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This article is based on a talk presented by the first author at the conference on
Lie and Jordan Algebras, their Representations and Applications held in Guarujá,
Brazil in May 2004. The article surveys some recent progress by a number of
authors in the study of extended affine Lie algebras and some closely related Lie
algebras called Lie tori.

Lie tori of rank 1 are coordinatized by algebras with involution called structurable
tori. Recently the present authors have obtained a classification of structurable tori,
and this article includes in Section 5 a description of part of that classification.
Complete statements and proofs of our classification results will appear elsewhere.

Assumptions. Throughout the article we assume that F is a field of characteris-
tic 0. We also assume that ∆ is an irreducible root system (possibly nonreduced).
Note that it is our convention that root systems contain 0 and so ∆× := ∆ \ {0}
is an irreducible root system in the usual sense (see for example [MP, §3.2]). From
the classification we know that

∆ = A`, B`, C`, D`, E6, E7, E8, F4 or G2 (the reduced types)

or
∆ = BC` (the nonreduced type).

In particular the rank one root systems are

A1 = {−α, 0, α} and BC1 = {−2α,−α, 0, α, 2α},
where α 6= 0. Finally we assume that Λ is a finitely generated free abelian group
of rank n, and so Λ ' Zn.

1. Lie tori

We begin with the definition of a Lie torus. Lie tori were defined first by Yoshii
in [Y2]. The definition we give is an equivalent definition suggested by Neher in [N].
In this definition α∨ will denote the coroot of α for α ∈ ∆×. That is, α∨ is the
element of the dual space of spanF (∆) so that β 7→ β − 〈β, α∨〉α is the reflection
corresponding to α in the Weyl group of ∆, where 〈 , 〉 is the natural pairing of
spanF (∆) with its dual space [MP, § 3.2].

Definition 1.1. A Lie torus is a Lie algebra L over F satisfying:
(LT1): L has two algebra gradings

L =
⊕

α∈∆

Lα and L =
⊕

λ∈Λ

Lλ
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which are compatible in the sense that L =
∑

α,λ Lλ
α, where Lλ

α = Lα ∩Lλ.
(So we assume that [Lα, Lβ ] ⊂ Lα+β with Lα+β interpreted as 0 if α + β /∈
∆, and we assume that [Lλ, Lµ] ⊂ Lλ+µ.)

(LT2): We have
(i) L0

α 6= 0 for α ∈ ∆×, 1
2α /∈ ∆×.

(ii) If α ∈ ∆×, λ ∈ Λ and Lλ
α 6= 0, then Lλ

α = Feλ
α and L−λ

−α = Ffλ
α ,

where

[[eλ
α, fλ

α ], xµ
β ] = 〈β, α∨〉xµ

β

for xµ
β ∈ Lµ

β , β ∈ ∆, µ ∈ Λ.
(LT3): L is generated as an algebra by the spaces Lα, α ∈ ∆×.
(LT4): Λ is generated as a group by suppΛ(L), where suppΛ(L) := {λ ∈ Λ |

Lλ 6= 0}.
In that case ∆ is called the type of L, the rank of ∆ is called the rank of L, and n
(the rank of the group Λ) is called the nullity of L.

Axioms (LT1) and (LT2) are of course the main axioms in this definition. In
particular (LT2) tells us that we have a plentiful supply of sl2-triples in L. (LT3)
and (LT4) are less important. If (LT3) does not hold we can just replace L by the
subalgebra generated by the root spaces Lα, α ∈ ∆×. Similarly, if (LT4) does not
hold we can replace Λ by the subgroup of Λ generated by the support of L.

A Lie torus L will be said to be centreless if its centre Z(L) is 0. We note that if
L is an arbitrary Lie torus, then the quotient L/Z(L) is a centreless Lie torus [Y2,
Lemma 1.4]. For the remainder of this article, we will focus on centreless Lie tori.

2. Connection with EALA’s

Yoshii and Neher were interested in Lie tori primarily because of their connection
with extended affine Lie algebras. We now describe this connection in order to
motivate the study of Lie tori. For convenience of reference, we assume in this
section and the next that F is the field of complex numbers. (This assumption can
be dropped if the statements are suitably modified [N].)

Suppose that G is a tame extended affine Lie algebra (EALA). Thus by definition
G has a split toral subalgebra H and a nondegenerate invariant symmetric bilinear
form satisfying certain natural axioms generalizing the properties of affine Kac-
Moody Lie algebras [HT, AABGP].

Let Gc be the core of G; that is, let Gc be the subalgebra of G generated by the
nonisotropic root spaces of G. Let Gcc = Gc/Z(Gc), the centreless core of G. Then
Gcc is a centreless Lie torus.

Conversely, Yoshii showed that any centreless Lie torus occurs as the centreless
core of some tame EALA [Y2, Theorem 7.3]. Moreover, Neher described a procedure
for constructing all tame EALA’s with a given centreless Lie torus as centreless core
[N, Theorem 14]. (See also [BGK, Section 3] and [BGKN, Section 3] in the case
when ∆ is of type A`, ` ≥ 2.)

In particular, if G is an affine Kac-Moody Lie algebra (= tame EALA of nullity 1
[ABGP]), then Gc = G′ and Gcc = G′/Z(G′) is a centreless Lie torus of nullity 1. In
this case, it is well known that G can constructed by double extension from Gcc.



LIE TORI OF RANK 1 3

3. Examples

With this connection with EALA’s as motivation, we now go on to discuss the
status of the classification problem for Lie tori. For this we need a couple of
examples of Lie tori.

Example 3.1. Let Ġ be a finite dimensional simple Lie algebra of type ∆ (and so
∆ is reduced). Let

L = Ġ ⊗ F [t±1
1 , . . . , t±1

n ],

where F [t±1
1 , . . . , t±1

n ] denotes the algebra of Laurent polynomials over F . L (or
often its universal central extension) is called a toroidal Lie algebra. Then L has
a root grading coming from the root grading of Ġ (obtained by choosing a Cartan
subalgebra for Ġ), and L has a Λ-grading coming from the Λ-grading of the Laurent
polynomials (obtained by choosing a basis for Λ). Using these gradings, L is a
centreless Lie torus. (In fact this example is one of the explanations for the term
Lie torus.)

In particular, if Ġ = sl`+1(F ), then

L = sl`+1(F )⊗ F [t±1
1 , . . . , t±1

n ] = sl`+1(F [t±1
1 , . . . , t±1

n ])

is a centreless Lie torus of type A` and nullity n.

There is an important deformation of this last example introduced by Berman,
Gao and Krylyuk in [BGK].

Example 3.2. Let q = (qij) ∈ Mn(F ) be a quantum matrix ; that is suppose that
qii = 1 and qij = q−1

ji . Let Fq = Fq[t±1
1 , . . . , t±1

n ] be the unital associative algebra
with basis consisting of the monomials ti11 . . . tin

n , i1, . . . , in ∈ Z, and multiplication
determined by the relations

tjti = qijtitj .

This associative algebra Fq is called the quantum torus determined by q. (Al-
ternatively, Fq is a twisted group ring of the group Zn.) If we choose a basis
B = {σ1, . . . , σn} for Λ, we can give Fq a unique Λ-grading, called the toral Λ-
grading determined by B, by assigning the degree σi to the generator ti of Fq.
Let

L = sl`+1(Fq) := {X ∈ Mn×n(Fq) | tr(X) ∈ [Fq, Fq]}.
Then L is a Lie algebra under the commutator product, L has a natural A`-grading,
and L has a Λ-grading coming from the toral Λ-grading of the coordinate algebra
Fq. Once again, using these gradings, L is a centreless Lie torus of type A` and
nullity n. (This example is another explanation for the term Lie torus.)

Furthermore, Berman, Gao and Krylyuk showed in [BGK] (although they didn’t
use this language) that any centreless Lie torus of type A`, where ` ≥ 3, is isomor-
phic to sl`+1(Fq) for some q as in Example 3.2. This then is a classification result
for centreless Lie tori of type A`, ` ≥ 3. Similar classification results have been
proved in recent years for all types of rank ≥ 2 except type BC2.

We do not have anything to say in this article about the type BC2 and so we
now turn our attention to the rank 1 types.
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4. Coordinatization of rank 1 Lie tori

Assume once again that F is an arbitrary field of characteristic 0. It was shown
by Allison and Yoshii in [AY, Theorem 5.6] that the centreless core of any EALA
of rank 1 is coordinatized by an algebra with involution called a structurable torus.
This argument can be easily modified to show the same result for centreless rank 1
Lie tori. In this section, we outline that argument. First we need two definitions.

Definition 4.1. A structurable algebra is a pair (A, ∗) consisting of a unital (in gen-
eral nonassociative) algebra A together with an involution ∗ (an anti-automorphism
of period 2) so that the following 5-linear identity holds:

{xy{zwq}} − {zw{xyq}} = {{xyz}wq} − {z{yxw}q},
where

{xyz} := (xy∗)z + (zy∗)x− (zx∗)y.

Definition 4.2. A structurable torus is a structurable algebra (A, ∗) satisfying:
(ST1): A =

⊕
λ∈Λ Aλ is Λ-graded as an algebra with involution (so the

product and the involution are graded).
(ST2): If λ ∈ Λ and Aλ 6= 0, then Aλ = Fx and A−λ = Fx−1, where

xx−1 = x−1x = 1

and
[Lx, Lx−1 ] = 0 and [Rx, Rx−1 ] = 0

(ST3): Λ is generated as a group by suppΛ(A)
In that case the integer n (the rank of Λ) is called the nullity of (A, ∗).

Suppose now that L is a centreless rank 1 Lie torus. Since the root system of
type A1 is contained in the root system of type BC1, we can assume that ∆ = BC1.
Thus

∆ = {−2α,−α, 0, α, 2α}.
Hence the root grading of L becomes

L = L−2α ⊕ L−α ⊕ L0 ⊕ Lα ⊕ L2α. (1)

That is, we have a 5-grading for L. Further, if we set

e = e0
α, f = f0

α and h = [e, f ],

then {e, h, f} is an sl2-triple and the 5-grading (1) is obtained from this triple as the
eigenspace decomposition for ad(h) (corresponding to the eigenvalues −4,−2, 0, 2, 4
respectively).

Now 5-gradings obtained from sl2-triples in this way have been studied, first
by Kantor in [K1, K2] and subsequently by Allison in [A1, A2] and Benkart and
Smirnov in [BS]. It follows from this work that the Lie torus L can be constructed
from a structurable algebra.

More precisely, it follows that the vector space A = Lα can be given a multipli-
cation and involution ∗ so that (A, ∗) is a structurable algebra and that

L = K(A, ∗),
where K(A, ∗) is the 5-graded Lie algebra obtained from (A, ∗) by means of a
construction called the Kantor construction [K2, A2].
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So far this analysis has taken into account only the root graded structure of L.
It has not exploited the existence of the Λ-graded structure on L or the existence
of the plentiful supply of sl2-triples described in (LT2). In fact, using these tools,
it follows that the coordinate algebra (A, ∗) is a structurable torus.

Conversely one shows easily that given a structurable torus, the Lie algebra
K(A, ∗) is naturally a centreless Lie torus of rank 1. In this way, the problem
of classifying centreless Lie tori of rank 1 becomes equivalent to the problem of
classifying structurable tori.

5. Structurable tori

When discussing the classification problem for structurable tori, it is natural to
first consider the case when the involution is the identity.

Indeed, if (A, ∗) is a structurable torus and ∗ = id, then the corresponding Lie
torus L = K(A, ∗) satisfies

L2α = L−2α = 0,

and so L has type A1. In that case A is a Jordan torus, which is defined as a
unital Jordan algebra satisfying axioms the axioms (ST1)–(ST3) (with ∗ = id),
and the construction A 7→ K(A) := K(A, id) is the classical Tits-Kantor-Koecher
construction.

Jordan tori, and hence centerless Lie tori of type A1, were classified by Yoshii
in [Y1]. It turns out that Jordan tori are strongly prime Jordan algebras, and that
examples of Jordan tori exist of hermitian type, Clifford type and Albert type (in
the terminology of McCrimmon and Zelmanov [McZ]). In fact (if n ≥ 3) there is
just one torus of Albert type, an algebra called the Albert torus.

We now turn our attention to structurable tori with nonidentity involution.
These algebras were studied by Allison and Yoshii in [AY], where a number of
basic properties were developed resulting in a classification in nullities 1 and 2. In
recent work by the three authors of this article, we have obtained a full classifica-
tion of structurable tori with nonidentity involution. The rest of this section will
discuss that work, beginning with an example.

Example 5.1. Any alternative torus with involution (defined as a unital alter-
native algebra with involution satisfying (ST1)–(ST3)) is a structurable torus. In
particular, suppose that n = 1, 2, 3, and let

A(n) = CD(F [t±1
1 , . . . , t±1

n ], t1, . . . , tn)

be the algebra obtained by n applications of the Cayley-Dickson process starting
from the ring F [t±1

1 , . . . , t±1
n ] of Laurent polynomials and using the scalars t1, . . . , tn.

These algebras were introduced by Berman, Gao, Krylyuk and Neher [BGKN] in
their study of EALA’s of type A2. (A(3) is called the octonion torus, and A(2)
is called the quaternion torus. A(1) could similarly be called the binarion torus
following the terminology in [Mc].) If we choose a basis B = {σ1, . . . , σn} for Λ, then
A(n) has unique Λ-grading, called the toral Λ-grading determined by B, obtained
by assigning the degrees σ1, . . . , σn to the canonical generators of A(n). Also, A(n)
has the standard involution \ which anti-fixes the canonical generators. In this way,
(A(n), \) is a alternative torus with involution and hence a structurable torus for
n = 1, 2, 3.
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Note also that the quaternion torus A(2) has a nonstandard involution ∗m, called
the main involution, that fixes the two canonical generators. Thus if n = 2, we
obtain another important structurable torus (A(2), ∗m).

We have just considered alternative tori with involution as examples of struc-
turable tori. It is natural to ask whether any structurable torus with nontrivial
involution is alternative, but examples constructed from hermitian forms [AY, Ex-
ample 4.6] tell us that this is not true. However one does know that skew elements
(elements s so that s∗ = −s) in a structurable algebra behave very much like el-
ements in an alternative algebra. For example there is an analog due to Smirnov
[S] of Artin’s theorem for skew elements in a structurable algebra (any two such
elements generate an associative algebra). It is reasonable to expect then that a
structurable torus generated by skew elements is in some sense close to alternative.
This philosophy is supported by the following classification theorem.

Theorem 5.2. Suppose (A, ∗) is a structurable torus that is generated as an algebra
by skew-elements. Then (A, ∗) is the tensor product of tori from the following list:

(A(1), \), (A(2), \), (A(3), \), (A(2), ∗m), (F [t±1
1 , . . . , t±1

p ], id).

More precisely
(a) If A is associative, then there is an internal direct sum decomposition Λ =

Λ1 ⊕ · · · ⊕ Λk+2 of Λ so that

(A, ∗) ' (A1, ∗)⊗ . . .⊗ (Ak+2, ∗), (2)

as Λ-graded algebras, where k ≥ 0, (Ai, ∗) = (A(2), \) for 1 ≤ i ≤ k,
(Ak+1, ∗) = (F, id), (A(1), \) or (A(2), ∗m), (Ak+2, ∗) = (F [t±1

1 , . . . , t±1
q ], id)

for some q ≥ 0, and (Ai, ∗) has a toral Λi-grading for 1 ≤ i ≤ k + 2.
(b) If A is not associative, then there is an internal direct sum decomposition

Λ = Λ1 ⊕ Λ2 ⊕ Λ3 of Λ so that

(A, ∗) ' (A1, ∗)⊗ (A2, ∗)⊗ (A3, ∗), (3)

as Λ-graded algebras, where (A1, ∗) = (A(3), \), (A2, ∗) = (A(p), \) for some
p = 1, 2, 3, (A3, ∗) = (F [t±1

1 , . . . , t±1
q ], id) for some q ≥ 0, and (Ai, ∗) has a

toral Λi-grading for i = 1, 2, 3.

The tensor products on the right hand sides of (2) and (3) require some further
explanation. The underlying vectors spaces for these algebras are respectively A1⊗
. . .⊗Ak+2 and A1⊗A2⊗A3. In each case a product of pure tensors is obtained by
multiplying the corresponding factors, and the involution is the tensor product of
the involutions on the factors. Finally in each case the degree of a pure tensor with
homogeneous factors is defined to be the sum of the degrees of the homogeneous
factors.

Conversely, the tensor products on the right hand sides of (2) and (3) are struc-
turable tori and, with two exceptions, they are generated by skew-elements. (The
exceptions occur in (2) when k = 0 and (Ak+1, ∗) is either (F, id) or (A(2), ∗m).)

Some features of the proof. The proof of Theorem 5.2 has some interesting features,
and we now discuss some of them briefly.

First, using the fact that A is generated by skew elements, one can show that A
has no homogeneous zero divisors:

0 6= x ∈ Aλ, 0 6= y ∈ Aµ =⇒ xy 6= 0.
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Thus λ, µ ∈ suppΛ(A) =⇒ λ + µ ∈ suppΛ(A). So since suppΛ(A) generates Λ as
a group, suppΛ(A) = Λ. That is A has full support.

If λ ∈ Λ, we therefore have Aλ = Fx, where x 6= 0. Now ∗ stabilizes Aλ and
has period 2, and so x∗ = (−1)ξ(λ)x, where ξ(λ) ∈ {0, 1}. Thus we have a function
ξ : Λ → {0, 1}.

One next shows that ξ is constant on cosets of 2Λ, and so ξ induces a function
ξ : Λ/2Λ → {0, 1} = F2. We regard Λ/2Λ as a vector space over F2, and from now
on we think of ξ as a function defined on this vector space.

Suppose now that A is associative. Then ξ : Λ/2Λ → F2 turns out to be a
quadratic form over F2. So, using the classification of quadratic forms, we obtain
an orthogonal decomposition of ξ which leads to the tensor product decomposition
in (a).

Suppose next that A is not associative. Then ξ is not a quadratic form. In fact
the obstruction to ξ being a quadratic form turns out to be exactly the obstruction
to A being associative. Nonetheless we can still use the language of quadratic forms,
and we obtain an orthogonal decomposition of ξ which leads to the tensor product
decomposition in (b). As one might suspect, obtaining the appropriate orthogonal
decomposition for ξ in part (b) is the most difficult part of the proof. ¤

Theorem 5.2 gives a complete classification of structurable tori that are generated
by skew-elements. Very recently the authors have also obtained a classification
of structurable tori with nonidentity involution that are not generated by skew-
elements. These algebras are closer in their behavior to Jordan tori than they are
to alternative tori. In particular, they do not in general have full support and so
new techniques are needed for their classification. It turns out that the classification
includes an infinite family of algebras constructed from graded hermitian forms over
a quantum torus (see [AY, Example 4.6] for a description of these). In addition
there are 5 new exceptional tori that occur.

6. Central closure

We conclude this article with a brief discussion, based on work of Neher [N,
Theorem 7], about the central closure of a centreless Lie torus.

Theorem 6.1 (Neher). Suppose that L is a centreless Lie torus of nullity n. Let
Z be the centroid of L. Then

Z ' F [t±1
1 , . . . , t±1

p ]

for some 0 ≤ p ≤ n, and hence

Z̃ := quotient field of Z ' F (t1, . . . , tp).

Suppose further that L has type 6= A`. Then L is a finitely generated free Z-module,
and if we set

L̃ := Z̃ ⊗Z L,

L̃ is a finite dimensional central simple Lie algebra over Z̃.

The Lie algebra L̃ occurring in the second part of this theorem is called the
central closure of L. Now L embeds in its central closure. Hence (except in type A)
a centreless Lie torus L can be regarded as a Z-form of a finite dimensional central
simple (in general nonsplit) Lie algebra L̃ over a rational function field Z̃.
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Example 6.2. Let L = K(A, ∗), where (A, ∗) = (A(3), \) ⊗ (A(3), \) as in (3) of
Theorem 5.2. Then L is a centreless Lie torus of type BC1 and nullity 6. Moveover,
Z is isomorphic to the algebra of Laurent polynomials in 6 variables and L̃ is a
finite dimensional nonsplit central simple Lie algebra of absolute type E8 over the
rational function field Z̃ in 6 variables. This Lie algebra L̃ is not new. For example
Lie algebras constructed using the Kantor construction from tensor products of
octonion algebras over fields have been studied in [A3]. Moveover, if the base field
is extended further to the algebraic closure of Z̃, one obtains the model of the
split simple E8 described in [K2]. However, the (infinite dimensional) centreless Lie
torus L and the corresponding tame EALA’s (see §2) are new.
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