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Abstract. A new class of infinite-dimensional Lie algebras, called extended affine Lie
algebras, has recently been introduced by physicists. In their description, the classification
of so-called tori is an important step. The class of associative tori is known as quantum
tori. Alternative tori have also been classified. In this announcement, we will describe
the classification of Jordan tori. An important tool in our work is Zelmanov’s structure
theorem for prime Jordan algebras. Jordan tori can be used to coodinatize extended affine
Lie algebras of type G2 and A1, while alternative tori can be used for type F4 and A2.

Let F be a field of characteristic 6= 2 and T a (not necessarily associative) unital algebra

over F . To say that T is graded by an abelian group A means T =
⊕

α∈A Tα (direct sum of

F -spaces) and TαTβ ⊂ Tα+β for all α, β ∈ A. We define the centre Z(T ) of T as Z(T ) =

{x ∈ T : [x, y] = (x, y, z) = (y, x, z) = (y, z, x) = 0 for all y, z ∈ T} where [x, y] = xy − yx

and (x, y, z) = (xy)z − x(yz).

Definition 1. A unital algebra T =
⊕

α∈Zn Tα graded by Zn is called an n-torus or simply a

torus if dimF Tα = 1 and TαTβ = Tα+β for all α, β ∈ Zn.

As a basic property of tori, we have:

Lemma 1. A torus has no zero-divisors.

In particular, the centre Z = Z(T ) of a torus T has no zero-divisors, and is therefore an

integral domain. Let Z be the field of fractions of Z. We define T = Z
⊗

Z T and call it the

central closure of T . Then T embeds into T via x 7→ 1 ⊗ x. We identify T as a subalgebra

of T .

Definition 2. A torus is called an associative torus if it is an associative algebra, an alter-

native torus if it is an alternative algebra, and a Jordan torus if it is a Jordan algebra.

Example 1. (1) Let E = F 〈T±1
1 , . . . , T±1

n 〉 be the associative algebra of Laurent polynomi-

als in non-commuting variables T1, . . . , Tn over F , let q = (qij) be an n×n matrix such that
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qii = 1 and qji = q−1
ij , and let Iq be the ideal of E generated by {TjTi−qijTiTj : 1 ≤ i, j ≤ n}.

Then the quantum torus associated to q is defined as Fq = E/Iq. One can show that Fq is a

torus and that every associative torus is isomorphic to some Fq. In particular, an associative

torus which is commutative is isomorphic to F1 where

1 = 1n =




1 · · · 1
...

. . .
...

1 · · · 1


 (all qij = 1).

This is nothing but the algebra of Laurent polynomials in n-variable, F [T±1
1 , . . . , T±1

n ]. One

can also check that F+
q is a Jordan torus if and only if

(∗) ∏

i,j

q
αiβj

ij 6= −1 for all (α1, . . . , αn), (β1, . . . , βn) ∈ Zn.

(2) Let

j = jn =




1 −1 1 · · · 1

−1 1 1
...

1 1 1
...

...
. . . 1

1 · · · · · · 1 1




(q12 = −1, q21 = −1 and qij = 1 for the other i, j).

Then one can show that the quantum torus Fj is a quaternion algebra over its centre Z =

Z(Fj) = F [T±2
1 , T±2

2 , T±1
3 , . . . , T±1

n ], which we call the quaternion torus. The Cayley-Dickson

doubling process yields an octonion algebra OT = (Fj , T3) over Z, taking T3 ∈ Z as the

structure constant. One can show that the F -algebra OT is an alternative torus, which we

call the octonion torus (Table 1). This was called the alternative torus in [BGKN].

(3) Let

ω = ωn =




1 ω 1 · · · 1

ω2 1 1
...

1 1 1
...

...
. . . 1

1 · · · · · · 1 1




(q12 = ω, q21 = ω2 and qij = 1 for the other i, j),

where ω ∈ F is a primitive 3rd root of unity. One can show that the central closure Fω of

the quantum torus Fω is a central (associative) division algebra of degree 3 over the field

Z = F (T 3
1 , T 3

2 , T3, . . . , Tn). Thus we can construct an Albert algebra (Fω, T3) over Z by Tits’

1st construction [Ja], taking T3 ∈ Z ⊂ Z as the structure constant. Let AT be the Jordan

F -subalgebra of (Fω, T3) = Fω
⊕

Fω
⊕

Fω generated by T±1
1 , T±1

2 , (0, 1, 0)±1, T±1
4 , . . . , T±1

n

(Note (0, 1, 0)3 = T3). Then one can check that AT = Fω
⊕

Fω
⊕

Fω is a Jordan torus (over
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F ) which we call the Albert torus (Table 2). This example appears in [AABGP] where it is

called the Jordan torus. It was also found independently by the author.

Theorem 1. An alternative torus is isomorphic to either a quantum torus or the octonion

torus.

Remark 1. This result was proven for certain base fields (e.g. F is algebraically closed.)

in [BGKN]. It is in fact true for any field F of characteristic 6= 2.

For the classification of Jordan tori we first prove:

Lemma 2. A Jordan torus is strongly prime.

Because of Lemma 2, we can apply Zelmanov’s structure theorem of prime Jordan algebras

[M-Z]. Hence, a Jordan torus is of Clifford type, hermitian type or exceptional type.

Theorem 2. Let J be a Jordan torus over F , and assume that a ∈ F implies
√

a ∈ F and

that F contains a primitive 3rd root of unity. Then

(i) J cannot be of Clifford type,

(ii) J is of hermitian type if and only if J ∼= F+
q with (∗) (Example 1 (1)),

(iii) J is of exceptional type if and only if J ∼= AT.

Remark 2. The first assumption for F is used for the proof of (ii), while the second is used

for the proof of (iii).

Corollary 1. Let J be as above. Then J is special if and only if J ∼= F+
q with (∗), and J is

exceptional if and only if J ∼= AT.

We define the degree of a torus T as the degree of the generic minimal polynomial of the

central closure T over Z [Ja]. Then we can show:

Lemma 3. (i) A quantum torus of degree 2 is isomorphic to the quaternion torus Fj

(ii) A quantum torus of degree 3 is isomorphic to Fω.

Remark 3. (1) For (ii), we assume that ω ∈ F . Otherwise, there does not exist such a

torus.

(2) Fq
∼= Fq′ does not imply q = q′ after renumbering the rows and columns of q′, if

necessary. For example, one can check that Fq
∼= Fq′ for

q = j3, q
′ =




1 −1 −1
−1 1 −1
−1 −1 1


 or q = ω3, q

′ =




1 ω ω
ω2 1 ω
ω2 ω2 1


 .
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Finally, we can prove:

Corollary 2. Let A be an alternative torus and J a Jordan torus with the same assumption

for F as in Theorem 1. Then:

(i) A is of degree 2 if and only if A is isomorphic to either the quaternion torus or the

octonion torus.

(ii) J is of degree 3 if and only if J is isomorphic to either F+
ω or the Albert torus.

Remark 4. The central closures F j , F+
ω , OT = (F j , T3), and AT = (Fω, T3) are all division

algebras.

Appendix

Table 1. Multiplication table for the octonion torus:

OT = (Fj , T3) = Fj ⊕ Fj =
⊕

α∈Zn

Ftα

where, for α = (α1, . . . , αn),

tα =





(TαTm
3 , 0) if α3 = 2m

(0, T αTm
3 ) if α3 = 2m + 1 (m ∈ Z)

and Tα = Tα1
1 Tα2

2 Tα4
4 · · ·Tαn

n . For β = (β1, . . . , βn) ∈ Zn, the multiplication in OT is given

by

(I) α3 ≡ β3 ≡ 0 (mod 2) (all ≡ are mod 2 below) :

tαtβ = (−1)α2β1tα+β

(II) α3 ≡ 0, β3 ≡ 1 :

tαtβ =





tα+β if α1 ≡ α2 ≡ 0

(−1)α2β1+1tα+β otherwise

(III) α3 ≡ 1, β3 ≡ 0 :

tαtβ = (−1)α1β2tα+β

(IV) α3 ≡ 1, β3 ≡ 1 :

tαtβ =





tα+β if α1 ≡ α2 ≡ 0

(−1)α1β2+1tα+β otherwise

The structure constants are {±1}.



JORDAN TORI 5

Table 2. Multiplication table for the Albert torus:

AT = Fω ⊕ Fω ⊕ Fω = 〈T±1
1 , T±1

2 , (0, 1, 0)±1, T±1
4 , . . . , T±1

n 〉 =
⊕

α∈Zn

Ftα

where, for α = (α1, . . . , αn),

tα =





(TαTm
3 , 0, 0) if α3 = 3m

(0, T αTm
3 , 0) if α3 = 3m + 1

(0, 0, T αTm
3 ) if α3 = 3m− 1 (m ∈ Z)

and Tα = Tα1
1 Tα2

2 Tα4
4 · · ·Tαn

n . For β = (β1, . . . , βn) ∈ Zn, the multiplication in AT is given

by

(I) α3 ≡ β3 ≡ 0 (mod 3) (all ≡ are mod 3 below) :

tαtβ =
1

2
(ωα1β2 + ωα2β1)tα+β

(II) α3 ≡ 0, β3 ≡ 1 :

tαtβ =





tα+β if α1 ≡ α2 ≡ 0

−1
2
ωα2β1tα+β otherwise

(III) α3 ≡ 0, β3 ≡ −1 :

tαtβ =





tα+β if α1 ≡ α2 ≡ 0

−1
2
ωα1β2tα+β otherwise

(IV) α3 ≡ 1, β3 ≡ −1 :

tαtβ =





ωα2β1tα+β if α1 + β1 ≡ α2 + β2 ≡ 0

−1
2
ωα2β1tα+β otherwise

(V) α3 ≡ β3 ≡ 1 or α3 ≡ β3 ≡ −1 :

tαtβ =





tα+β if α1 ≡ α2 ≡ β1 ≡ β2 ≡ 0

− 1
2
tα+β if [α1 ≡ α2 ≡ 0 and (β1 6≡ 0 or β2 6≡ 0)]

or [(α1 6≡ 0 or α2 6≡ 0) and β1 ≡ β2 ≡ 0]

−1
4
(ωα1β2 + ωα2β1)tα+β if (α1 6≡ 0 or α2 6≡ 0) and (β1 6≡ 0 or β2 6≡ 0)

and α1 + β1 ≡ α2 + β2 ≡ 0
1
2
(ωα1β2 + ωα2β1)tα+β otherwise

Since ω2 + ω + 1 = 0, the structure constants are

{1, ω, ω2,−1

2
,−ω

2
,−ω2

2
,
1

4
,
ω

4
,
ω2

4
}.
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