is easy to see that

$$Z(T) = \bigoplus_{\gamma \in \Gamma} \mathbb{F}x^{\gamma}, \quad x_2 x_1 = q x_1 x_2, \quad x_1^i x_2^j \in Z(T)$$
 (5.5)

for all $i, j \in \mathbb{Z}$ with $i \equiv j \equiv 0 \pmod{3}$. It follows that the central closure of T is 9-dimensional, namely,

$$\overline{J}:=\overline{Z}\otimes_Z T\cong\bigoplus_{0\leqslant i,j\leqslant 2}\mathbb{F} x_1^ix_2^j.$$

Since \overline{T} is domain, it is a division algebra and so is an associative algebra of central degree 3 (see Definition 5.1). Note that $Z(T^+) = Z(T)$. Then

$$\overline{T^+} = T^+ \otimes_{Z(T^+)} \overline{Z(T^+)} = T^+ \otimes_{Z(T)} \overline{Z(T)} = \overline{T}^+$$

So $\overline{T^+}$ is a 9-dimensional central special Jordan division algebra over $\overline{Z(T)}$. Hence, by [11, Lemma 2.11], it has degree 3.

The following proposition gives a characterization of associative G-tori of central degree 3.

Proposition 5.4 Let G be a torsion free abelian group, and let T be an associative G-torus over \mathbb{F} with central grading group Γ . Then T has central degree 3 if and only if $3G \subseteq \Gamma$, $\operatorname{supp}(T) = G$, and G/Γ is a vector space of dimension 2 over the field of 3 elements. If T has central degree 3, then \mathbb{F} contains a primitive third root of unity, say ω , and $T \cong (\mathbb{F}^t[G], \lambda(\omega, \mu))_{\Gamma}$, where μ is a symmetric 2-cocycle on Γ . Moreover, if Γ is free abelian or \mathbb{F} is algebraically closed, then $T \cong (\mathbb{F}^t[G], \lambda(\omega, 1))$.

Conversely, suppose that \mathbb{F} contains a primitive third root of unity ω . Also suppose that G is a torsion free abelian group and Γ is a subgroup satisfying $3G \subseteq \Gamma$ and $|G/\Gamma| = 9$. Let μ be a symmetric 2-cocycle on Γ . Then $(\mathbb{F}^t[G], \lambda(\omega, \mu))_{\Gamma}$ is an associative G-torus of central degree 3 with central grading group Γ .

Proof Let $T=\oplus_{\alpha\in G}T^{\alpha}$ be an associative torus over $\mathbb F$ of central degree 3, and let $\overline T$ be its central closure over $\overline Z$. By Proposition 5.2, $\operatorname{supp}(T)=G$ and G/Γ is a nontrivial vector space over the field of 3 elements. By Lemma 2.6 (iii), we have $\dim_{\overline Z} \overline T = |G/\Gamma|$. Since, by definition, $\overline T$ is finite dimensional over $\overline Z$, we have $\dim_{\overline Z} \overline T = 3^m$ for some positive integer m. Now, $\overline T$ as a finite-dimensional associative domain is a division algebra, by Wedderburn's structure theorem. So as $\overline T_{\overline Z}$ is a central simple associative algebra with $\dim \overline T_{\overline Z} = 3^m$, we have m=2. It is also clear that an associative torus whose central grading group Γ satisfies $|G/\Gamma|=9$ has central degree 3. In fact, $\overline T$ has dimension 9 over $\overline Z$ and is a division associative algebra. So by Lemma [11, Lemma 2.11], it has degree 3.

Next, we assume that $T = \bigoplus_{\alpha \in G} T^{\alpha}$ is an associative torus whose central grading group satisfies $3G \subseteq \Gamma \subsetneq G$, $|G/\Gamma| = 9$, and $\operatorname{supp}(T) = G$. We fix σ_1 , σ_2 in G such that $\{\sigma_i + \Gamma \mid i = 1, 2\}$ is a basis for the vector space G/Γ . Then

$$G = \bigcup_{0 \leqslant i, j \leqslant 2} (i\sigma_1 + j\sigma_2 + \Gamma).$$

We fix $x_i := x^{\sigma_i} \in T^{\sigma_i}$, i = 1, 2, and $x^{\gamma} \in T^{\gamma}$ for each $\gamma \in \Gamma$. Then $x_1 x_2 \neq x_2 x_1$ and the elements $x_1^{i_1} x_2^{i_2} x^{\gamma}$, $0 \leq i_1, i_2 \leq 2$, $\gamma \in \Gamma$ form a basis for T over \mathbb{F} . Moreover, as $3G \subseteq \Gamma$,

$$(x_1^{i_1} x_2^{i_2})^3 x^{\gamma} \in Z(T) \tag{5.6}$$

for all $0 \leqslant i_1, i_2 \leqslant 2$ and $\gamma \in \Gamma$. Since $x_1x_2, x_2x_1 \in T^{\sigma_1+\sigma_2}$, there exists $q \in \mathbb{F}^{\times}$ such that $x_2x_1 = qx_1x_2$. Then as x_1^3 is central, we get $q^3 = 1$. Thus, \mathbb{F} must contain a primitive third root of unity, say ω . Then $q = \omega$ or ω^2 . Let $\lambda \colon G \times G \to \mathbb{F}^{\times}$ be the corresponding 2-cocycle for T with respect to the basis mentioned above. Then we have

$$(x_1^i x_2^j x^{\gamma})(x_1^{i'} x_2^{j'} x^{\gamma'}) = \lambda(i\sigma_1 + j\sigma_2 + \gamma, i'\sigma_1 + j'\sigma_2 + \gamma') x_1^{\varepsilon(i+i')} x_2^{\varepsilon(j+j')} x^{\gamma''},$$

where $0 \leqslant i, j, i', j' \leqslant 2$, $\gamma, \gamma' \in \Gamma$, $\gamma'' = \gamma + \gamma' + \eta(i+i') + \eta(j+j')$, and ε and η are defined as in Example 5.3. Denote by $\mu \colon \Gamma \times \Gamma \to \mathbb{F}^{\times}$ the symmetric

2-cocycle obtained from λ by restriction to Γ . Then using (5.6), the facts that $x_2x_1 = qx_1x_2$, and $\eta(n)G \subseteq 3G \subseteq \Gamma$ for all $n \in \mathbb{Z}$, we see that

$$\lambda(i\sigma_1 + j\sigma_2 + \gamma, i'\sigma_1 + j'\sigma_2 + \gamma') = q^{ji'}\mu(\eta(i+i')\sigma_1, \eta(j+j')\sigma_2)\mu(\gamma, \gamma')$$
$$\cdot \mu(\eta(i+i')\sigma_1 + \eta(j+j')\sigma_2, \gamma + \gamma') \quad (5.7)$$

for $0 \leqslant i, j, i', j' \leqslant 2$, $\gamma, \gamma' \in \Gamma$. Then, in the notation of Example 5.3, we have $T = (\mathbb{F}^t[G], \lambda(q, \mu))_{\Gamma}$. But one can see that the corresponding associative tori $(\mathbb{F}^t[G], \lambda(\omega, \mu))_{\Gamma}$ and $(\mathbb{F}^t[G], \lambda(\omega^2, \mu))_{\Gamma}$ are isomorphic, under the isomorphism induced by $x_1^{i_1}x_2^{i_2}x^{\gamma} \mapsto x_2^{i_1}x_1^{i_2}x^{\gamma}$. So we may assume that $q = \omega$, namely, $T = (\mathbb{F}^t[G], \lambda(\omega, \mu))_{\Gamma}$. We recall from [9, Lemma 1.1] that if Γ is free abelian or \mathbb{F} is algebraically closed, then any commutative twisted group algebra on Γ is isomorphic to the commutative untwisted group algebra. Thus, if Γ is free abelian or \mathbb{F} is algebraically closed, then μ can be taken to be 1. The converse part follows from Example 5.3.

Remark 5.5 In the notation of Proposition 5.4, let G be free abelian of rank ≥ 2 with a basis indexed by a set, say J. Assume, $1, 2 \in J$. By Proposition 5.4, $T \cong (\mathbb{F}^t[G], \lambda(\omega, 1))$. However, by Example 2.9, we may assume $\lambda(\omega, 1) = \mathbf{q}_{\omega}$, where $\mathbf{q}_{\omega} = (q_{ij})_{i,i \in J}$ is the quantum matrix satisfying

$$q_{ij} = \begin{cases} \omega, & i = 1, j = 2, \\ \omega^{-1}, & i = 2, j = 1, \\ 1, & \text{otherwise.} \end{cases}$$
 (5.8)

Using our earlier results and a modified reasoning of [11, Proposition 6.13], we get the following result. To be precise, we provide details of the proof.

Proposition 5.6 Let ω be a third root of unity. Let J be a special Jordan G-torus over \mathbb{F} of central degree 3 with central grading group Γ . Then $3G \subseteq \Gamma \subsetneq G$ and $|G/\Gamma| = 9$. Also,

$$J \cong_G \begin{cases} (\mathbb{F}^t[G], \lambda(\omega, \mu))_{\Gamma}^+, & \omega \in \mathbb{F}, \\ H((\mathbb{E}^t[G], \lambda(\omega, \mu))_{\Gamma}, \sigma), & \omega \notin \mathbb{F}, \end{cases}$$

where μ is a 2-cocycle on Γ , $\mathbb{E} = \mathbb{F}(\omega) = \mathbb{F}(\sqrt{-3})$, and σ is the unique non-trivial Galois automorphism of E.

Proof Since J is special, it is either a Hermitian torus or a Clifford torus. We have already seen that if J is a Clifford torus, then $\deg(\overline{J}) \leq 2$ (see § 4). So J can only be a Hermitian torus. By Proposition 5.2, $\operatorname{supp}(J) = G$. Therefore, by Theorem 3.7, we have one of the following three possibilities:

 $J \cong H((\mathbb{F}^t[G],\lambda),\theta_q),\, \lambda$ a 2-cocycle, and q a quadratic map,

 $J \cong (\mathbb{F}^t[G], \lambda)^+, \lambda \text{ a 2-cocycle,}$

 $J \cong H((\mathbb{E}^t[G], \lambda), \theta)$, \mathbb{E} a quadratic field extension of \mathbb{F} , λ a 2-cocycle, and θ an involution, as defined in Lemma 3.2.

We begin by showing that the first possibility cannot happen. Consider the center Z of $J = H((\mathbb{F}^t[G], \lambda), \theta_q)$. By Proposition 5.2,

$$3G \subseteq \Gamma \subseteq G = \text{supp}(J).$$

But as q is a quadratic map, we have $(x^{\sigma})^2$ is central for any $\sigma \in G$ implying that $2G \subseteq \Gamma$. Now, $2G \cup 3G \subseteq \Gamma$ implies $\Gamma = G$, which is absurd.

We now consider the second and the third possibilities. By definition, \overline{J} is a finite-dimensional central special Jordan division algebra over \overline{Z} of degree 3. By [11, 2.11] and Proposition 2.6 (iii), we have $\dim_{\overline{Z}} \overline{J} = 9$ and G/Γ is a 2-dimensional vector space over the field of 3 elements.

If $J \cong_G (\mathbb{F}^t[G], \lambda)^+$, λ a 2-cocycle, then taking this isomorphism as an identification, we get

$$Z(J) = Z((\mathbb{F}^t[G], \lambda)^+) = Z((\mathbb{F}^t[G], \lambda)),$$

and so Γ is the central grading group of $(\mathbb{F}^t[G], \lambda)$. Then by Proposition 5.4, \mathbb{F} contains a primitive third root of unity ω and

$$(\mathbb{F}^t[G], \lambda) \cong (\mathbb{F}^t[G], \lambda(\omega, \mu))_{\Gamma},$$

where μ is a symmetric 2-cocycle on Γ . Thus,

$$J \cong (\mathbb{F}^t[G], \lambda(\omega, \mu))_{\Gamma}^+.$$

Finally, we suppose that the third possibility holds and we take it as an identification. Then

$$Z((\mathbb{E}^t[G],\lambda)) = Z((\mathbb{E}^t[G],\lambda)^+) = Z(J \otimes_{\mathbb{F}} \mathbb{E}) \cong Z(J) \otimes_{\mathbb{F}} \mathbb{E}.$$

So $(\mathbb{E}^t[G], \lambda)$ is an associative G-torus with central grading group Γ such that $3G \subseteq \Gamma \subsetneq G$ and G/Γ is a 2-dimensional vector space over \mathbb{Z}_3 . Then by Proposition 5.4, $(\mathbb{E}^t[G], \lambda)$ has central degree 3 and \mathbb{E} contains a primitive third root of unity ω such that

$$(\mathbb{E}^t[G], \lambda) \cong (\mathbb{E}^t[G], \lambda(\omega, \mu))_{\Gamma},$$

where μ is a 2-cocycle on Γ . It follows from Lemma 3.2 that $\theta(x_i) = x_i$ for i = 1, 2 and that θ acts as an anti-automorphism on $(\mathbb{E}^t[G], \lambda(\omega, \mu))_{\Gamma}$. Therefore,

$$x_1 x_2 = \theta(x_2 x_1) = \theta(\omega x_1 x_2) = \theta(\omega) \omega x_1 x_2.$$

Thus, $\theta(\omega) = \omega^{-1} \neq \omega$ and so $\omega \notin \mathbb{F}$. Finally, as $[\mathbb{E} \colon \mathbb{F}] = 2$, we have

$$\mathbb{E} = \mathbb{F}(\omega) = \mathbb{F}(\sqrt{-3}).$$

Definition 5.7 Let G be a torsion free abelian group, and let Δ , Γ be two subgroups of G satisfying

$$3G \subseteq \Gamma \subseteq \Delta \subseteq G$$
, $\dim_{\mathbb{Z}_3}(G/\Gamma) = 3$, $\dim_{\mathbb{Z}_3}(\Delta/\Gamma) = 2$.

Then we call the triple (G, Δ, Γ) an Albert triple.

Example 5.8 Let (G, Δ, Γ) be an Albert triple. We take $\sigma_1, \sigma_2, \sigma_3 \in G$ such that $\{\sigma_i + \Gamma \mid 1 \leq i \leq 3\}$ is a basis for G/Γ and $\{\sigma_i + \Gamma \mid 1 \leq i \leq 2\}$ is a basis for Δ/Γ . Then

$$G = \bigcup_{0 \leqslant i, j, k \leqslant 2} (i\sigma_1 + j\sigma_2 + k\sigma_3 + \Gamma), \quad \Delta = \bigcup_{0 \leqslant i, j \leqslant 2} (i\sigma_1 + j\sigma_2 + \Gamma).$$

Let

$$\mathscr{A} := (\mathbb{F}^t[\Delta], \lambda(\omega, \mu))_{\Gamma} = \bigoplus_{\sigma \in \Delta} \mathscr{A}^{\sigma}$$

be the Δ -tori associated to the pair (Δ, Γ) (see Example 5.3), where μ is a 2-cocycle on Γ and ω is a third root of unity. Let $Z = Z(\mathscr{A})$, and let tr be the generic trace of the central closure $\overline{\mathscr{A}}$. We fix nonzero elements $u_1 \in \mathscr{A}^{\sigma_1}$, $u_2 \in \mathscr{A}^{\sigma_2}$, and $u_3 \in \mathscr{A}^{3\sigma_3}$. We note that \mathscr{A} is a free Z-module with free basis $\{u_1^i u_2^j \mid 0 \leq i, j \leq 2\}$. Since tr is Z-linear, for any $z \in Z$ and a basis element $u_1^i u_2^j$, we have

$$\operatorname{tr}(u_1^i u_2^j z) = z \operatorname{tr}(u_1^i u_2^j) = 0 \quad ((i, j) \neq (0, 0))$$

by Proposition 5.2, and so $\operatorname{tr}(\mathscr{A}) \subseteq Z$. Since u_3 is an invertible element of Z, we consider the first Tits construction $\mathbb{A}_t = (\mathscr{A}, u_3)$ (see [11, 6.5]). We call \mathbb{A}_t the Jordan algebra associated to the Albert triple (G, Δ, Γ) .

Claim \mathbb{A}_t is a Jordan G-torus of strong type.

To see this, we first give a G-grading to \mathbb{A}_t as follows. Recall that $u_i \in \mathscr{A}^{\sigma_i}$ for i=1,2 and $u_3 \in \mathscr{A}^{3\sigma_3}$. We now fix $u_0=1 \in \mathbb{F}=\mathscr{A}^0$ and nonzero elements $u_{\gamma} \in \mathscr{A}^{\gamma}$ for $\gamma \in \Gamma \setminus \{0,3\sigma_3\}$. For $\alpha=i\sigma_1+j\sigma_2+\gamma \in \Delta,\ 0\leqslant i,j\leqslant 2,\ \gamma\in\Gamma$, set $u_{\alpha}:=u_1^iu_2^ju_{\gamma}$. Then we have

$$\mathscr{A} = \bigoplus_{\alpha \in \Lambda} \mathbb{F}u_{\alpha}.$$

Next, for $\alpha = i\sigma_1 + j\sigma_2 + k\sigma_3 + \gamma \in G$, $0 \le i, j, k \le 2$, $\gamma \in \Gamma$, we set

$$t_{\alpha} := \begin{cases} (u_{\alpha}, 0, 0), & k = 0, \\ (0, u_{\alpha - \sigma_3}, 0), & k = 1, \\ (0, 0, u_{\alpha + \sigma_3}), & k = 2. \end{cases}$$

We have

$$t_{\sigma_3} = (0,1,0), \quad t_{2\sigma_3} = (0,0,u_3), \quad t_{-\sigma_3} = t_{\sigma_3}^{-1} = (0,0,1).$$

One easily checks that, as a vector space, we have

$$\mathbb{A}_t = \bigoplus_{\alpha \in G} \mathbb{F}t_{\alpha}.$$

Moreover, considering the multiplication rule in \mathbb{A}_t , it is not hard, even though tedious, to see that \mathbb{A}_t is strongly G-graded as a Jordan algebra and so \mathbb{A}_t is a G-torus of strong type. To be more precise on this, we give a rough outline of the argument as follows. Let us recall that, as a vector space, we have

$$\mathbb{A}_t = \mathscr{A} \oplus \mathscr{A} \oplus \mathscr{A}.$$

Now, for $a \in \mathcal{A}$, we set

$$a^{(0)} := (a, 0, 0), \quad a^{(1)} := (0, a, 0), \quad a^{(2)} := (0, 0, a).$$

Also for $\alpha = i\sigma_1 + j\sigma_2 + k\sigma_3 + \gamma \in G$ of the above form, we set

$$(\alpha) := \begin{cases} 0, & k = 0, \\ -1, & k = 1, \\ 1, & k = 2. \end{cases}$$

Then we have

$$t_{\alpha} = u_{\alpha + (\alpha)\sigma_3}^{(k)}.$$

Now, if $\alpha' = i'\sigma_1 + j'\sigma_2 + k'\sigma_3 + \gamma'$ is another element in G of the above form, then it is easy to see that

$$u_{\alpha+(\alpha)\sigma_3}^{(k)} \times u_{\alpha'+(\alpha')\sigma_3}^{(k')} = r u_{\alpha+(\alpha)\sigma_3}^{(k)} \cdot u_{\alpha'+(\alpha')\sigma_3}^{(k')}$$

for some $s \in \mathbb{Z}/2$. Therefore,

$$t_{\alpha}t_{\alpha'} = r(u_3^{(\alpha)(\alpha')(\alpha+\alpha')}u_{\alpha+(\alpha)\sigma_3}^{(k)} \cdot u_{\alpha'+(\alpha')\sigma_3}^{(k')})^{(\varepsilon(k+k'))}.$$

But

$$u_3^{(\alpha)(\alpha')(\alpha+\alpha')}u_{\alpha+(\alpha)\sigma_3}^{(k)}\cdot u_{\alpha'+(\alpha')\sigma_3}^{(k')}$$

is a homogeneous element of degree

$$3(\alpha)(\alpha')(\alpha+\alpha')\sigma_3 + \alpha + \alpha' + (\alpha)\sigma_3 + (\alpha')\sigma_3 = \alpha + \alpha' + (\alpha+\alpha')\sigma_3.$$

It follows that

$$t_{\alpha}t_{\alpha'} = ru_{\alpha+\alpha'+(\alpha+\alpha')}^{\varepsilon(k+k')} = rt_{\alpha+\alpha'}$$

for some scalar r. This shows that \mathbb{A}_t is G-graded. To see that it is of strong type, we need to show that r is nonzero, or equivalently,

$$a \times b \neq 0$$

if

$$a := u_{\alpha + (\alpha)\sigma_3}^{(k)}, \quad b := u_{\alpha' + (\alpha')\sigma_3}^{(k')}.$$

Suppose to the contrary that $a \times b = 0$. Then we must have

$$tr(a \cdot b) = tr(a)tr(b)$$
.

Now, if both a and b are central, then this gives ab = 3ab as $\operatorname{tr}(1) = 3$, which is absurd. If a is central but b not, then we get $\operatorname{tr}(a \cdot b) = 0$, which in turn implies ab = 0, which is again absurd. Finally, if both a and b are non-central, then again we get $\operatorname{tr}(a \cdot b) = 0$, which together with $a \times b = 0$ implies $a \cdot b = 0$, or equivalently, ab = -ba. Then

$$ab = -ba = \omega^t ba$$

for some integer t, which is absurd as ω is a third root of unity.

By [11, Lemma 6.5], the central closure $\overline{\mathbb{A}}_t$ of \mathbb{A}_t is an Albert algebra over \overline{Z} , and so \mathbb{A}_t is a Jordan G-torus of Albert type. We refer to \mathbb{A}_t as an Albert G-torus constructed from an Albert triple (G, Δ, Γ) .

Theorem 5.9 Let J be a Jordan G-torus of Albert type over \mathbb{F} with central grading group Γ . Then G contains a subgroup Δ such that (G, Δ, Γ) is an Albert triple and J is graded isomorphic to the Albert G-torus \mathbb{A}_t , constructed from the Albert triple (G, Δ, Γ) (see Example 5.8). Conversely, given an Albert triple (G, Δ, Γ) , the associated Jordan algebra \mathbb{A}_t is an Albert G-torus.

Proof Let $J = \bigoplus_{\sigma \in G} J^{\sigma}$ be a Jordan G-torus as in the statement. Then the central closure \overline{J} is an Albert algebra over \overline{Z} , Z := Z(J). We recall that an Albert algebra is a 27-dimensional central simple exceptional Jordan algebra of degree 3. By Proposition 5.2,

$$3G \subseteq \Gamma \subseteq G$$
, $supp(J) = G$.

Moreover, by Lemma 2.6,

$$27 = \dim_{\overline{Z}} \overline{J} = |G/\Gamma|.$$

Since G/Γ is a vector space over the field of 3 elements, we have

$$\dim_{\mathbb{Z}_3}(G/\Gamma)=3.$$

Fix $\sigma_1, \sigma_2, \sigma_3 \in G$ such that $\{\sigma_i + \Gamma \mid i = 1, 2, 3\}$ is a basis for G/Γ . Then

$$G = \bigcup_{0 \le i, j, k \le 2} (i\sigma_1 + j\sigma_2 + k\sigma_3 + \Gamma).$$

Set

$$\Delta := \bigcup_{1 \le i, j \le 2} (i\sigma_1 + j\sigma_2 + \Gamma), \quad U := \bigoplus_{\sigma \in \Delta} J_{\sigma}.$$

Since $3G \subseteq \Gamma$, Δ is a subgroup of G and so U is a subalgebra of J. We now show that Z(U) = Z(J). Since $\Gamma \subseteq \Delta$, we have $Z(J) \subseteq Z(U)$. Thus, we must show $Z(U) \subseteq Z(J)$. Let Δ_1 be the central grading group of U. Then

$$3G \subseteq \Gamma \subseteq \Delta_1 \subseteq \Delta \subseteq G$$
.

We now note that $\Delta_1 \subsetneq \Delta$, because otherwise U is commutative and associative and as J is an Albert division algebra, the subfield $\overline{Z} \otimes_Z U$ of J is 9-dimensional, since $|\Delta/\Gamma| = 9$. But it follows from [4, Lemma 1] that this is impossible.

By Lemma 2.6, the central closure

$$\overline{U} := \overline{Z(U)} \otimes_{Z(U)} U$$

is (Δ/Δ_1) -graded and Δ/Δ_1 cannot be a non-trivial cyclic group. Thus,

$$2 \leqslant \dim(\Delta/\Delta_1) \leqslant \dim(\Delta/\Gamma) = 2.$$

This gives

$$\dim(\Delta/\Delta_1) = 2, \quad \Delta_1 = \Gamma.$$

That is,

$$Z(U) = Z = Z(J).$$

Since Z(U) = Z(J), we have

$$\overline{U} = \overline{Z} \otimes_Z U \hookrightarrow \overline{J}.$$

By [11, 2.6 (ii)], \overline{U} is central. Thus, \overline{U} is a central subalgebra of the division algebra \overline{J} and is 9-dimensional as $|\Delta/\Gamma|=9$. So by the classification of finite-dimensional central simple Jordan algebras, \overline{U} is special (see [4, Corollary 2, pp. 204–207]). Then by [11, 2.11], \overline{U} has degree 3. Thus, U is a special Jordan G-torus of central degree 3. So we may use the characterization given in Proposition 5.6 for U, in terms of a primitive third root of unity ω and a 2-cocycle μ on Γ , namely,

$$U \cong_G \begin{cases} (\mathbb{F}^t[\Delta], \lambda(\omega, \mu))_{\Gamma}^+, & \omega \in \mathbb{F}, \\ H((\mathbb{E}^t[\Delta], \lambda(\omega, \mu))_{\Gamma}, \sigma), & \omega \notin \mathbb{F}, \end{cases}$$

where $\mathbb{E} = \mathbb{F}(\omega)$ and σ is the non-trivial Galois automorphism of E.

We assume first that $\omega \in \mathbb{F}$. Then $U = (\mathbb{F}^t[\Delta], \lambda(\omega, \mu))^+_{\Gamma}$. We fix nonzero elements

$$u_1 := u_{\sigma_1} \in J^{\sigma_1}, \quad u_2 := u_{\sigma_2} \in J^{\sigma_2}, \quad x \in J^{\sigma_3}.$$

Set

$$u_3 := u_{3\sigma_3} := x^3 \in J^{3\sigma_3}.$$

Let tr be the generic trace of \overline{J} . We have

$$\begin{split} U &= \bigoplus_{\sigma \in \Delta} J^{\sigma} \\ &= \bigoplus_{0 \leqslant i, j \leqslant 2, \, \gamma \in \Gamma} J^{i\sigma_1 + j\sigma_2 + \gamma} \\ &= \bigoplus_{0 \leqslant i, j \leqslant 2, \, \gamma \in \Gamma} J^{\gamma} J^{i\sigma_1 + j\sigma_2} \\ &= \bigoplus_{0 \leqslant i, j \leqslant 2} Z J^{i\sigma_1 + j\sigma_2}, \end{split}$$

where the second equality follows from Lemma 2.6 (i). Thus, U is a free Z-module with basis $\{u_1^i u_2^j \mid 0 \leq i, j \leq 2\}$. Now, for $z \in Z$ and $0 \leq i, j \leq 2$,

$$\operatorname{tr}(zu_1^i u_2^j) = z\operatorname{tr}(u_1^i u_2^j) = 0 \quad ((i, j) \neq (0, 0))$$

by Proposition 5.2, and is equal to ztr(1) if i = j = 0. Thus,

$$\operatorname{Tr}(\mathbb{F}^t[\Delta], \lambda(\omega, \mu))_{\Gamma} \subseteq Z.$$

Since $x^3 = u_3$ is an invertible element of Z, we may consider the first Tits construction $\mathbb{A}_t := (\mathscr{A}, u_3)$ over Z, where $\mathscr{A} := (\mathbb{F}^t[\Delta], \lambda(\omega, \mu))_{\Gamma}$ (see [11, 6.5]). As we have seen in Example 5.8, \mathbb{A}_t is a Jordan G-torus of strong type.

Next, let

$$U^{\perp} := \{ y \in J \mid \text{Tr}(Uy) = 0 \}.$$

We show that $J^{\sigma_3}, J^{2\sigma_3} \subseteq U^{\perp}$. Now, for $0 \leqslant i, j \leqslant 2$ and k = 1, 2, we have $(u_1^i u_2^j) x^k \in G \setminus \Gamma$, so $\operatorname{Tr}((u_1^i u_2^j) x^k) = 0$, again by Proposition 5.2. Since tr is Z-linear, we are done.

Now, setting

$$\mathscr{J} := J, \quad \mathscr{U} := \mathscr{A}^+, \quad z := u_3,$$

we see that the conditions of [11, 6.14] hold for the mentioned elements. Therefore, J contains a subalgebra J' such that one of the following holds:

- (I) there exists a Z-isomorphism $\varphi \colon (\mathscr{A}, u_3) \to J'$, which acts as identity on \mathscr{A} and $\varphi((0, 1, 0)) = x$;
- (II) there exists a Z-isomorphism $\varphi \colon (\mathscr{A}, u_3^{-1}) \to J'$, which acts as identity on \mathscr{A} and $\varphi((0,0,1)) = x$.

We assume first that (I) holds and take $\sigma \in G$. Then

$$\sigma = i\sigma_1 + j\sigma_2 + k\sigma_3 + \gamma$$
,

where $0 \leq i, j, k \leq 2$ and $\gamma \in \Gamma$. Since \mathbb{A}_t is of strong type,

$$u_0 := t^i_{\sigma_1} \cdot (t^j_{\sigma_2} \cdot (t^k_{\sigma_3} \cdot t_\gamma))$$

is a nonzero element of \mathbb{A}_t and

$$0 \neq \varphi(u_0) = u_1^i u_2^j x^k u_\gamma \in J^\alpha.$$

Thus, φ is an isomorphism over Z, in particular, $J \cong_G \mathbb{A}_t$. Next, we assume that (II) holds. We note that the \mathbb{F} -linear map

$$f \colon \mathscr{A} = \bigoplus_{\alpha \in \Delta} \mathbb{F} u_{\alpha} \to \mathscr{A}^{op}$$

induced by

$$u_1^i u_2^j u_\gamma \mapsto u_2^i u_1^j u_\gamma$$

is an algebra isomorphism over \mathbb{F} . We note that $f(u_3) = u_3$ and $\operatorname{Tr} \circ f = f \circ \operatorname{Tr}$. It follows that $J \cong_G \mathbb{A}_t$. This takes care of the case $\omega \in \mathbb{F}$.

Finally, we consider the case $\omega \notin \mathbb{F}$. Then we have

$$U \cong_G H((\mathbb{E}^t[\Delta], \lambda(\omega, \mu))_{\Gamma}, \sigma),$$

where $\mathbb{E} = \mathbb{F}(\omega)$ and σ is the non-trivial Galois automorphism of \mathbb{E} over \mathbb{F} . Let $J_{\mathbb{E}} = \mathbb{E} \otimes_{\mathbb{F}} J$ be the Jordan torus over E. Let $\tau := \sigma \otimes id$ be a σ -semilinear involution of $J_{\mathbb{E}}$ over \mathbb{F} . Then $U_{\mathbb{E}} = \mathbb{E} \otimes_{\mathbb{F}} U$ is a subalgebra of $J_{\mathbb{E}}$. Since J is exceptional, so is $J_{\mathbb{E}}$. Hence, the Jordan G-torus $J_{\mathbb{E}}$ is of Albert type since the other two types are special. Then taking $u_3 := x^3$, where

$$0 \neq x \in J^{\sigma_3} \subseteq \mathbb{E} \otimes_{\mathbb{F}} J^{\sigma_3}$$
,

we can consider, as in the previous case, the Albert torus $\widetilde{\mathbb{A}}_t := (B, u_3)$, where $B := (\mathbb{E}^t[\Delta], \lambda(\omega, \mu))_{\Gamma}$ for $t = (0, 1, 0) \in \widetilde{\mathbb{A}}_t$, and corresponding two isomorphisms $\varphi_1 : J_{\mathbb{E}} \to \widetilde{\mathbb{A}}_t$ with $\varphi_1|_{U_{\mathbb{E}}} = \varphi_1|_B = \mathrm{id}$, $\varphi_1(x) = t$; and $\varphi_2 : J_{\mathbb{E}} \to \widetilde{\mathbb{A}}_t$ with $\varphi_2(x) = t$, $\varphi_2(u_1) = u_2$, $\varphi_2(u_2) = u_1$, $\varphi_2|_{U_{\mathbb{E}}} = \varphi_2|_B$ is an automorphism of the associative algebra B. Now, considering these isomorphisms as identifications and using the fact that

$$\tau(u_1u_2) = \sigma(u_1u_2) = u_2u_1,$$

we get

$$(u_1u_2)\cdot t = (\omega u_1u_2)\cdot t = \omega(u_1u_2)\cdot t,$$

which contradicts $(u_1u_2) \cdot t \neq 0$. Thus, $\omega \notin \mathbb{F}$ cannot happen and so there is no second Tits construction in this case.

Acknowledgements The first author's research was in part supported by a research grant from IPM (No. 91130217) and partially carried out in IPM-Isfahan branch. He also would like to thank the Center of Excellence for Mathematics, University of Isfahan. The third author's research was in part supported by a grant from IPM (No. 91170415) and partially carried out in IPM-Isfahan branch.

References

- Allison B, Azam S, Berman S, Gao Y, Pianzola A. Extended Affine Lie Algebras and Their Root Systems. Mem Amer Math Soc, Vol 126, No 603. Providence: Amer Math Soc, 1997
- Azam S, Yamane H, Yousofzadeh M. Reflectable bases for affine reflection systems. J Algebra, 2012, 371: 63–93
- Jacobson N. Structure Theory of Jordan Algebras. The University of Arkansas Lecture Notes in Mathematics, Vol 5. Fayetteville, AR, 1981
- 4. Jacobson N. Structure and Representations of Jordan Algebras. Amer Math Soc Colloq Publ, Vol 39. Providence: Amer Math Soc, 1968
- Lam T Y. A First Course in Noncommutative Rings. Graduate Texts in Mathematics, Vol 131. Berlin: Springer-Verlag, 1991

- 6. Loos O. Spiegelungsräume und homogene symmetrische Räume. Math Z, 1967, 99: $141{-}170$
- McCrimmon K. A Taste of Jordan Algebras. Universitext. New York: Springer-Verlag, 2004
- 8. McCrimmon K, Zel'manov E. The structure of strongly prime quadratic Jordan algebras. Adv Math, 1988, 69: 132–222
- 9. Osborn J M, Passman D S. Derivations of skew polynomial rings. J Algebra, 1995, 176(2): 417–448
- 10. Passman D S. The Algebraic Structure of Group Rings. New York: John Weily & Sons, 1977
- 11. Yoshii Y. Coordinate algebras of extended affine Lie algebras of type A_1 . J Algebra, 2000, 234: 128–168
- 12. Yoshii Y. Root systems extended by an abelian group and their Lie algebras. J Lie Theory, 2004, 14: 371-394
- 13. Zhevlakov K A, Slin'ko A M, Shestakov I P, Shirshov A I. Rings that are Nearly Associative. New York: Academic Press, 1982