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LOCALLY LOOP ALGEBRAS AND LOCALLY AFFINE LIE ALGEBRAS

JUN MORITA AND YOIJI YOSHII

ABSTRACT. In this study, we investigate a new class of Lie algebras, i.e., tame locally
extended affine Lie algebras of nullity 1, which are an infinite-rank analog of affine Lie
algebras. This type of algebra is called a locally affine Lie algebra. A certain ideal of a
locally affine Lie algebra, called a core, is a universal extension of a local version of a
loop algebra, which is called a locally loop algebra. We classify locally loop algebras and
locally affine Lie algebras.

Throughout this study, F is a field of characteristic 0. All of the algebras are assumed
to be unital, except the Lie algebras. The tensor products are over F.

1. INTRODUCTION

Historically, root systems have played very important roles in Lie theory and many other
areas. To obtain a root system, we usually need a certain ad-diagonalizable subalgebra ¢
of a Lie algebra .Z over F. Then, we have a decomposition:

z= P %.
e

where 7" is the dual space of /¢’ and £ = {x € Z | [h,x] = §(h)x forall h € 7} An
element § € 7 is called a root if £ # 0, and the set of roots is defined by

R={EeH"| L +0}.

The subspace -Z is called the root space of & and the direct sum above is called the root
space decomposition of . associated with 7. In many cases, a root has its own length,
which may come from a symmetric invariant bilinear form % on .. Therefore, it is natural
to consider a triplet (£, .57, %) in general.

Such a triplet (., 7, %) is called a locally extended affine Lie algebra if conditions
(A1) — (A4) are satisfied, as follows:

(Al) S is ad-diagonalizable and self-centralizing, i.e.,

Z = @ f‘g and %Zfo,
Ee*

(A2) & is nondegenerate,

(A3) adx € Endr .2 is locally nilpotent for all & € R and all x € Z, where R* =
{& €R| Altg,1e) # 0} and t¢ is an element of 7 such that & (h) = B(tg, h) for
allhe 7.

(A4) R* is irreducible, i.e., there is no nontrivial partition, R* = Ry UR,, of R* such
that %(tél’téz) =0forall £, € Ry, & €Ry.
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A locally extended affine Lie algebra is abbreviated as a LEALA. We note that the class
of LEALASs contains:

(1) all finite dimensional split simple Lie algebras,

(2) all affine Lie algebras,

(3) all locally finite split simple Lie algebras,

(4) all extended affine Lie algebras, and

(5) all Heisenberg Lie algebras (as null systems).
We can refer to them all as LEALAs and study them uniformly. The class of LEALAs is
assumed to be the best (or the widest) class of (£, 5, %) in the following sense.

If we fix § € R* and select a € F* such that a%(tg, tz ) € Qx0, as well as defining (-,-)
as a symmetric bilinear form on V = Y¢cp Q5 C h* by

(L6 Eonn) a2 (£ s Eowa

EeR ner EeR neRr

for pe,gn € Q, then we find that the properties of the form (-, -) are actually Q-valued and
that

(-,-) is positive semi-definite, while (&,v) =0 forall &€ ¢ R® and all v € V/,

where R® = {£ € R | (£,€) = 0}. This property is usually called the Kac Conjecture,
which was proved for EALAs (defined below) in [AABGP] and for LEALAs in [MY].

Note that R* = {& € R| (£,&) # 0}. An element of R* is called an anisotropic root,
and an element of R? is called an isotropic root. We can also refer to R* as the root
system. Note that R* is a finite root system and R” = {0} when .Z is a finite-dimensional
split simple Lie algebra (cf. [Bo]), while R* is an affine root system and R® = Z& for some
&y € 7" when & is an affine Lie algebra (cf. [Ma]). A LEALA is called an extended
affine Lie algebra (EALA), when dim 57 < oo,

The nullity of a LEALA is defined as the rank of the additive group generated by R°.
In particular, we only use the term ‘nullity’ when the additive group is free (see Remark
4.6). The core £, of a LEALA ¢ is defined as the subalgebra of .’ generated by % for
all £ € R*. In fact, %, is an ideal of %, which is obtained by the Kac Conjecture. If the
centralizer C » (%) of £ in £ is contained in .Z, this LEALA £ is referred to as tame.
The core %, modulo of its center Z(.%,), i.e., the quotient Lie algebra %, /Z(.%£,), is called
the centerless core of .Z.

Previously, we classified LEALAs of nullity O in [MY]. The second simplest class
comprises LEALASs of nullity 1. The main aim of the present study is to classify the class
of tame LEALASs of nullity 1, which we call a locally affine Lie algebra (LALA).

The centerless core
L:=2.)2(%)
of a LALA % is a local version of a loop algebra, which we call a locally loop algebra. In
fact, we show that a locally loop algebra is a directed union of loop algebras. We also show
that the core .Z,. of a LALA % is a universal covering of a locally loop algebra L. (These
classifications were also shown by Neeb [N2, Cor. 3.13] in a different manner.) Thus, we
may say that a LALA is also a local analog of an affine Lie algebra. However, a LALA
-Z has a more complex structure in a complement of the core .Z., such as .Z = .. @& D.
Note that for an affine Lie algebra, the complement D is simply a 1-dimensional space
spanned by the degree derivation. However, for a LALA, the corresponding complement
D is rather large in general. Due to tameness, D can be embedded into Dery .Z,. Then, d €
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Derp %, induces a derivation of L = %, /Z(.%.) since d(Z(£.)) C Z(£.), and we see that
d(x) € Z(%£,) for x € £, implies that d = 0 in Derp %, since %, = [£;,.%,]. Therefore,
we can find D C Derp %, C Derp L, but also D C Oderr %, C Oderrg L, where Oderg (-) =
Derp(+)/ad(-), which comprises the outer derivations. There is a unique maximal choice
of D in Oderr L, such as D" in this case, and there are many minimal choices of D in
Oderg L, such as D(p) with a specific diagonal matrix p. Thus, a homogeneous space D
such that D(p) C D C D™ leads to our classification. Thus, the classification of LALAs
is obtained by saying that any homogeneous subalgebra .¥ of £ := £, @ D™ that
satisfies
ZL(p)=%dD(p)c L CcL™

is a LALA, and that any LALA can be obtained in this manner. We roughly explain the
LALAs of type Agl) and ng) to obtain a better understanding.

Let J be an index set. We suppose that J is any index set, i.e., J can be finite or
infinite. Let M5 (F) = {(aij)i je3 | aij € F } be the vector space of matrices of size J, and
let Ty = T5(F) = {(ai;) € M5(F) | a;j =0 fori# j} be the subspace of My(F), which
comprises all diagonal matrices.

[A(jl)] First, we explain the untwisted type Ag). Let sl5(F) be the subspace of M5(F)
that comprises trace 0 matrices with only finitely many nonzero entries. Let F[t*!] be the
algebra of Laurent polynomials, and let sl5 (F[¢t*!]) be the Lie algebra sly(F) ® F[t*!]. For
example, if J = N (the natural numbers), then we see that

© sl,(F[r*]) | O
siy(F[rt]) = U sL, (F[%]) :U( "(O[ ) ) ) .
n=2 n
We refer to sly(F[t*!]) as a locally loop algebra of type A(jl), which is simply an infinite-

rank analog of a loop algebra sly, | (F[t*!]) of type Agl). We use the following conventions.

sly has type Ay if J is an infinite index set,
sly = slyy; has type A, if J is a finite index set that comprises / + 1 elements.

As in the case of sly, { (F[t*!]), a universal covering sl (F[t*!]) @ Fc of sly (F[t*!]) exists,
where F'c is the 1-dimensional center. Then we can construct the Lie algebra

2" = sly(F"]) @ Fe@ Fd©, (M

d
where 40 = ZE is the degree derivation. This £ is the simplest example of a LALA,

which is called a minimal standard LALA of type A(jl). In contrast to the affine Lie

algebra case, there are more examples of type A(jl), which are obtained by adding diagonal

derivations of sly(F[t*!]), and we explain these as follows. First, note that

sly (F) + T3
is a Lie algebra with center F1, where 1 = 13 = (§;j); jey is in T5. Let
oy = (slz(F)+T5) /Ft )

be the quotient Lie algebra. We identify the subalgebra
sly(F) = (Slj(F) +Fl)/Fl
of o7y with sly(F). Consider the Lie algebra <7 @ F[t=!]. We construct the Lie algebra

oty = ats QF I | @ FewFd 3)
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as described in (1), which contains .£".

Theorem 1.1. .£"* := o/ is a maximal LALA of type Ag}), i.e., any LALA of type A(jl)

is a subalgebra of,;zfj. In addition, any LALA of type Agl) contains a LALA

Z(p):=sly(FrF' )@ FcaF(p+d?) 4)
for some p € T5.

This .Z(p) is called a minimal LALA determined by p. In general, we note that £ (p)
may be isomorphic to £ = #(0), but not always isomorphic to £ (see Example 9.4).

Note that a LALA .Z of type Ag) has a decomposition .Z = .Z,. & D for a homogeneous
complement D that satisfies D(p) = F(p+d")) ¢ D C D" and .%, ® D" = of5.

[C(jz) ] Next, we explain the twisted type Cg?). Let s = <(l) _Ol> be the matrix of

size 27, where 1 = 153, as described above. Define an automorphism ¢ of period 2 on

slay(F) + Ta3 by

o(x) =sxls

for x € slyy(F) + Thy, where xT is the transpose of x. Let sp,~(F) be the fixed subalgebra
of sl,5(F) by o, which is of type C5. Let s be the (—1)-eigenspace of ¢ such that

sy (F) = spyy(F) @s.

Moreover, let T be the 1-eigenspace and T~ is the (—1)-eigenspace of T»5 relative to ©.
Note that 7o =TT & T, and thus

shy(F)+ Ty = (spyy(F)+T)® (s +T7).
In addition, note that F'1,5 is o-invariant and F1,5 C T~. Let
oty = (shy(F)+Thy) /Flag,

as described in (2). We have the induced automorphism on .@%~, which is also denoted by
o for simplicity. Thus, we obtain the fixed algebra

Ay = (spyy (F)+T7),
where we again omit the bars. Let
iy = otyy @F [ @ Fed FdY,
as in (3). We extend o to &7;3 as
6(x21) == (—1)ko(x) @1,

and identically on Fc @ Fd%). Then, we obtain the fixed algebra

D3 = ((sppyy(F)+THF[F)) @ (s +T7) @tF[i*)) @ FewFd®.  (5)
Note that ;zf;% contains the subalgebra

L™ = (5pyy (F) @ F[t*?)) @ (s @t F [IT?)) @ Fe@w Fd©,

which is called a minimal standard twisted LALA of type C(jz). As in the case of type
A(jl), we have
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Theorem 1.2, " .= ,saf;‘g is a maximal twisted LALA of type ng), i.e., any LALA of
type C(jz) is a subalgebra of JZZ;% Moreover, any LALA of type C(jz) contains a minimal

twisted LALA
Z(p) = (spya(F)F ) @ (s@tF[?]) @ Fea F(p+d")
for some p € T™.

We must emphasize that the usual twisting process works for the locally loop algebra
shy(F) ® F[r*!] but also for the bigger algebra (slyy(F) + Tr3) @ F[t*!]. Note that a

LALA .Z of type Cg.z) has a decomposition . = .Z, & D for a homogeneous complement
D that satisfies D(p) = F(p+d%) c D € D" and .%, & D" = gf;‘;

Next, we explain how the classification of LALAs is conducted. First, we classify the
cores of the LALAs. We show that the core of a LALA is a locally Lie 1-torus and that the
core is a universal covering of a locally loop algebra. We also show that there is a one to
one correspondence between reduced root systems extended by Z (which are classified in
[Y3, Cor.15], as the class of reduced locally affine root systems) and the cores of LALAsS.

The second step of the classification process involves determining a complement D of
the core .Z, of a LALA . = %, & D. As explained above, we can obtain D C Derp %, C
Derp L or D C Oderp £, C Oderr L, where L = %, /Z(.%,;) is the centerless core (which is
a locally loop algebra).

Now, we need some information about Derr L. Derivations of this type of algebra were
studied in [BM], [B], and [NY]. However, the derivations of a locally loop algebra are
new. We can use some results from [A1] for the untwisted case since L is a tensor product
algebra (see Remark 7.4). However, we need to determine the twisted case. Thus, we
propose a new method. Clearly, we need to use the classification of Derg g for a locally
finite split simple Lie algebra g, as described by Neeb in [N1]. Fortunately, we do not
need all of the information about Derr L to classify D. In fact, we only need to know the
diagonal derivations of degree m. To explain this, we note that L has double grading, i.e.,

L= P PL.,
acAU{0} keZ
where A is a locally finite irreducible root system. The diagonal derivations of degree m
denote the space
(Derg L)f :={d € Derp L| d(LX) c LX™ forall & € Aand k € Z}.

It is crucial to determine the case where m = 0, i.e., (Derp L)g. Next, (Derp L) can be
determined easily for the untwisted case. However, for the twisted case, (Derg L)g” is still
difficult when m is odd. Finally, using some new techniques (see Lemma 8.8 and Lemma
8.9), the classification of (Dery L)}’ is completed in Theorem 8.10.

If we take D as a homogeneous complement of the graded algebra .Z,, then D has

Z-grading, e.g.,
D= D",

meZ
and each D™ can be identified with a subspace of the known space (Dery L);'. Finally, we
classify the Lie brackets on D and the concrete brackets are described in Example 6.3.
The remainder of this paper is organized as follows. In Section 2, we define a locally Lie
G-torus and we consider a locally Lie 1-torus as a special case. In Section 3, we introduce a
locally loop algebra, which is a centerless locally Lie 1-torus. We classify locally Lie 1-tori
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in general. We prove that a centerless locally Lie 1-torus is uniquely determined by a root
system extended by Z, and that a locally Lie 1-torus is a locally loop algebra or a universal
covering of a locally loop algebra. In Section 4, we recall the definition of a LEALA and
we prove some general properties of a LEALA. In Section 5, we summarize and prove
several properties related to LEALAs of nullity 0. In Section 6, we define a LALA. We
show that the core of a LALA is a universal covering of a locally loop algebra and we then
construct many examples of LALAs. In Sections 7 and 8, we classify untwisted LALAs
and twisted LALAs. Finally, we provide our main theorem.

Theorem 1.3. The examples in Example 6.3 comprise all LALAs.

In Section 9, we discuss standard LALAs.

The authors thank Karl-Hermann Neeb and Erhard Neher for helpful discussions and
suggestions regarding this study.

2. LOCALLY LIE G-TORI

To classify %, and L = %, /Z(%,), we need to study localy Lie G-tori, which are very
useful. Let A be a locally finite irreducible root system (see [LN1]), and we denote the
Cartan integer

2(u,v)

(v,v)
by (u,v) for u,v € A, while we also let (0,v) := 0 for all v € A. Recall that A is called
reduced if 2a ¢ A for all o € A. We define the subset

1
A= {ac A S0 ¢ A}

of A, which is a reduced locally finite irreducible root system. Note that A = A™4 if A is
reduced. To simplify the description later, we partition the locally finite irreducible root
system A according to length. The roots of A of minimal length are called short. The roots
of A, which are two times a short root of A, are called extra long. Finally, the roots of A,
which are neither short nor extra long, are called long. We denote the subsets of the short,
long, and extra long roots of A by Agy, A, and Aex, respectively. Thus,

A= Agy U Ajg U Aex.
Clearly, the last two terms in this union may be empty. Indeed,
Ag=0 <= Aisasimply laced type or type BCy,
and
Ax =0 <= A=A"
Let G = (G,+,0) be an arbitrary abelian group. In general, for a subset S of G, the
subgroup generated by S is denoted by (S).
Definition 2.1. A Lie algebra .Z is called a locally Lie G-torus of type A if:
(LT1) £ has a decomposition into subspaces

7= P %

neAU{0}, geG

such that [£f, £} .i”,fﬂ', for u,v,u+v e€AU{0} and g,h € G;
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(LT2) Forevery g € G, Z§ =Y en nec [.Zf,f‘f;h];
(LT3) For each nonzero x € .Z,f (L EAgEG), anelement y € £ ﬁ exists such that
t:=[x,y] € £ satisfies [t,z] = (v,u)z forall z € L (v € AU{0},h € G);
(LT4) dim.Zj <1 for u € Aand g € G, and dim £} = 1 if u € A™;
(LT5) (supp.Z) = G, where supp.Z = {g € G | £ # 0 for some p € AU{0}}.
If A is finite, we omit the term ‘locally’ and simply call it a Lie G-torus. Furthermore,

if G 27", then .Z is called a locally Lie n-torus, or simply a locally Lie torus. We refer
to the rank of A as the rank of .Z.

Remark 2.2. (i) Condition (LT5) is simply for convenience but if it fails to hold, we may
replace G by the subgroup generated by supp.Z.
(i) It follows from (LT1) and (LT3) that .Z admits a grading by the root lattice (A).
Let
b= £ (©6)
geG
for A € (A), where £ = 0if A ¢ AU{0}. Then, & = ®)c(a) £3 and [L), L] C Ly
(iii) & is also graded by the group G, i.e., if

2= P Z, (7)
neAU{0}
then & = Bge £ and L8, LM C £5h. In addition, supp.¥ = {g € G | £% # 0}.
(iv) From (LT3), for u € A" we can see that the elements ey € .iﬁ? , fu € 0 > and
pY = uY = [ey, fu] exist such that [u",z] = (v,u)z forall z€ £, v e Aand h € G.
Thus, the elements ey, f,,, 1" determine a canonical basis for a copy of the Lie algebra
slo(F). (Note that 1" is a unique element in [,Z,? ,fﬁ’u} that satisfies the property.) The
subalgebra g of .Z generated by the subspaces fg for u € A™ is a locally finite split
simple Lie algebra with the split Cartan subalgebra

b= Z [fl?voiﬂ?u]v

ue Ared

and p" are the coroots in h. (We can show this in the same manner as the proof of [MY,
Prop.8.3], or see [St, Sec.III]). Note that if A is finite, then g is a finite-dimensional split
simple Lie algebra. Furthermore, A may be replaced by A in the definition of g and b
since it can be shown in the same manner described by [Y1, Thm.5.1] that ,,2”20‘, =0 for all
v € A, We say that the pair (g,h) = (g,h) ¢ is the grading pair of ..

(v) A locally Lie G-torus is perfect, and thus it has a universal covering.

(vi) Let .Z be a locally Lie G-torus and Z is its center. Then, we can see that Z C .%.
In addition, .#/Z is a locally Lie G-torus with a trivial center. In general, a Lie algebra
with a trivial center is called centerless.

We define the root systems of locally Lie G-tori. Let £ = @y caufo) Dgec Zibea
locally Lie G-torus. For each u € A, let

Su:={ge G| <L +#0},
and we refer to
A= {Su}tuea

as the root system of . (which is called an extension datum in [LN2]). This system fits
into the system introduced in [Y1]. Let us state the precise definition. A family of subsets
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Sy, of G indexed by A, such as {S } 4ea, is called a root system extended by G if

<UueA Su> =G, ®)
Sy —(V,u)Sy CSy_(yuyu forall u,v €A, and 9)
0csS, forallueA™ (10)

Moreover, {Sy } eca is called reduced if
SouN25, =0 forall2u,u €A, (1n

In the same manner described in [Y1, Thm 5.1], we can show that the root system Aof &
is a reduced root system extended by G, i.e., A satisfies (8), (9), (10), and (11). Moreover,

Sy =Sy if g and v are the same length, and

Sy C Sy forall v € Aif p is a short root. (12)
Finally, if we let
So:={geG|ZL #0}, (13)
then we obtain
So = Sy + S, (14)

for a short root u.

Lemma 2.3. A locally Lie G-torus £ of type A is a directed union of Lie G-tori. In
particular, & =\Jn Ly, where A is a finite irreducible full subsystem of A that contains
a short root and £ is the subalgebra of £ generated by %, for all a € A.

Furthermore, if G is torsion-free, then a locally Lie G-torus £ of type A is a directed
union of Lie n-tori, where n runs over a certain subset of N. In particular, £ =y & .XAG//,
where G' is a finitely generated subgroup of G and XA(,;/ is the subalgebra of £ generated
by 5 foralla € N and g € G'.

Proof. Since S =S, generates G for a short root 1 by (12), then it is easy to check that £y
is a Lie G-torus. Hence, the statement is true since A is a directed union of finite irreducible
full subsystems that contain a short root (see [LN2, 3.15 (b) and the proof]). The second
statement follows from the fact that G is a directed union of finitely generated subgroups,
and the fact that a finitely generated torsion-free abelian group is free. (|

Remark 2.4. Let A and G be as given in Lemma 2.3. For a locally finite irreducible full
subsystem A" of A, and for a subgroup G’ of G, we put 4 = &, A(,;/, which can be defined
as given in Lemma 2.3. Then,

_ g
M= @ ///#,,
weANu{0}, g'eG’
where ) )
My =MLy (u e NU{0}, g €G).
In fact, we obtain
MY =25 (Wed, g ed),
and since ./ is generated by . for all 1 € A" and g € G, then for ¢’ € G', we have
g/ o W g,—h’ _ W g’—hl
'%0 - Z ["E’ﬂu’vozﬂ,“/ ]— Z [‘%H”‘%ﬁu’ }
wenN, WeG weN, WeG
Thus, we can check conditions (LT1) — (LT5) for .#, which implies that .# is a locally
Lie G'-torus.
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3. LOCALLY LOOP ALGEBRAS

For any index set J, in the introduction, we defined
M5 (F) = {(aij)i jes|aij € F} =~ Map(J x J,F),

as the set of all matrices of size J, which is naturally a vector space over F. Let gl (F)
be the subspace of M5(F) that comprises matrices with only a finite number of nonzero
entries. Then, gl (F) is an associative algebra and a Lie algebra with the usual commutator
bracket. Furthermore, we can define the trace of a matrix in gl; (F ), and the subalgebra of
gl (F) that comprises trace 0 matrices is denoted by sl (F), as follows.

sly (F) = {x € gly(F) | tr(x) = 0}
We note that M~ (F) is not an algebra if J is infinite, but
MBY(F) := {x € M5(F) | each row and column of x have only finitely many nonzero entries }

is an associative algebra with the identity matrix 1 = 15, and a Lie algebra with the com-
mutator bracket. In fact, this gives the Lie algebra of derivations of sly(F), as described
by Neeb [N1]. In particular, we have

[MEN(F),sl5(F)] Csly(F) and  Derg(sly(F)) ~ ad(Mi"(F)).

As aresult, we note that there are 14 types of locally loop algebras, i.e., we obtain:

1) p) ~1) K1) K@) ~((2) 2 (1) (1) (1) g1 &A1) g2) ~06)
Ay’ By, Cy7, Dy’, By7, Cy7, BCy7, Eg ', E; 7, By ', By 7, Gy, By, Gy
where we mainly assume that J is infinite since we already know the affine Lie algebras.

The locally finite split simple Lie algebra of type X5 is defined as a subalgebra of
sl (F), slag41(F) or slyy(F) as follows:

Type Ag: sly(F);

Type By: 02541(F) = {x € slyg 1 (F) | sx = —x"s};

Type Cy: spy5(F) = {x € slyy(F) | sx = —xTs};

Type D3: 025(F) = {x € sla5(F) | sx = —xT s},
where J is assumed to be infinite, x” is the transpose of x, and

0 1 O

s=[1 0 0] forBy, s=( 7' forcy, ors=(° ') forDs. (15
0 0 1 1 0 1 0

Note that s € M3 | (F) for By and s € M33(F) for C5 or Dy, and that s* = 155, for B,
s> = —1p5 for Cy and s> = 155 for D5. In addition, By, Cy, or D5 is the fixed algebra of

shy11(F) or sly3(F) by an automorphism o, which are defined as
o(x) = —sx’s for By or Dy, and o(x) = sx’s for C. (16)

In [NS], Neeb and Stumme showed that these algebras comprise all of the infinite-
dimensional locally finite split simple Lie algebras. In addition, they are considered to be
locally Lie O-tori (in the case where G = {0}). Moreover, since locally finite split simple
Lie algebras are centrally closed (see [NS]), we have the equality {infinite-dimensional
locally Lie 0-tori} ={infinite-dimensional locally finite split simple Lie algebras}. We
note that Lie O-tori are exact finite-dimensional split simple Lie algebras. In the present
study, we are interested in the class of locally Lie 1-tori.



LOCALLY LOOP ALGEBRAS AND LOCALLY AFFINE LIE ALGEBRAS 10

Let F[t*!] be the algebra of Laurent polynomials over F. We call one of the following
four Lie algebras an untwisted locally loop algebra:

1
(1) Type AY): sly(F) @ F[r];
@ Type BY: 03541 (F) @ 1]
(3) Type Cgl): spay (F) @ F[t*1];
(4) Type D(jl): 025(F) @ F[t*!].
(In addition, it is called an untwisted loop algebras if J is finite.) Each of the following
three Lie algebras is called a twisted locally loop algebra:
2
(5) Type BY: (025.11(F) @ Fr*] & (s @1F 1),
where s = F(27+1) is the natural 0y5, 1 (F)-module;
2
(6) Type C5: (spys (F) @ F[r*2]) & (s @ 1F [+,
where 5 = {x € sly3(F) | sx = xTs};
(7) Type BCY: (02341 (F) ® F1*2]) @ (s @ 1F 7)),
where s = {x € slyy,1(F) | sx = xT's}. (In addition, it is called a twisted loop algebra if J is
+ p alg

finite.) Note that sly5(F) = sp,5(F) & for C(jz) and slyy11(F) = 02341 (F) @ s for BC%Z).

The Lie bracket of each untwisted type is natural, i.e., [x @™y ®1"] = [x,y] @ ™",

The Lie bracket of type C(jz) or BC(jz) is also natural, and we have

[spa5(F),s] Cs and [s,8] C spy5(F) for Cg?)7
[025+1(F),s] Cs and [s,8] Coy541(F) for BC(jz),
2)

Note that C(jz) or BC<3 is the fixed subalgebra of slyy(F) ® F[t*!] or slyy,1(F) @ F[t*!]
by the automorphism &, which is defined as

6(xxt™) = (-1)"o(x) 1" (17)
(see (16)). This construction is called a twisting construction by an automorphism oc.

For B(jz), we have 0y541(F)s C s, and thus we define the bracket of 0,5,1(F) and s
by the natural action, i.e., [x,v] =xv = —[v,x] for x € 0511 (F) and v € 5. We define a
bracket on s such that [s,s] C 0541 (F) as follows. First, let (-,-) be the bilinear form on s
determined by s. Then, there is a natural identification

023+1(F) =Dg = SpanF{Dv,\/ ‘ v, Ve 5}7
where D, € End(s) is defined by D, ,(v") = (v/,v")v — (v,v")V/ for v/ € 5. Thus, we
define [v,v'] := D,,s. Note that [/, v] = —[v,V/]. It is easy to check that the bracket
[x®t2m +V®12ml+l ,xl ®t2n 4+ ®t2n’+1}
:[x,x/] ®t2(m+n) +D,, ®t2(m/+n/+]) +x/ ®t2(m+n’)+1 _xlv®t2(ml+n)+l
defines a Lie bracket for m,m’,n,n’ € Z.
There is a twisting construction for Bg2) (see [N2]), which we discuss in Section 7, but

we also consider that the simple description of B%z) is important for developing the theory

of locally Lie tori.

Remark 3.1. We often omit the term ‘untwisted’ or ‘twisted’ and we simply refer to a
locally loop algebra. In addition, a locally loop algebra can be simply called a loop algebra
in more general theory. For example, A ® F[t*!] for any algebra A is called a loop algebra
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of A. However, we use the term ‘locally’ in this study to distinguish the familiar loop
algebras in Kac-Moody theory.

We can easily check that
all locally loop algebras are centerless locally Lie 1-tori.

For example, let A be the root system of type BC5, and we put g = 025.1(F) and s C
shy.1(F), as defined above. Let fj be the Cartan subalgebra of g that comprises diagonal
matrices. Then, h decomposes g into the root spaces, such as g =h S P peared Gy, and s

into the weight spaces, such as s = @ cauqo} Su, Where A™ is of type By. Therefore, the
twisted locally loop algebra . := (g @ F[t*2]) @ (s @t F[t™2]) of type BC(jz) is decomposed

into

) ((b oF" e @ (gueFrme @ (s ®Ft2’"“>)-

meZ. peAred pneAu{o}
This gives a natural double grading by the groups (A) and Z, and we can check the axioms
of a locally Lie torus. In addition, the center is contained in %) = b ® F[t*?], and thus .#
is a centerless locally Lie 1-torus. The grading subalgebra is equal to g = 0541 (F). We
refer to the g-module s as the grading module.

The following lemma was proved for the base field C in [ABGP], but it also works for
our base field F. We use the notation

A= {Sutuea
(defined in Section 2) for the case where (UpeA S”> = Z (the root system A extended by
7).

Lemma 3.2. Let A be a finite irreducible root system. Let £ = @y cai(0}, mez £y and

M= Dueau{o}, mez ///[[‘ be centerless Lie I-tori, which have the same root system A
extended by 7.. Then, an isomorphism ¢ : £ — M exists such that

o(uy)=n", and oL = A forallp€AandmeZ. (18)

Remark 3.3. If .Z is a loop algebra, then A determines %, i.e., there is a one to one
correspondence between loop algebras and root systems extended by Z (see [Y3]). In
particular, A determines whether the loop algebra is untwisted or twisted.

Proof. Let0# ey, € ﬁﬁu and u" be an sly-triple for p € IT, where IT is a root base of A
and let 0 #£ x4y € ffvl and vV be an slp-triple, where v € A is the highest long (or short)
root relative to IT (depending on the type A). Then, the set

{eiua .le7 X+tv, v\/ | ou“ € H}
satisfies the Serre relations. Hence, using the Gabber-Kac Theorem (e.g., see [MP, Thm

4, p.381]), a homomorphism y exists from the derived affine Lie algebra A (which is a
1-dimensional central extension of a loop algebra), which is determined by A and v (or A)

into .Z. Let
A= P A}
HeAU{0}, meZ
be the loop realization of A (which could be twisted) viewed as a Lie 1-torus such that
l//(A(j)E”) = Feyy and W(AT!) = Fxy,. Then, y is graded relative to the Z-grading but
also to the double grading (A) x Z. Note that a centerless Lie torus is Z-graded simple
(see [Y1, Lem.4.4]). Thus, the nontrivial Z-graded ideal of A is exactly the 1-dimensional
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center Fc, and the image of y contains Uyea-Zy = Upea Omez f[[‘ Therefore, y is onto
since .Z is generated by Uyea%),. Thus, the induced graded isomorphism from the loop
algebra A/Fc onto % exists. Similarly, we obtain a graded isomorphism from the loop
algebra A/Fc onto ./ . Based on these isomorphisms, we obtain the graded isomorphism
¢ described above. ]

Thus, a centerless Lie 1-torus is isomorphic to a loop algebra, and a Lie 1-torus with
nontrivial center is isomorphic to a derived affine Lie algebra, which has a 1-dimensional
center.

For a Lie 1-torus £ = & cauf0}, mez -Zy'» We have

dim.i”[[‘ #0 (so dim‘iﬁ’f =1)forall u € Ay, andm € Z (so Sy = 7Z), and (19)

the center of . is equal to [.Zy)", £, "] for any 0 # m € Z. (20)
This can be seen easily from the loop realization. Furthermore, we have

1 ifZisl
dim Y [gp, 2= T n P Q1)
me?, 2 if & is derived affine
since
Yl et HZ o
me?, FuY +Fc if £ is derived affine

for 4 € A and a nontrivial central element c.

Lemma 3.4. The center of a locally Lie 1-torus is at most 1-dimensional. In particular,
for alocally Lie I-torus £ = @y cauoy, mez L4

£ has a 1-dimensional center <= £ is a directed union of derived affine Lie algebras,

and
£ is centerless <> £ is a directed union of loop algebras

in the following sense:
7= 2.
AN CA

where A is a finite irreducible full subsystem of A and L)y is the homogeneous subalgebra
of £ generated by 2, for u € N, and ZLy is a derived affine Lie algebra if the center of
Z is 1-dimensional and a loop algebra if £ is centerless.

In particular, the properties (19), (20), and (21) given above hold in a locally Lie 1-
torus.

Proof. Most of the statements follow from Lemma 2.3. In fact, Lie 1-tori are either derived
affine Lie algebras or loop algebras, and thus .# is a directed union of derived affine Lie
algebras or loop algebras. Considering the loop realization of a derived affine Lie algebra,
we find (19).

Suppose that C is a 2-dimensional subalgebra contained in the center. Then, a derived
affine Lie algebra or a loop algebra exists that contains C. However, this is impossible
because their centers have to be 1-dimensional or zero.

Now, we need to show that derived affine Lie algebras and loop algebras cannot appear
simultaneously. If this is case, e.g., £’ is a derived affine subalgebra and .#” is a loop
subalgebra, then a derived affine or a loop algebra exists that contains both .#’ and .#" as
graded subalgebras. Suppose that .2’ and .#" are contained in .£" for a loop algebra .Z"".
However, this is impossible because of property (20) above. Thus, suppose that .#’ and
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Z" are contained in " for a derived affine Lie algebra .. Then, this is also impossible
because of property (21) above. Thus, a locally Lie 1-torus is either a directed union of
derived affine Lie algebras, such as .%,, or a directed union of loop algebras, such as .%j,.
It is now clear that the center of ., is zero. To show the 1-dimensionality of the center of
Zia» et C' (#£0) be a finite dimensional central subspace of a derived affine subalgebra of
ZLia. Forany u € A and m € Z, a derived affine subalgebra M exists that contains .Zﬁ” and
C'. Considering the loop realization of M, we find that C’ is the 1-dimensional center of M
and, in particular, C’ is the 1-dimensional center of .%,,.

Finally, let .Z be a locally Lie 1-torus. Then, (21) is clear. To show (20), let Z :=
Lk, L] for 0 # k € Z. Forany z € Z, p € A, and m € 7Z, a derived affine subalgebra
or a loop subalgebra exists that contains z and .Z[l” and z is in the center of the subalgebra
(by (20) for a Lie 1-torus as given above). Hence [z, Z}'] = 0 for all u € A and m € Z.
Therefore, Z is contained in the center of .. Thus, Z=0ordimZ =1. If Z =0, then a
loop subalgebra exists, and thus .Z = .Z,,. Hence, Z = 0 is the center of .Z. If dimZ =1,
then Z is the center of .Z since the center of £ is at most 1-dimensional. (I

For any two elements x ® " and y ®¢", in each locally loop algebra .Z, we define the
new bracket on a 1-dimensional central extension

Li=LDFc

by
xt" yRt"] = [x,y| @™ + m(x,y) Omtn,0C, (22)

where (x,y) is the trace form tr(xy), or for type Bgz)’ the direct sum of the trace form and

the bilinear form on s is determined by the symmetric matrix s given above. Indeed, this
gives a central extension since .Z is a directed union of loop algebras and .Z is a derived
LALA, i.e., a 1-dimensional central extension of a loop algebra.

Lemma 3.5. A universal covering of a locally loop algebra is given by (22).

Proof. Suppose that £ is a universal covering of a locally loop algebra .. We know
that dimy Z(.£) > 1 since .2 is a covering. Therefore, if dimZ(.#) > 1, then a cover-
ing Z@Fc; ®Fcy of L exists. Let X1,Y1, -« Xy Yy UL, V1 - -, Un, vy € L be such that
Y7 [xi,yil = c1 and Y [ui,vi] = ca. Let £’ be a loop subalgebra of . that contains
x;,yi,uj,vjfor1 <i<mand 1 < j <n. Then, L' @ Fc| @ Fc, is perfect, and thus this is a
covering of .#’. However, a universal covering of a loop algebra has a 1-dimensional cen-
ter, which is a contradiction. Hence, dimZ (.;22 ) = 1. However, it is then clear that PP
since the unique morphism from 2 onto . has to be one to one. (]

Remark 3.6. By Lemma 3.4, a locally Lie 1-torus has at most a 1-dimensional center.
Thus, if we show that Lisa locally Lie 1-torus, then we also obtain a proof of Lemma
3.5. In fact, Neher showed that a universal covering of a locally Lie torus is a locally Lie
torus in general (see [Ne3] and [NeS]).

Now, we classify locally Lie 1-tori. The method we use is derived from [NS]. In par-
ticular, we show that there is only one locally Lie 1-torus for each reduced root system
extended by Z. The root systems extended by Z were classified in [Y3, Cor.15] as the class
of locally affine root systems (more general results are given in [LN2]). The following is a
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list of all the reduced root systems extended by Z of infinite rank:
AjXZ, BjXZ, CjXZ, DjXZ,
((B3)sh x Z) U ((B)ig X 2Z),  ((Cy)sh x Z) U ((Cq)ig X 2Z),

(((BCj)Sh U (BCj)lg) X Z) U ((BCj)ex X (ZZ—F 1)),

where we write Liyea (it X Sy) for {Sy }uea, and for a subset A" of A, if all S,,’s for p € A/
are the same set S, we write A’ x § instead of Ll ca (4 X Sy, ). Furthermore, we simply use
a type instead of writing A, e.g., Ay for A of type Ajy.

We can see that these seven systems are the exact root systems of the locally loop
algebras introduced above, and thus we label each system by

O gh o ph O @ @)
Ay, By, ), b, BY, ¢, BCY.

We also use the label for the root system as the type of a locally Lie 1-torus. We efer to
the first four types as untwisted and the last three types as twisted. Note that

all §;’s are Z for the untwisted type, and in general,

Sy = Z for a short root i. (23)

First, we provide the following lemma when A is finite. Suppose that IT C A is an
integral base, i.e., A C (IT), and IT is linearly independent in the vector space that defines
A, where (IT) is the additive subgroup generated by II, i.e., (IT) is the Z-span of IT. Note
that

I C A, (24)

Lemma 3.7. Let £ = ®peav(o)mez L' and M = Sycavfoymez ) be centerless Lie
I-tori of the same type A, where A is finite. Let T1 be an integral base of A that contains a
fixed short root v € A if A is of the untwisted type or a fixed short root v € A if A is of the
twisted type. Let 0 # x,, € fl? and 0 #yy, € //{3 for each u €11 (see (24)). Furthermore,
let0#£x€ LY and0#y € M) (see (23)).

Then, a unique isomorphism  from £ onto M exists such that y(x) =y, Yy(uy) =
wY, and y(xy) = yy forall p € IL

Proof. By (18), anisomorphism ¢ : # — ./ exists such that ¢(u?,) = u, and o(Z}") =
A" for all g € A and m € Z. Hence, we have y = a(x) and y, = ay ¢(xy) = for some
aand ay € F*. Let f: (Il)z x Z — F* be the group homomorphism of the abelian
groups defined by f(u,0) = ay and f(0,1) = a. Let Dy be the diagonal linear automor-
phism on .# defined by Dy(y) = f(u,m)y for y € .#)}". Then, Dy is an automorhism of
Lie algebras. Indeed, D¢([y,y]) = f(u +p',m+m')[y,y'] = f((u,m) + (u',m"))[y,y'] =
Sm) f(u'm)y, YT = [f (w,m)y, f(u',m')y'] = [Ds(y),Dy(y")] for y € A" and Y €
M "[f. Hence, y := D;l o ¢ is the required isomorphism.

For the uniqueness, we first note that this isomorphism is unique on 92”__‘,1 and 92”9” for
all u € I since [.Z),.2 7] = Fv" (since . is centerless) and [.Z),.#°,] = Fuu" . Thus, it
is sufficient to show that .# is generated by %, ! .Z:vl, and vi”io " for all u € I1. However,
by a standard argument (or see [St, Prop.9.9]), .#° (= the finite-dimensional split simple
Lie algebra g) is generated by jfgﬂ for all u € IT. Then, we can choose a root base of A

such that v is the negative highest long root if A is of the untwisted type or the negative



LOCALLY LOOP ALGEBRAS AND LOCALLY AFFINE LIE ALGEBRAS 15

highest short root if A is of the twisted type. Using the loop realization of .%, it is clear
that . is generated by .20 = g and £} O

Now, we can prove that there is a one to one correspondence between the class of
centerless locally Lie 1-tori and the class of reduced root systems extended by Z, and that
locally loop algebras exhaust all of the centerless locally Lie 1-tori. Note that this method
works for any cardinality of A.

Theorem 3.8. Let £ = @®cpvio) Bmez £} be a locally Lie 1-torus of type A If L is
centerless, then £ is graded isomorphic to the locally loop algebra of type A, and if £
has a nontrivial center, then £ is graded isomorphic to a universal covering of the locally
loop algebra of type A given by (22).

Proof. First, it should be noted that we already know this theorem for Lie 1-tori, i.e., the
case where A is finite. In addition, it is sufficient to show the case where .Z is centerless
(see Lemma 3.5), and thus we assume that £ is centerless. Let .# = & cau(0} Omez Ay’
be a locally loop algebra of type A. Furthermore, let A = {S, }yea.

Fix a long root v if A is of the untwisted type, or a short root v if A is of the twisted type,
and let 0 # x € %} and 0 # e, @1 € .4, (see (23)). Let IT be an integral base of A that
contains v. Let 0 # x, € Z)) and 0 # e, @ 1 € .#)) for each p € IT (see (24)). Then, we
claim that the map y : uY, — ", and x; — ey ® 1 for all u € IT, and x — ey @ extends
to an isomorphism from .# onto .# . Indeed, if we let I" C I1 be a finite irreducible subset
that contains v, then I is an integral base of the irreducible root system Ar := AN(T").

Let Ar = {S 1 }ueap be the root system extended by Z. Let .t be the subalgebra deter-
mined by Ar, i.e., the subalgebra of .2 generated by Z}" for all u € Ar and m € Z, which
is a centerless Lie 1-torus of type Ar (see Lemma 3.4). Similarly, let . be the subalgebra
of ./ determined by Ar. Then, by Lemma 3.7, a unique graded isomorphism yr from £t
onto ./t exists such that yr(xy) = e, ®@ 1 forall u € I'and x — ey ®@1.

Suppose that I'1, I, C IT are finite irreducible subsets that contain v such that %, C
Zr,. Then, the uniqueness of the isomorphisms yr, and yr, implies that they agree on
Zr,. Since .Z is the directed union of the subalgebras £t (I C Il is a finite irreducible
subset), we can define an isomorphism vy : & — . by y(x) = yr(x) for x € ., which
has the required properties. (I

Note that in (22), we defined the Lie bracket of a universal covering of a locally loop
algebra using a symmetric bilinear form (-,-) on a locally loop algebra. In particular, we
can write (-,-) =tr(-,-) ® €(+,-), where £(t",1") = J4n0. In fact, it is easy to check that
this form is invariant, graded (as a form of a Lie torus defined in [Y2]), and nondegenerate.
We simply refer to a form for a symmetric invariant graded bilinear form on a Lie G-torus.
We use the following lemma later.

Lemma 3.9. A nonzero form on a locally Lie 1-torus exists. In addition, this form is unique
up to a nonzero scalar. In particular, a form of a locally loop algebra is equal to c(-,-) for
some c € F, where (-,-) is used in (22).

Proof. Only the uniqueness part is not clear (since we already use a form in (22)). How-
ever, this form is unique up to a scalar for a Lie 1-torus (e.g., see [Y2]). Thus, the unique-
ness follows from a local argument since a locally Lie 1-torus is a directed union of Lie
1-tori. O
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4. LALAS
Let us recall LEALAs in [MY]. A subalgebra J# of a Lie algebra . is called ad-
diagonalizable if
Z=@® Z
Eea+

where 7" is the dual space of J# and
Le={xe Z|[hx]=&E(h)xforallh€ A}

This decomposition is called the root space decomposition (of .Z with respect to an ad-
diagonalizable subalgebra .7°). Note that an ad-diagonalizable subalgebra .7# is automat-
ically abelian. To confirm this, we need the well-known fact that every submodule of a
weight module is also a weight module. We can use a common trick to obtain the proof,
e.g., as given in [MP, Prop.2.1], but they assumed that 7 is abelian. To ensure that this
assumption is unnecessary, we prove it here. First we show that:

Claim 4.1. 5 = ©¢c o+ Hz, where Hg = Le N IH.

Proof. Suppose that " # ©¢c y+ Hz. Then, x € A exists such that x can be written as
X =Xx1+---+x, withn > 1, which satisfies x; € Z, \ A for all i. Take x € S among all
of these elements such that » is minimal, and choose & € 5 such that & (h) # &, (h). Then,
X :=adh(x)— & (h)x= (& (h) =& (h)xa+- -+ (i (h) — & (h))x, € S This contradicts
the minimality of n. Hence, we have 7 = ©¢¢ o+ H. ]

Now, suppose that i € #% and i’ € . Then, [h,h'] = &' (h)l' = —E(I')h. Hence, if
h and h' are linearly independent, then [, /'] = 0. Furthermore, we can see that [h,#'] =0
if they are linearly dependent. Thus, 7 is always abelian.

In particular, we have

H = Hy C Ly =Cy(H),

where C () is the centralizer of 57 in .Z.

An element of the set
R={E e | % #0)
is called a root. (We do not call this R a root system and we simply call it the set of roots.)

Let .Z be a Lie algebra, .77 is a subalgebra of ., and Z# is a symmetric invariant
bilinear form of .Z. A triple (&, 52, %) (or simply %) is called a LEALA if it satisfies
the following four axioms (we explain R* shortly):

(A1) S is ad-diagonalizable and self-centralizing, i.e.,
L = @ .,2”5 and 7 =%,
Ee+
(A2) & is nondegenerate;
(A3) adx € Endr . is locally nilpotent for all § € R* and all x € Z,
(A4) R* isirreducible.
Moreover,

(1) If SZ is finite-dimensional, then .Z is called an EALA.

(ii) If R* = 0, then (&, 7, %) is called a null LEALA (or a null EALA if 7 is
finite-dimensional) or simply a null system. Note that if R* = 0, then the axioms
(A3) and (A4) are empty statements.
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Now, using (Al) and (A2), we find that % L x L is nondegenerate for all £ € R. In
particular,
By« s 1s nondegenerate.

Lemma 4.2. For each & € R, a unique t € S exists such that #(h,tg) = &(h) for all
he 2.

Proof. By the nondegeneracy of % Lex L g1 XE Zeandy € Z_¢ exist such that # (x,y) =
1. Lettg := [x,y] € H. Then,

%(hJﬁ) = ‘%(ha [x,y}) = B([hax]ay) = é(h)‘@(xay) = é(h)
for all & € 7. The uniqueness of 7¢ follows from the nondegeneracy of % s . ]

Using these 7¢s, we can define an induced form on the vector space spanned by R
over F, which is simply denoted as (-, -), by

(&.1) = Bliz.tn)
for £,m € R. Note that the form (-, -) is well defined, which is easily confirmed by:
B(Lepete,Xndnty) = YepeBlte,Lnanty) = YereS(Xnanty)
= Ler:S(Xyant) = Lep:Bte,LXyanty)
= %(ngfgfﬁazn%ﬂn) = %(ZnCInfn,Zgl’%f&)
= anIn%(tn»):§P%t§) = Zn%n():gp:gté)
= Enayn(Ee Pile) = EnanPB(ty. Le pete)
= B(Lndntn Lerete) = PB(Lepete,Lydntn)
for Y¢ pe& =Y pp€ and ¥ gnn = Ly a0

Now we call an element of

R*:={E €R[(&,6)#0}

an anisotropic root. Axiom (A4) means that R* = R UR; and (R;,R;) = 0, which imply
that Ry =0 or R, = 0.

Remark 4.3. Null systems have not been studied widely. In [AABGP], they assumed that
R* # 0 for an EALA. We also assume that R* # 0 throughout this study.

Remark 4.4. We note that there was one more axiom for a LEALA in [MY], but we
showed that axiom is unnecessary by Lemma 4.2 above.

We say that a triple (£, ., %) is admissible if it satisfies (A1) and (A2). A funda-
mental property of admissible triples is as follows.

Lemma 4.5. For £ € Rand all x € 35 andy € f_é, we have
[, y] = B(x,y)te, (25)
where t; is defined in Lemma 4.2.
Proof. Leth:= [x,y] — % (x,y)te € A . Then, for all ' € 7, we have
B(h.h') = B(x, [y, 1]) — B(x,y) Btz ) = B(x,y)E (W) — B(x,)E (h) = 0.

Hence, by the nondegeneracy of % ;. s, we obtain h = 0. O
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We can scale the above form (-,-) by a nonzero scalar such that (§,71) € Q for all
E.,n € R* (see [AABGP, p.16] or [MY, §3]). Let V be the Q-span of R, such as

V :=spangR.
We showed the Kac Conjecture in [MY, Thm 3.10], which states that
the scaled form (-,-) on V is positive semidefinite, and (R°,V) = 0, (26)

where
R :={&eR|[(§£)=0},

the set of isotropic roots or null roots. As a corollary, (W,R*) becomes a reduced locally
extended affine root system (LEARS), where W = spang, R* (see [MY, §4] and [Y3]). We
simply refer to R as the set of roots, but we refer to R* as a LEARS. This R* satisfies the
fundamental properties of classical finite irreducible root systems, locally finite irreducible
root systems, and affine root systems in the sense of Macdonald [Ma], or extended affine
root systems in the sense of Saito [S]. We do not recall the definition of LEARS because
is is not needed in this study. The reader can find the precise definition in [Y3].

The dimension of the radical of V is called the null dimension for a LEALA. If the
additive subgroup of V generated by R is free, we call the rank the nullity of a LEALA.
Thus, we only use the term nullity when (R®) is a free abelian group.

Remark 4.6. Of course, there is a notion of rank for non-free abelian groups, but to be
consistent with the original theory of EALAsS, as given in [AABGP] and [Ne2], we assume
that (R°) is free for nullity. Thus, if we say that a LEALA .Z has nullity, this means that
(R%) is a free abelian group. (In [MY], we used the term null rank for nullity, and nullity for
null dimension, but we have changed these terms to maintain consistency with the notion
of nullity in [Ne2].)

The core of a LEALA Z, denoted by %, is the subalgebra of .Z generated by the root
spaces %, for all &« € R*. Then, by the Kac Conjecture (26), .%. is an ideal of .Z. If the
centralizer of .%, in .% is contained in .Z,, then .Z is called tame. Note that the core is
zero for a null system (since it is generated by an empty set), so a null system is not tame.

Now, as mentioned earlier, (W,R*) is a reduced LEARS. Thus, by [Y3], a locally finite
irreducible root system A and a reflectable section W’ of W exist such that A™ is contained
in R* NW’. In particular, W’ is a complement of radW, such as W = W’ ®radW, where
radW is the radical of W relative to the defining positive semidefinite form of the LEARS
(W,R*). Moreover, a family of subsets {Sy } yca of rad W indexed by A exists such that

R =] (1+5Sw), @7
UEA

and {Sy }ea is a reduced root system extended by G = (Uyca Sy), as defined in Section
2. We note that
radW = (radV)NWw,
by the Kac Conjecture (26).
We can give the graded structure of the core £, from (27). For each u € A and g € G,
if g € S, where we let
(Z)ﬁ = Z mgl.ﬂrga
and if g ¢ Sy, where we let ()5 := 0. Then, we can easily show that

L= D D,

ueAu{0} geG
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where (Z0)§ := Yuea Yook [(Le)fh, (L)X 1), and that
% is alocally Lie G-torus of type A, (28)

or more precisely, of type {Sy } uca. Furthermore, if we let

Z8= P (L),

neAu{0}
then we obtain a G-graded Lie algebra
2= 28
geG

Next, we note some properties related to R® for LEALAs. As mentioned in Section 2,
Sy = Sy if p and v are the same length for u,v € A. If we let

S:=8,
for a short root u, then S contains all Sy, as in (12), and S satisfies 0 € S and 25— S C S.

In addition,
S spans rad W

(see [Thm 8, Y2]).

Lemma 4.7. Let £ be a LEALA. Then, S+S C R, and S+ S = R® if £ is tame.
Moreover, we have radV = spang RC. In particular, if £ has nullity, then (nullity of £)
= (null dimension of £ ).

Proof. The first statement follows from (14) in Section 1, but we present this for conve-
nience with respect to the next statement. Let s, s’ € S. Then, 2, # 0 and Lyvy #0for
U € Agy, and [L 1, 2,1 ¢] # 0, by slo-theory. (Consider the slp-subalgebra generated
by £, yand £ 1, and letit act on &}, , ¢.) Therefore, 0 # [y 15, L)y y] C L1y and
hence s+ s’ € RY. Thus, S+ C R°.

Suppose that . is tame. Let 6 € R*. If & 4 o ¢ R for all & € R*, then % centralizes
the core, and thus % is in the core. Therefore, Lo = ¥ cn, sty=c[Luts,L-puty], and
thus ¢ = s+ ' for some 5,5’ € S =S, C S. However, 0 # £y s = £,y o and 0 #
£,y since —s' € Sy Therefore, u —s' 40 € R with 4 —s" € R*, which is a contradiction.
Thus, & € R* exists such that o + ¢ € R. (This property is called nonisolated. Therefore,
we have shown that any isotropic root is nonisolated if . is tame.) Note that &« = +s
for some u € Aand s € S. Hence,s+o6 € S,s060€S—-5=5+S. Thus, S+ S = RC.

For the last statement, it is sufficient to show that radV C V9 := spang RO (the other
inclusion is clear). Since V. =W +V° (where W = spang R™), it is sufficient to show that
(radV)NW =radW C V9. However, this is clear since rad W = spang S, as above. O

Note that if we put
RYV:={6cR | LNL #0},
then (14) in Section 2 means that we always have
RO=5+5. (29)

Remark 4.8. (1) In fact, the rank of <R0> as a torsion-free abelian group is always of the
null dimension since the null dimension is now simply the Q-dimension of spanQRO by
Lemma 4.7.

(2) There are notions of null dimension and nullity for LEARS (W,R*), i.e., (null di-
mension of R*) := dimrad W and (nullity of R*) := rank(S) if (S) is free (see [Y3]).
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For example, if § = Q, then the null dimension is 1, and the rank (= the largest car-
dinality of linearly independent elements over Z) of Q as a torsion-free group is also 1.
However, we do not say that the nullity is 1 when S = Q.

In general, (null dimension of .#) > (null dimension of R*). If . has nullity, then so
does R*and (nullity of .Z’) > (nullity of R*) since any subgroup of a free abelian group is
free (e.g., see [G]). If .Z is tame, then (null dimension of .#) = (null dimension of R*),
and if .Z has nullity, then

(nullity of .#) = (null dimension of .#’) = (nullity of R*) = (null dimension of R*)
since S+ S = RO,
Now, we present some basic properties of the center of a LEALA.

Proposition 4.9. Let (£, 7, %) be a LEALA over F with the center Z(.Z), and R° is the
set of isotropic roots of £. Then:
(1) We have
Y Fiscz(z)c 2,
S€R0
where tg is a unique element in ¢ defined by (25) in Lemma 4.5.
(2) Let £, be the core of £ and R = {§ € R® | L5 N %. # 0}. Then, for § € RY, we
havets € £ and
Y Fts=2(Z)nH CZ(L).
5eRY
(3) Let R* be the set of anisotropic roots of £ (which is a LEARS). Let m = dimg(rad W)
be the null dimension of R*, i.e., the dimension of the radical of the induced form from %
on W = spangR*. Then, m > dimg (Z(£,) N), and if m > 1, then dimp (Z(Z.) N
jf) > 1. Hence, m = 1 implies that dimp (Z(.i’c) ﬂ%”) =1land dimpZ( L) > 1.
(4)If £ is tame, then ¥ 5cpo Fts = Y5cpo Fis = Z(ZLe) N A = Z(L).
Furthermore, let n be the null dimension of £, i.e., n = dimg spang RC. Then, m =
n > dimp Z(£). Moreover, if n > 1, then dimp Z(£) > 1. Hence, n = 1 implies that
dimF Z(g) =1.

Proof. (1): Since each § is an isotropic root, we have [ts,x] = 0 for any root vector x € .Z.
In fact, [tg,x] = & (t5)x = (€, 8)x = 0 since § is in the radical of the form (see (26)). Hence,
ts, L) =0, ie.,t5 € Z(L). Thus, Y 5.p0 Fts C Z(.£). The second inclusion is clear due
to the fact that 77 is self-centralizing.

(2): For § € RY, let 0 # x € £5N.%,. Then, t5 = [x,y] for some y € .Z_g, and hence 5 €
Z. since %, is an ideal. Thus, Zaek(g Fts C £.N, and by (1), we obtain dek(g Fts C
LNZ(L) C Z(£,). Therefore, we obtain Y50 Ft5 C Z(ZL:) NI .

For the other inclusion, let x € Z(.%,) N .. Since

LA =Y (L, L)+ Y (L5, Ls),

EEeRX S€R?

we can write

xX= Z agte + Z asts,

EERX 5eRY

where ag,as € F. Let A C R* be a locally finite irreducible root system determined by a
reflectable section of R* and S is a reflection space for a short root in A. Then, we know
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that R* C A+ S and RS = S+S§ (see (29)). Thus, we obtain

x= Z Agt5'tats + Z asts
acA,b'eS 6eS+S

= Z (aa+3/ta +aa+5/t5/)—|— Z asts
acA,8'eS 5eS+S

= Y dgistat Y, daiyty+ Y, asts,
acA,b'eS acA,b'eS 5eS+S

and hence,
yi= Z agisita € Z(L).
a€EA, S’ eS
However, y € hh C g, and since g is a locally finite split simple Lie algebra, then y has to be
0. Therefore,
X = Z agisits + Z asts € Z Fts,
acA,§'eS SeS+S 5€RY

and we obtain Z(.£.) N C Lsepo Fts. Hence, Y50 Fts = Z(£) N A . The second
inclusion follows from (1). '

(3): We know that R* C A+ S and m = dimg(rad W) = dimg spanS. However, since
RO =S+, we have m = dimg spanR". Using %, we define an injective linear map

b5 : H — %*7
where @g(h) € S for h € S is given by @»(h)(h') = B(h, ') forall B’ € . Note that

¢©(ty) = u for p € R, where t, € J satisfies [x,y] = B(x,y)ty forx€ £, andy e L.
Set J7° = im@g C €. If we put

t=¢, + H°—H
and 1, = 1(v) = @' (v) € A for v € 7#°, then we find that #,,, = t, +1, for all
v,V € 5#°, and t,, = at, for v € 5#° and a € F. Since R C J¢°, there is a one to
one correspondence

{8 € R} {15} sepo-
and, in particular, we can see that t5 5 = t5 +t5 for §,8" € R? and t,5 = ats for § € R?
and a € F. Thus, m = dimg ZSER? Qts > dimp ZSGR?. Fts = dimgp (Z(Z) ﬂ%ﬂ). Finally,
if m > 1, then 0 # & € R exists and thus t5 # 0. Thus, Ft5 # 0, and hence we obtain the
last statement.

(4): We have R = S+ S = R since . is tame (see Lemma 4.7). Hence, ¥ g g0 F15 =
Y.5cro F15. Furthermore, by (2), we already have ¥ 5 go F15 = Z(Z) A C Z(£). More-
over, for x € Z(.¥), we have x € Z(.Z.) since .Z is tame. Hence, Z(.£,) N =Z(.ZL).
The remaining assertions follow from the fact that R” = R? using (3) and Lemma 4.7. [

Remark 4.10. There are examples of a tame LEALA or EALA where the nullity is oo
but the center is simply 1-dimensional. For example, .Z = Slz(c[l‘ii]]ieN) ®CcapCdisa
tame EALA over C of type A, where d = Y | a;d; with degree derivation d; = t,-a%, and
{ai}ien C Cis linearly independent over Q. This .Z has nullity of e but the center is equal
to Fc. Note that the Cartan subalgebra 7 of .Z is simply 3-dimensional (for details, see

MY, Rem.5.2(2)]).
Lemma 4.11. Let (£, 5¢,9%) be a tame LEALA. Then, we have the natural embedding
L)Z(ZL.) —Derp 4. and £ |Z(XZ.) — Derp (£./Z(L)).
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(Note that Z( L) = Z(%£.) N S by Proposition 4.9.)
In particular, if N is a complement of the core £, i.e., & = L. ® N, then N can be
identified with a subspace of Oderr (£./Z(%)), i.e., the outer derivations.

Proof. Since .Z, is an ideal of .Z, we find that the restriction adx | & for x € .Z is in
Derrp %, and that Z(.Z,) is an ideal of .Z. Let

f % — Derp %

be the induced map obtained by this restriction. Since .Z is tame, we have ker f =
Cy(Z:) =Z(£,). Hence, we obtain the first embedding. In addition, adx | ¢, induces
a derivation of ., /Z(.%) since Z(¥) = Z(L)NH C Z(ZL.). Let
'+ & — Derp (£./2(Z))

be the induced map. Let x € ker f’. Then, we have [x,.%,| C Z(Z) = Z(£.) N A . For any
w € %, since .Z, is perfect, we can write w = Y';[u;, v;] for some u;,v; € Z... Then, [x,y] =
Yl uil, vi) + Yilwi, [x, vi]] = 0, and thus [x, %] = 0. Hence, ker f* C Z(.%£,). It is clear that
Z(%:) Cker f'. Thus, ker f = Z(.%,), and hence we obtain the second embedding.

For the second assertion, suppose that adx for x € .4 is inner in Derg (.ZC /Z( % )), ie.,
adx = ady on %, /Z(Z) for some y € .%,. Then, we have [x —y, %] C Z(.£). However,
since .Z is perfect, for w = Y ;[u;, vi] (ui,v; € Z£.), we have [x —y,w| = ¥;[[x — y,ui],vi] +
Y[ui,[x —y,vi]] = 0. Hence, x—y € Cy (%) = Z(%:) by tameness. In particular, x —
y € %., but x € .Z,, which forces x to be 0. Therefore, adx is an outer derivation of
L ]Z(L). O

Finally, we give some definitions for later use.
Definition 4.12. Let V be a vector space over Q, and G is an additive subgroup of V. Let
o = @ o8
geG
be a G-graded algebra. Define a linear transformation d; on .« by
di(ag) = giag
for ag € o/8, where g; is the i-coordinate of g obtained by a fixed basis of V. Note that d;
depends on a basis of V. Then, d; is a derivation of .«# where we have
di(agap) = (i + hi)agay = giagay + hjagay = di(ag)gn + azd;(ay)
for a, € «/" and h € G. We refer to each d; as an i-th coordinate-degree derivation.
If dimpV =1, then d; is simply called a degree derivation.
We define a standard LEALA.

Definition 4.13. If a LEALA _Z contains all coordinate-degree derivations that act on the
G-graded core, i.e., alocally Lie G-torus, then .Z is called standard. This concept depends
on the G-graded structure of the core, which is not unique. Thus, when we use this term
more precisely, we say that .# is standard (or non-standard) relative to the locally Lie
G-torus.

We define the minimality of a LEALA (see [N2] and Remark 9.2).

Definition 4.14. A LEALA .Z is called minimal if . is the only LEALA that contains
%, and which is contained in .Z (equivalently, if there is no LEALA .#’ that satisfies
. C &' C.%). Note that if the nullity is positive, then .%, is never a LEALA. Thus, if £
has positive nullity and ., is a hyperplane in .Z (i.e., dim.¥ /%, = 1), then £ is minimal.
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Example 4.15. Let 2" = sly(F[r*!]) @ Fc® Fd®) (as explained in the Introduction),
L =sIn(F[F')) @ Fe® F(e1; +d©)), where ey is the matrix unit of size N (only (1, 1)-
entry is 1 and all the other entries are 0), and .25 = sly(F[t*']) ® Fc ® F(p+d©)), where
. 11 1
p—dlag(l,i,g,...7;,...)
Then, these three Lie algebras are all minimal LEALAS. (See Definition 6.1. In fact, these
are minimal LALAs.) In addition, £ is standard, but %] and .% are not standard.
In Example 9.3, we show that .#] is isomorphic to .Z". We note that the concept of
standard is not an isomorphic invariant because it depends on the grading of the core. In
Example 9.4, we also show that .% is not isomorphic to £,

(a diagonal matrix of size N).

5. LEALAS OF NULLITY O

We classified LEALAs of nullity 0 in [MY, Thm 8.7]. Now, we describe the tame
LEALASs of nullity O in a slightly different manner compared with the description in [MY].

Let M := M5(F), My341(F) or My3(F) be the space of matrices of an infinite size J,
2341, or 27, respectively, and T, Tr5.1, or Tp5 is the subspace of M that comprises
diagonal matrices. Let T’ be a complement of Fi5 in T, where 15y is the identity matrix
such that

T =T @©F1;.

Then, the following list comprises infinite-dimensional maximal tame LEALAs of nullity
0. (The term “maximal” is used in the usual sense, i.e., no tame LEALA contains each
listed LEALA of each type.)

e Type Aj:
sly(F) + T’ with a Cartan subalgebra T" (30)
(Note that 7’ is the unique modulo F15. In addition, see Remark 5.9 and Lemma
5.10),

e Type B5: 0y3,1(F)+ T with a Cartan subalgebra T, where
Tt :={x €Dy |sx= —xs},
e Type Cy: spy5(F)+ T with a Cartan subalgebra T, where
Tt :={x€ Ty |sx=—xs},
e Type D5: 055(F) + T with a Cartan subalgebra T, where
T" :={x €Ty |sx=—xs},
and each matrix s is the same as s defined in (15).
We note that F'1y is the center of sly(F) + T5, and that
sly(F)+T' = (sly(F)+T5) /F13

for any 7. It is sometimes better to embed 7" into 75 /F15.

As with locally finite split simple Lie algebras, each of type By, Cy, or Dy is the fixed
algebra of slyy1(F)+ Trgy1 or sl (F) + Tr5 by the automorphism ¢ defined in (16).
This is why we write 71 because this is the eigenspace of eigenvalue 1 of 6. We write the
eigenspace of eigenvalue —1 of G as 7.

Any subalgebra of a maximal tame LEALA of nullity 0 that contains each locally finite
split simple Lie algebra is a tame LEALA of nullity 0. Thus, let .Z be a tame LEALA of
nullity 0. Then,
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Type Ay: sl3(F) C £ Csly(F) + T’ with a Cartan subalgebra £ NT’,

Type B3: 02541(F) C £ C 03,1 (F)+T" with a Cartan subalgebra £ NT™,
Type C3: spy5(F) C & C spys(F)+ T with a Cartan subalgebra £ NT+,
Type Dy: 03(F) C £ C 0p5(F) + T with a Cartan subalgebra £ NT™.

(We describe the defining bilinear form 2 shortly.)

We consider 75 more carefully. Set
T ={d €T5| dis almost scalar} = {d € T5 | d — a1 € gl5(F) forsome a € F},

i.e., d has only finitely many different diagonal entries from the identity 15. Clearly,
T§* is a subspace of M5 (F).

Lemma 5.1. Let ) be the diagonal subalgebra of sl5(F). Then, we have
T;}”:f)@FljéaFejj, (31)

where ej is the matrix in M5 (F) such that the (j, j)-entry is 1 and all the other entries are
0 for any fixed index j € 3. In particular, we have

gly(F) =sl5(F) © Fej;

forany je73J.
Furthermore, let I be any finite subset of J, and 1; :=Y ;ceii. Then, we have
T = h[@FlI@T:?{,, (32)
where by is the subspace of b such that all (k,k)-components of k € I\ I are 0, and Tj‘?<1 is
the subspace of TS such that all (i,i)-components of i € I are 0.
Moreover, we have

Ts =h @ Fyu© Ty, (33)
where Ty\; is the subspace of Ty such that all (i,i)-components of i € I are 0.

Proof. ltis clear that 75° D h® F'15 @ Fej;. For the other inclusion, let x € T5°. Then, a € F/
exists such that y := x —aty € Ty Ngly(F). Hence, y =y —tr(y)e;; +tr(y)e;; and note that
h:=y—tr(y)e;; € h. Thus, x = h+aly+tr(y)e;; € h ® Fiy @ Fej;. This completes the
description of (29).

For the second decomposition (30), we have T¢* = T; Tj“\‘ ;» where Tj is the subset of
T§* such that all (k,k)-components of k € 3\ I are 0. However, it is then easy to see that
T; = b; @ F1;. The last decomposition (31) is now clear. O

We have not mentioned the defining bilinear form % of a tame LEALA % of nullity 0.
Thus, as described in [MY], let g be one of the the locally finite split simple Lie algebra

SIJ(F)’ 023+1(F)7 SPZS(F) or 023(F)’

contained in .Z, as defined above. The restriction % ¢, 4 of % to the space .2 x g is a
nonzero scalar multiple of the trace form, and the remaining part, i.e., the restriction to
¢ x €, where € is a complement of g, can be any symmetric bilinear form.

In fact, in [MY], we did not state clearly why the restriction % ¢4 of & is a nonzero
scalar multiple of the trace form. However, this follows from the perfectness of g and the
invariance of 2. We summarize this phenomenon in a slightly more general setup. Let us
refer to a symmetric invariant bilinear form simply as a form for convenience.
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Lemma 5.2. Let L be a Lie algebra with a form B and let g be a perfect ideal of L. If any
form of g is equal to B' := B |gx 4 up to a scalar, then any invariant bilinear form on L X g
oron g x Lis equal to B |1xq or B |gx1 up to a scalar. In this case, “invariant on L x g”
means that B([x,y],z) = B(x, [y,2]) for x,y € Land z € g.

Proof. Let E be an invariant bilinear form on L X g. Forx € Land y € g, since y = ¥ ;[u;, vi]
for some u;,v; € g, then we have

E(x,y)= E(x,Z[ui, vi]) = CZB/([x,u,-},vi) = chB([x,ui]7 Vi) = cB(x,Z[u,-, vi]) = cB(x,y)

1

for some ¢ € F. We can prove the result for g x L in a similar manne. (]

Recall that the associative algebra
Mgn (F) = {x € M5(F) | each row and column of x have only finitely many nonzero entries }

is a Lie algebra under the commutator. Using the matrix s € Mg“(F ) defined in (15), we
can define an automorphism of M%“ (F), where & =237 or 273 + 1, by the same definition of
o in (16). We also denote the automorphism by o. Thus, each fixed Lie algebra M (F)©

contains a locally finite split simple Lie algebra g := slg(F)°.

Lemma 5.3. Let L be any subalgebra of Mg“ (F), and let M be any subalgebra of gl5(F).
Then, the trace form tr on L X M and M X L is well defined and it is invariant.
Hence, if L contains sly(F), then any invariant bilinear form on L X sl5(F) or on
sly(F) X L is equal to ctr for some ¢ € F. In particular, sl5(F) is a perfect ideal of L.
Moreover, if L is a subalgebra of Mg" (F)C that contains g =slg(F)°, then g is a perfect
ideal of L, and any invariant bilinear form on L X g or on g X L is equal to ctr for some
cefF.

Proof. Since xy € gly(F) for x € L and y € M, then the trace form tr(xy) is well defined.
To show the invariance, i.e., tr([A, B]y) = tr(A[B,y]) for A,B € L and y € M, it is sufficient
to show this for y = ¢;; (the matrix unit of (i, j)-component).

Let A = (amn), B = (bmn), and C = (¢cyun) = [A,B]. Then, cun = Y1 (@mibin — bunikain)
and tr([A,B]y) = tr((cmn)eij) =cji= Y (ajkbk,' — bjkak,-) and

tr(A[vaD = tr((amn) (meiemj - ijnein)) = ;(ajkbki - akibjk),

Therefore, the trace form is invariant. We can prove this for the case where M x L in a
similar manner. We note that sl5(F) or g is a perfect ideal of L. By [NS, Lem. IL.11], any
form on sl (F) is equal to ctr for some ¢ € F*. Therefore, the second and last statements
follow from Lemma 5.2. U

Remark 5.4. We employ the notation given in Lemma 5.3. We can identify Mg“(F ) with
the derivation algebra Der (gl (F)), and M"(F)® with the derivation algebra Derg (see
[N1]).

Suppose that & is a symmetric invariant bilinear form on
M = sl5(F)+T5.

Then, by Lemma 5.3, the restriction of & to .#5 x sl5(F) or sl5(F) x .45 is equal to
ctr for some ¢ € F. We claim that such a form % does exist. Therefore, we select any
complement h¢ of b in 75, i.e.,

5 =h®h.
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Let

Vih xh—F
be an arbitrary symmetric bilinear form. Now, we define a symmetric bilinear form % on
M as

A(x,y) = ¥(x,y)
on h¢, and ctr on #5 x sl3(F) and sly(F) X .#~5. To show that 4 is invariant, we prove
the following.

Claim 5.5. Letx € T5 \ Fi5 and yi € sl5(F) for k=1,2,...,r. Then, a finite subset I of J,
0+ h € hand g € Ty exist such that yy, € sl;(F) for all k, h € by,

X:h+g, [xvyk] = [h7yk] and ‘@(x7yk):‘@(hayk)

for all k. Moreover; if 8 is nontrivial, then y € sl5(F) and h' € by exist such that [x,y] # 0
and
B(x, 1) #0. (34)

Proof. Let I be a finite subset of J such that y; € sl;(F) for all k. Moreover, if the I x I-
block submatrix of x is a scalar matrix, then we enlarge I until the I x I-block submatrix
of x is not a scalar matrix. For I, by (33) in Lemma 5.1, 0 # h € b; exists such that
x = h+by +x for some b € F and x' € T5\;. Put g := by +x". Then, clearly [g,y;] = 0.
In addition, we have %B(g,yr) = ctr(gyr) = cbtr(y;) = 0 since tr(y;) = 0.

To show the second statement, it is sufficient to select y € sl;(F) and &’ € h; such that
[h,y] # 0 and tr(hh') # 0. O

Claim 5.6. % is invariant.

Proof. Tt is sufficient to consider the case that involves some elements in h¢. Since h° is an
abelian subalgebra, the case that involves three elements in h¢ is clear.

For the case that involves one element in h¢, let x € §¢ and y,z € sl5(F). Then, it is
sufficient to show that

A([x,y],2) = B(x, [v,2])-

If x € F1, then both sides are clearly 0. Thus, by Claim 5.5, we can change x into & for
y and [y, z] such that Z([x,y],z) = B([h,y],z) and B(x,[y,z]) = B(h,[y,z]). This follows
from the invariance on sl5(F).

The case that involves two elements in h¢ can be shown in a similar manner. Let x,y € h¢
and z € sl5(F). Then, it is sufficient to show that

%(x, [y,z]) =0 and %([x,z},y) = %()C, [Zvy])'

Again, if x or y € F'1, then both sides of both equations are clearly 0. Thus, by Claim 5.5,
the left-hand side of the first equation is equal to Z(h, [I',z]) for some h, i’ € by, and this is
equal to 0 by the invariance on sly(F'). For the second equation, change x into 4 for z and
z,y] such that (LHS) = %([h,z],y) and (RHS) = AB(h,[z,y]). However, these are equal
according to the case involving one element, as described above. Thus, we have proved
that the symmetric bilinear form £ is invariant. (I

The radical of £ is contained in F1; whenever the restriction to sly(F) is not zero. In
fact, this follows from [MY, Lem. 8.5] since the center of .#5 = sl5(F) + T5 is equal to
F15. However, for convenience, we show this directly. First, let us mention the graded
structure of .Z.

Letg:=sly(F)andletg=hd (@ueAgch* gu) be the root-space decomposition of g
relative to . We extend each root u € h* to an element in 775 as follows.
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Let Ay = {£(& —¢;) | i,j € T}, where & is the linear form of gl (F) determined by
ex — O Oy. Since an element p € T5 can be written as p = diag(a;;)icy, we can define
& (p) = aj;. In this manner, we can embed Ay into 7. Thus, .# := .#/; has the root-space

decomposition
M= @ My,
UETS
relative to 75, where .4, = gy for pu # 0 and .#y = Ty, and .#,, = 0 if p ¢ Ay. This is
an (Ajy)-graded Lie algebra, and % is graded in the sense that %(.#¢, .#y) = 0, unless
E+n=0forall £,m € Ay. In general, a symmetric invariant bilinear form on a Lie
algebra with a root-space decomposition relative to a subalgebra is graded.

In particular, the radical of & is graded. Thus, we can check the nondegeneracy for
each homogeneous element. The elements of degree [t € Ay cannot be in the radical by
Lemma 5.3. For the elements of degree 0, the only candidate is an element in F'15 by (34),
which implies that the radical of %) is contained in F15.

Therefore, we have the following.

Lemma 5.7. Let B be nontrivial. Then, the radical of 8 is equal to Fiy if #(15,15) =0,
and A is nondegenerate if #(15,15) # 0. O

Thus, for any symmetric bilinear form y on ¢ with the radical F15, the quotient Lie
algebra ./~ /F15 with the induced form B is a LEALA of type Ay of nullity 0. Note
that .#5/F1y is isomorphic to .#% := sl3(F) @ t, where t is a complement of h & Fiy
in T5. Conversely, if W’ is any symmetric bilinear form on t, we can define a symmetric
nondegenerate invariant form %' on .# as described above, and .# is isomorphic to
M~ /F1y. By a similar argument, we can say that a LEALA of type Ay of nullity 0 is
isomorphic to a subalgebra of .#% /F15 that contains sl3(F) = (sl3(F) + F13)/F1y with
the induced form B.

Example 5.8. The centerless Lie algebra gly(F) = sly(F) @ Fe;; is an example of a
LEALA of type Ay of nullity 0, where ¢;; is the matrix unit for j € 3. However, gl,,(F) =
sl,(F) @ Fej; has the center F1, if j € {1,2,---,n}, where 1, is the identity matrix on
gl (F), and this is a non-tame EALA of nullity 0.

Suppose that 2 is a nondegenerate form on gl (F). Then, 4 is a nonzero scalar mul-
tiple ¢ € F' of the trace form, except on Fej; X Fe;;, by Lemma 5.3. Conversely, we can
take any value to #(e;;,e;;) and extend a nondegenerate form to gl (F).

For the finite case where gl (F) = sl,(F) @ Fejj, suppose that ‘B is a nondegenerate
form on gl,(F). Since radB is in the center of gl,(F), we find that B is nondegenerate
<= B(1,,1,) # 0. Moreover, this is equivalent to

n—1

%(Ejj,Ejj)#TC. (35)

In fact, consider the expression 1, = 1, —ne;; + nej;, where we note that tr(t, —ne;;) = 0.
Since x := 1, —nej; € sl3(F), we have B(1,,1,) =

B(x+nejj,x+nej;) = B(x,x) +2nB(x,e;;) +n*Blejj,ejj)
= ctr(x?) +2nctr(xe;;) +n*B(e;jj ;)
= ctr(1, —2nej; +n’e;;) +2nctr(ej; —nej;) +n*Bejj,e);)
=c(n—2n+n*)+2nc(l —n)+n*B(ejj,e;;)

=cn—cn® +n*Blejj,e;).
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Hence, B(1,,1,) = 0if and only if n’B(e;,e;;) = c(n* —n), and thus (35) holds.

Remark 5.9. In the classification of tame LEALAs of nullity O of type Ay in [MY], we
select sy (F) @t for a complement t’ of 7§ in Ty as the maximal one. However, a subalge-
bra of the bigger Lie algebra sly(F) @ t defined above is actually a maximal tame LEALA
of nullity 0, which is shown essentially by the following lemma.

Lemma 5.10. Let p € T5. Suppose that [p,slz(F)] = 0. Then, p € Fiy. In particular,
sly(F)+T' is a tame LEALA of nullity 0 for any complement T' of Fi5 in T5.

Proof. Let I be any finite subset of J. Decompose p=h@ sy ©qin T3 = b S Fy STy
for some s € F (see (33)). Since sl;(F) C g and [y,s];(F)] = 0, we have 0 = [p,sl;(F)] =
[h,s1;(F)]. Hence, h =0, and thus p = st; ®q. For a different subset I, we have p =
s'ty ®&q'. However, for I” =TUTI', we have p = s"1» @& ¢q". Since I,I' C I”, we have
s =5 =", Therefore, p = st5. O

Now, we consider the forms on the other types B4, D5 and C5. Let £ be a symmetric

invariant form on
Mg =5slg(F)+Tg

such that the restriction to slg(F) is not zero, where & = 2J or 2T+ 1. Let .Zg be the
fixed algebra by the automorphism o defined above with the restricted form %°. Then,
9B° is still invariant, and by Lemma 5.3, the restriction to slg (F)€ is equal to ctr for some
ceF*.

Moreover, %° is nondegenerate. This follows from [MY, Lem. 8.5] since .# g has
a trivial center. We can also show this using the following lemma, which is similar to
Lemma 5.1. Recall that 7" denotes the eigenspace of eigenvalue +1 of ¢, and T~ is the
eigenspace of eigenvalue —1 of .

Lemma 5.11. Let I be any finite subset of J and fix some index io € 1. Then, we have
+ _ + - - —
Ty =by® Ty and  Th; =y S F (eigiy + €31ig.a+ip) © Tyyar

where 13, or b5, is a subset of bt or by~ such that all (k,k) and (J+k,J + k) components
for ke I\I are 0, and TZJE\ZI or Tyy\ oy is @ subset of T,5 or Ty5 such that all (i,i) and
(341,34 1i) components for i € I are 0.

Furthermore, we have
+ ot + S —
Ty =021 O g @isny @ oy = o OFeas 12301 @ Tog ) (21410

where b3, | or by, is a subset of bt or b~ such that the (k,k) and (3+k,J+k) com-

ponents of all k € I\ I are 0, and T(erjﬂ)\(yﬂ)

T,y such that the (23 + 1,23+ 1) component and the (i,i) and (3 +i,3 +i) components
ofallielare.
Moreover, we have

Ty =0y ©F 1 ®Ty,, and Ty = by @ F 11 ©To5, 40 2141) (36)

— . +
or T(23+1)\(21+1) is a subset of Ty5 | or

Proof. All of these statements are clear except (36). To show this, we consider the two
equalities

Ty, = by @ F (eigig +e31ip3+iy) and  Tpp y =bhy ©Feayi12341,
where T, is a subset of 7, such that (i,7) and the (J +,J +i) components of all i € T\
are 0, and T,; | is a subset of T, | such that (i,7) and the (J+i,3 + ) components of all
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i € J\ I are 0. However, as in the proof of Lemma 5.1, for y € T,; or T,; |, it follows from
the equation that

1 1
y=y—3 tr(y) (€igip + €3+ip,3+iy) + 5 tr(y) (€igip + €3+ip,3+ig)

or
y=y—tr(y)easii 2541 +tr(y)ers 12341
Hence, (36) holds. ([l

Corollary 5.12. Let x € T+ or x € T~ \ F1. Then, some 0 # h € b* exists such that
PB(x,h) #£0.

Proof. By (36) in Lemma 5.11, a finite subset/ C Jand 0 #£ K’ € [7;1 or [ﬁlﬂ exist such that
x=Hh 4biy;+x" orx = + bty +x' for some b € F and x’ € Tz:o; 0r Tog4 112741 (since
x ¢ F1). Since the trace form is nondegenerate on hfl or hécl 41> We can select i € bfl or
b3;.,, such that tr(7'h) # 0. Then, we have 2 (x,h) = tr(h'h) +btr(h) +tr(x'h) = tr(W'h) #0
(since X'h = 0). O

By Corollary 5.12 related to T, we can also see that #° is nondegenerate. (We use the
result related to 7~ later.) Moreover, the restriction of % to any subalgebra . of .ZJ
that contains slg (F)° is still a nondegenerate form.

Conversely, let U be a complement of h® in £ NT°, and ¢ is an arbitrary symmetric
bilinear form on U. Then, we can extend ¢ to a nondegenerate form on %, using Lemma
5.11 (or embedding .Z into .#g) and Corollary 5.12 again. Consequently, we can say that
a LEALA of type X5 # Ay of nullity 0 is isomorphic to a subalgebra of .#J that contains
slg(F)°.

6. LALAS

The next interesting objects are LEALAs of null dimension 1. In fact, our aim in this
study is to classify tame LEALASs of nullity 1.

Definition 6.1. A tame LEALA of nullity 1 is called a LALA.

We know that the core of a LALA is a locally Lie G-torus (see (28)), and since R* is
a LEARS of nullity 1, the core is a locally Lie 1-torus. Moreover, using the notations in
Section 4, we have the following.

Lemma 6.2. Let £ be a LALA. Then:

(1) The core £, is a universal covering of a locally loop algebra.

(2) Z(£) = Z(£,), and a natural embedding ad £ — Derr (£, /Z(£,)) exists.

In particular, if N is a complement of the core %, i.e., £ =L, DN, then N can
be identified with a subspace of Odery (£./Z(X£.)), i.e., the outer derivations of a locally
loop algebra.

Proof. By Proposition 4.9, %, has a nontrivial center. Hence, by Theorem 3.8, (1) is true.
For (2), we have Z(.%,) = Z(.Z) by Proposition 4.9. Since ad ¥ = ¥ /Z(.¥), we obtain
the embedding using Lemma 4.11. O

To complete the classification of LALASs, we need to classify a complement of the core.
First, we give some examples of LALAs.
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Example 6.3. Let J be an arbitrary index set. We can construct 14 minimal standard

LALAs (see Defintion 4.13 and 4.14) from the 14 locally loop algebras L(X(jf)) given in
Section 3. Thus,

2 = m(X) = (XYY@ Few Fd)
is a LALA of type Xg), where c is central and d(©) is the degree derivation, i.e.,
dO @™y = me™
with a Cartan subalgebra
H =hdFcoFd,

where b is the subalgebra of g(X5), which comprises diagonal matrices if J is infinite
or any Cartan subalgebra if J is finite. In addition, a nondegenerate invariant symmetric
bilinear form % on £ is an extension of the form defined in Section 3 for loop algebras
using the trace form or the Killing form if J is finite, and a nondegenerate symmetric
associative bilinear form on F[¢*!], and by defining %(c,d?)) = 1. In particular, we define
B(d?,d ) =0 as usual, although Z(d?),d)) can be any number in F. These LALAs
are minimal LALAs. Note that any standard LALA contains a minimal standard LALA.
In addition, we note that if J is finite, then LALAs are automatically minimal standard
LALAs, which are the affine (Kac-Moody) Lie algebras. Note that a minimal standard
LALA £™ is also denoted by .Z(0).

Now, we give examples of bigger (and the biggest) LALAs when 7J is infinite. Note that

sly(F)+T =gly(F)+T,

where T = T5 is the subspace of all the diagonal matrices in the matrix space M5(F) of
size J, which is a Lie algebra with the split center F'1, where 1 is the diagonal matrix and
its diagonal entries are all 1. Thus, its loop algebra

U =Us = (sly(F)+T) @F 1] (37)

is a Lie algebra with the split center 1 ® F[t*!].
Assume that Z is a symmetric invariant bilinear form on %/, which is not a zero on
sly(F). Then, by Lemma 3.9 and Lemma 5.2, 4 is unique up to a scalar to tr ®€ on

(sly(F)®F[F')) x % and % x (sl3(F)®@ F[r*']), (38)
ie., forx,y € 7, and if x or y € sl5(F), then
B(xt",y@1t") = atr(xy) Sp,—m (39)

for some a € F*. We claim that such a form % does exist. As in the case of nullity 0, we
select a complement h° of hin 7', i.e., T = h° G h. For each m € Z, let

Y bc X bc —F
be an arbitrary bilinear form. We define a symmetric bilinear form % on % as
Bxt" yt") = Wm(an)Sn.fm

on h¢® F[t*!], and (39) on (38). We can prove that 4 is invariant in a similar manner
to the case of nullity O using the following claim (which can also be proved in a similar
manner to Claim 5.5).
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Claim 6.4. Let x € T\ F1 and y, € sl5(F) for k=1,2,...,r. Then, a finite subset I of J,
0#h € hexistand g € T such that yy € sl;(F) for all k, and h € by,

x=h+g, [xt" yt"=het" y@t"] and Bxt",y@1")=Bht", y@1")
forall m,n € Z and all k. Moreover, y € sl5(F) and h' € b exist such that

xt"y2t"|#0 and Bxt™ K @t") #0. (40)

([

Now, we can use a general construction, i.e., a one-dimensional central extension by the
2-cocycle

9 (u,v) == B(d) (u),v)
for u,v € %, where d9 is the degree derivation on %/. This is well known (e.g., see
[AABGP]), but for convenience, we show that ¢ is a 2-cocycle in a slightly more general
setup. Note that d9) is a skew derivation relative to B, ie.,
%(d(o)(u),v) = —%’(u,d(o) (v)).

More generally, for a Z-graded algebra A = @, A, with a symmetric graded bilinear
form v, the degree derivation d(©) is skew relative to y. In fact, for x = ¥, x,, and y =
Y.nym € A, we have V’(d(o) (x)aY) =Y umY (X, y) = XMW (Xin, Y —m) = Ly MY (X,Y-m) =
=Y, my(x,ym) = fy/(x,d(o) (y)) Hence, d? is skew.

In general, on a Lie algebra L with a symmetric invariant bilinear form B, we can de-
fine @(u,v) := B(d(u),v) for any skew derivation d and u,v € L. Then, @(u,v) is a 2-
cocycle (which is also well known). In fact, the first condition of the cocycle clearly holds,
ie., @(u,u) =0 forall u € L, since @(u,u) = B(d(u),u) = —B(u,d(u)) = —B(d(u),u) =
—@(u,u). For the second condition, we have

@ ([u,v],w) + @([v,w],u) + @([w,u],v)

= B(d([u,v]),w) — B([v,w],d(u)) — B([w,u],d(v))

= B([d((u)m]),w) +B([u, d(v)])7w) - B([Vﬂ W}vd(u)) - B([W7 u] ) d(v))

= B(d(u),[v,w]) = B(d(v), [u,w]) — B([v,w],d(u)) — B([w,u],d(v)) = 0.
Thus, we obtain a 1-dimensional central extension

U :=USFc
using the 2-cocyle ¢(u,v) = %(d(()) (u),v) given above. Then,
U =%y =W aFdV
is naturally a Lie algebra that defines
[Cvd(O)] =0,
anti-symmetrically. Thus, the center of % is equal to Fc @ F1. We also extend the form 2
by
Bc,d)=1 and B(%,d") =0,

symmetrically (where the value of %(d ©),q (0)) can be any). Then, we can also check that

this extended form is invariant.
Let g :=sly(F) and let

g=he P o

UEAFChH*
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be the root-space decomposition of g relative to f. Let
H=T@FcaFd.

We extend each root it € h* to an element in 57" as follows. First, we can extend yt to T
as in the case of nullity 0. Then, we define u(Fc® Fd(®)) = 0. We also define § € /" as
(T ®Fc)=0and §(d?) = 1. Then, % has the root space decomposition

relative to ¢, where ?2“+m5 =gu@t"foru € Ay, Upys =T 1™ form # 0 and % = A,
and %Aé =0if & ¢ Ag” = (A5 U{0})+Z4. For convenience, we assume that 0 ¢ Ay but
0e A(jl) . In the above, % is an (A(l) )-graded Lie algebra, and 2 is graded in the sense

J

that %(0225 %) =0, unless E+n =0forall &, ¢ Ag). In particular, the radical of %
is graded.

Claim 6.5. The radical of & is contained in 1 @ F[t*!].

Proof. Since the radical of % is graded, we can check the nondegeneracy for each homo-
geneous element. It is clear that the elements of degree pt +md for 4 € A5 cannot be in
the radical. The elements of degree md are also outside of the radical by (40). Hence, the
radical should be in 1 ® F[r*!]. O

Now, it is easy to check that (% ,.#, %) is a LEALA of nullity 1 by defining y(1,1) #
0. Since the center of % is equal to Fc @ F, this is not tame. However, since 1 ® F[t*!] is
an ideal of % , the quotient LEALA

L= (1@ F )

is tame, by defining yo(1,1) = 0. Thus, £™* is a LALA, which is isomorphic to the Lie
algebra (3) described in the Introduction. The core . is equal to sly(F) @ F[t*']| @ Fe.
(As stated in the Introduction, we omit bars for the quotient Lie algebra.) Moreover, it is
easy to check that a 1-dimensional extension of the core, such as

ZL(p) =L o F(d +p)

for some p € T, is a minimal LALA of type Agl) (which is a subalgebra of .£"%). In addi-
tion, we can show that any homogeneous subalgebra of £ that contains some .£(p) is

a LALA. In Section 6, we show that any LALA of type A(j1> is a homogeneous subalgebra
of £™* that contains some .Z(p).

We describe the other untwisted LALAs using %}3 and %3+1, and the automorphism
o is again defined in (16). Let
T=T°®T"
be the decomposition of T = T»5 or Tr5. 1, where T° is the eigenspace of eigenvalue 1 (the

fixed algebra of T by o) and T~ is the eigenspace of eigenvalue —1. Instead of T°, we
use T because we consider the fixed algebra by another automorphism 7 later. Thus, we
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have

aw) € Tray1 | aii = —ayyigyi (Vi€ T), azi12511 =0} and

{(aw)
{(aix) € Tz | aii = ay4iz4i (VieT)}  for B(jl),
{(aw)

aw) € Ty | aij = —azy 54 (Vi€J)} and

“={(aw) € Ty | @iy = az1i5 (Vi€ J)} forCy) or DY (41)

Note that F't is o-invariant and F1 C T~. Since h is o-invariant, we have
hb=b°dh™, B=HbNT°CT° and b =hNT CT .
Let us extend the automorphism on U = 02/23 or 02223+1 as
6(xot) :=c(x)@t*, 6(c):=c and 6(d):=a.
Then, the fixed algebra 7% with the restriction of the form 2 is a LALA of type B(jl), C(jl)
or Dgl), depending on the type of ¢. In particular,
%° = ((g+T°)@F[*)) o FcawFd,

where g = sly5,1(F)° or sly5(F)C is a locally finite split simple Lie algebra of each type.
The nondegeneracy of the restricted form % follows from the next lemma, where the
proof is similar to the case in nullity 0.

Lemma 6.6. Let 0 £x € T orx € T~ \ F1. Then, some h € h° or h € b~ exist such that
Bxt" h@t™) #0
forallm € Z. ([
(1)

As in the case of type Ay, a 1-dimensional extension of the core %AC‘A’, such as
ZL(p) =% &F(d" +p)

for some p € T?, is a minimal LALA of each type. In addition, we can check that any
homogeneous subalgebra of £ = %/° that contains some .Z(p) is a LALA of each
type. In Section 6, we show that any LALA of each type is a homogeneous subalgebra of

Zmax — 776 that contains some .Z(p).

We now give examples of twisted LALAs. Again, we use the automorphism ¢ defined
in (16) to obtain the type C5 or By, and we extend the automorphism on % = %5 or
U1 as

6(x@t%) = (=1)fo(x)@*, 6(c)=c and 6(d?):=d". (42)

Then, the fixed algebra % % with the restriction of the form % is a LALA of type C(j) or
BC%Z), depending on the type of . In particular,

%% =((g°@T°)F ) e (g~ +T7)@tF[r*)) @ Fea FdY, (43)

where g° = sly5(F)® = spyy(F) or sy 1 (F)° = 02541 (F), and g~ is the minus space of
slyy (F) or slyy 1 (F) by 6. Since t @ tF[t*?] is an ideal of %, the quotient LEALA

~

UG =% (121F 1))

is tame, by defining W(1,1) = 0. Thus, %6 is a LALA. (For the type ng), this is isomor-
phic to the Lie algebra (5) described in the Introduction.)
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The nondegeneracy of the restricted form % follows from Lemma 6.6. As in the un-
twisted case, a 1-dimensional extension of the core (522 6)0’ such as

L(p) = (%#%).®F(dY +p)

for some p € T°, is a minimal LALA of each type. We can also show that any homoge-

neous subalgebra of .Z"* := %6 that contains some .Z (p) is a LALA of each type. In
Section 7, we show that any LALA of each type is a homogeneous subalgebra of .Z"*
that contains some -Z(p).

For the type B(jz), as described by Neeb in [N2, App.1], we introduce an automor-

phism 7 on the untwisted LALA .Z := ?/Az‘;’j 4o of type D(j.lJ)r 1» which is defined by s =

(1 0 lj(;rl) For convenience, let I+ 1={j| j €3} U{jo} and
J+1

2342= @+ 1)+ @+1) = ({17 €3} UL U({-i 15 €3 U{-n}).
Let
g§=by+ej—j T e—jojo

be the matrix of exchanging rows or columns, and let T be an involutive automorphism of
02542 (F) defined by

T(x) = gxg.
Then, we can see that the fixed algebra 0y5.2(F)® = 05,1 (F) (which is of type B5) and
the minus space

5:= {x € 023+2(F) | ‘L'()C) = 7)(} 44)
by 7 is isomorphic to F>*! as a natural 0,5, | (F)-module with
s0 =800 =F(ejyjy —ejo.—jo)-

We can extend T on 023 42(F) + 7,3, ,. Then, we have
(T542) =T (2 T3) and {x €T, | o(x) = —x} =50, (45)
We can also extend T on ./ in the same manner as (42), i.e.,
tx@f) = (D)@, 2(c):=c and #(d?):=q",
and we obtain a LALA .#* of type Bg). In particular, we have
M= (02311 (F) +T%,,) @ F[rF)) @ (s @tF[r*?)) @ Fea Fd©.

(The odd degree part of ¢ is the same as that in an affine Lie algebra of type Bf) = Dﬁl.)
The nondegeneracy of the restricted form B follows from Lemma 6.6. As in the above,
a 1-dimensional extension of the core .#", such as

L(p) = M SF(dO + p)

for some p € T, , |, is a minimal LALA of type B(jz). In addition, we can show that any
homogeneous subalgebra of £ := " that contains some .Z(p) is a LALA of type
B<32>. In Section 7, we show that any LALA of type B(jz) is a homogeneous subalgebra of
™4 that contains some Z(p).
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7. CLASSIFICATION OF THE UNTWISTED LALAS

Let . be an untwisted LALA of infinite rank, i.e., the core .%; is a universal covering

of an untwisted locally loop algebra of type Agl), Bg), C(j1> or Dgl) for an infinite index J.
By selecting a homogeneous complement of the Z-graded core, we can write

L=2L® @ D™.
meZ
Note that the complement is assumed to be included in the null space:

GBD’"C @ggz@fmgl and D'”C,ng“

meZ SER0 mezZ

where &) is a generator of (R®)7 = (S +S)z = Z (see (23) and Lemma 4.7).
Let
L= 422
be the centerless core. Moreover, let (g,h) be the grading pair of the Lie 1-torus .%; such
that b is the set of diagonal matrices of a locally finite split simple Lie algebra g:

g=ho@Pou= 2 L) c L =P 4",
acA mez
where

L= P (L)
acAU{0}

We identify the grading pair (g,h) of the Lie 1-torus £/ and ... Moreover, we identify
£ with
L:=g®F[r*"].
Now, we classify the diagonal derivations of an untwisted locally loop algebra L in
general. Let
(Derp L)) = {d € Derp L | d(go @1™) C go @™ for all & € A and m € Z}.

We refer to such an element as a diagonal derivation of degree 0. Let d € (detr L)9. Note
that since go = b = Y gcal8a; 9—q], then we have

d@m) = Y d(ga-9-al @) = ¥ d(lga®"8-a®1])

acA acA

=Y ([d(ga®1™),8-a@ 1]+ [ga @™, d(g-a ©1)])
acA

- Z [Ba @19 a@1]=h1".
acA

In addition, we note that d | g is a diagonal derivation of g. Hence, by Neeb [N1], we obtain
d |g= ad p for a certain diagonal matrix p of an infinite size. In particular, we have p € P,
where

P =T5 for Ay, and TZ}L; or T,-

551 for the other types (46)

as defined in Example 6.3. Put
d' :=d—adp € (Derr L)).
Then, we have
d(gl)=0.
In particular, we have d’(h ® 1) = 0. Thus, for 0 £ x®7 € go ®1, if
d(x®t) =ax®t 47
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fora € F, then

diyotr = —ayat™! (48)
for all y € g_q. In fact, for y # 0, since 0 # [x,y] =h € hand d'(y®t~!) = by®t~! for
some b € F, then we have

O=d'(hol)=d(ketyer ") =d o)yt [+xoldyor ")
=(a+b)xot,yot | =(a+b)xy®@1=(a+b)he1.
Hence, b = —a.

Lemma 7.1. Let g = h ® Pyecaga be a locally finite split simple Lie algebra. Then,
U (9)-9p = g for any B € A, where % (g) is the universal enveloping algebra of g.

Proof. Since 7% (g)-gp is a nonzero ideal of g, it must be equal to g by simplicity. t

By Lemma 7.1, for a fixed o € A, three subspaces
g1, ge®t, and g &t

generate L as a Lie algebra.
Let

1

d'"=d —ad?,
d
where d(0) = o Then, we have d’(g® 1) =d'(g® 1) = 0 and using (47),

d"(x@t)=d'(x®1t) —ax®t =0
for x € g¢. Similarly, using (48),
d'yotr )=dyet ) tayer ! =0
fory € g_q. Thus, we have d”(L) = 0 and d” = 0. Hence, we obtain
d= adp—!—ad(()), and (DerFL)(O) =adPoFd. (49)
We define the shift map s,, form € Z on L = g® F[t*!] by
sm(x@1%) == x @k

for all k € Z. (Shift maps were discussed in the classification of affine Lie algebras by
Moody in [Mo].) Clearly, the shift maps have the property

Sm([%,3]) = [sm(x),¥] = [x,5m(y)]

for x,y € L. (In other words, the shift maps are in the centroid of L.) Thus, s, 0d is a
derivation for any derivation d of L. In fact, for x,y € L,

smod([x,y]) = sm([d(x),y] + [x,d(y)]) = [smod(x),y] + [x,5m 0 d(y)].
Now, let
d € (Derp L) = {d € Derp L | d(gq ®1*) C gq @™ forall o € A and k € Z}.

Then, we have
s_mod € (Derp L)}.
Hence, by (49), p = p; € P and some a = a; € F exist such that
s_mod=adp+ad?,

and thus
d=spo(adp+ad?).
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Therefore, we have classified diagonal derivations of the untwisted locally loop algebra.
Thus:

Theorem 7.2. For all m € Z, we have
(Derp L)' = s, 0 (Derp L)) = sy 0 (ad P Fd)),
where P is defined in (46). [l
The following property of diagonal derivations is useful later.
Lemma 7.3. Forallm e Z, let
(Derp L) :={d € (Derp L){ | snod = dos, for some 0 #n € Z}
and
(Derf L) :={d € (Derp L){ | syod =dos, foralln € Z}.
Then, we have
(Dery L)§ = soad P = (DeryL){.
Proof. First, it is clear that
(Der L)} O (Derf L)§ D syoadP
for all m € Z. Thus, it is sufficient to show that
(Dery L){ C syoadP. (50)
Therefore, let 5,, o (ad p +ad?)) € (Der}. L)' C (Der L)' Then, for
hottehett C L,

we have
snosm([p+ad® h@ i) = s,(akh @ ™) = akh @ (<"
and
[smo (p+ad?),h@ " = a(k+n)h @ <

for some n #£ 0. Hence, an = 0, and we obtain a = 0. Therefore, we obtain
S © (adp—l—ad(o)) =spoadp € s,0adP.
Thus, we have shown (50). ([

Remark 7.4. We can use some results given by Azam related to the derivations of tensor
algebras (see [A2, Thm 2.8]). However, their direct application to our tensor algebra g ®r
F[t*!] yields an isomorphism such that

Derr (g @F F[t*']) 2 Derp g @ pF™!] @ C(g)® p Derp F[1™],

where C(g) is the centroid of g and ® r and @)F are special types of tensor products (since
g is infinite-dimensional). Thus, we need to perform some more work to obtain our desired
form as given above. We only need a special type of subspace, i.e., (Derp L){, so we can
approach them directly without using Azam’s result. In addition, we investigate derivations
of twisted locally loop algebras later that are not tensor algebras.
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Now, we return to classifying D™. Let d € D". Then, add € (Derr L) by Lemma 6.2.
Hence, by Theorem 7.2, p = p; € P (see (46)) and some a = ay € F exist such that
add = s,y 0 (ad p+ad ™).
We claim that a = O for all m # 0. First, we note that i, &’ € §j exist such that tr(hh’) # 0.
In addition, we have
Bhot,h @t ) = Bhot™, K @t™™) = ctr(hh') #0
for all m € Z and some 0 # ¢ € F since # = ctr®¢ (see Lemma 3.9 and we note that € is
defined in the previous paragraph). Now, using a pair & and /', we have
B(d,hot],) @t V) =aB(ho ™ W @™ 1)
=aBhot, i @1 ")
while
B(ld, k1), h @1 ") = —B(h@t,[d, K @)
=am+1)Bhot,h o).
Hence, a = a(m+ 1), i.e., am = 0. Thus, m # 0 implies that a = 0.
Moreover, suppose that a = a; = 0 for all d € DY. Then, adD° C adP (see (46)) and

for the Cartan subalgebra 7 of the original LALA of ., we have /¢ = h @ Fc @ DC.
However, this contradicts the axiom .% = . since [h @ F[t*!],.#] = 0. Hence, p € P

exists such that ad p+d(©) € ad D°.
Consequently, we obtain
adD™ C s;yoadP

for m # 0, and
adp—i—d(O) cadD’ c adP+ Fd"
for some p € P.

Remark 7.5. In some cases, d© ¢ adDY. Thus, a LALA is not always standard. We can
easily construct a non-standard LALA even if dimz D° > 2.

Finally, we investigate the bracket on D := @,,cz D™. Let D" := @, .o D™. First, note
that [D’, D'] acts trivially on L since [ad(p @ t"),ad(p’ @1")] = ad[p@1™,p' @¢"] =0 in
Derr L. Hence,

[D',D'] C Fc=Fts, C A,
by tameness. In addition, for d,, € D" (m # 0) and d,, € D" (n # 0), by the fundamental
property (25) of a LEALA (see Lemma 4.5), we have,

[d",d"] = Om,—nPB(dm,dn)tms, = MO, —nHB(dm,dn)ts, -
Note that B(d,, d,) can be zero since h € b exists such that tr(d,,h) # 0 (and thus B(d,,, h) #
0).Next, since DY C 47, we have [D°, DY) = 0. Moreover, for d € D° such that ad; d =
ad; p € D°, we have [d,D™] = 0. For the last case, i.e., for d € D° such that ad; d =
ady p+ ad® € adD° and d,, € D", we have
[d,dy] = [ad?,d,)] = amd,,.
Now, 1 @™ centralizes the .Z,, and hence we obtain the following identifiication:
L= (L +1oF ) e F[).
Thus:
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Theorem 7.6. Let & be an untwisted LALA. Then, £ is isomorphic to that in Example
6.3. O

8. CLASSIFICATION OF THE TWISTED LALAS

As mentioned earlier, each twisted loop algebra M is a subalgebra of an untwisted loop
algebra M. In particular, we have

M has type Bgz) %21
M has type C(jz) = M has type Aélj)

= M has type D

M has type BC?) = M has type A<213)+1.

Remark 8.1. In the case where J is finite, such as J = {1,2,...,n}, the type Ay usually
means the Lie algebra sly; (F). Therefore, it may be better to write
L has type ng) = ng) = L has type Aélj)_l = Agzll
L has type BC%Z) =BCY = I hastype A(le) = Agl)

in order to follow the common notations. However, in this study, we use the type of the
Lie algebra sl;(F) as Ay, instead of A5 provided that J is an infinite set, as mentioned
in the Introduction.

First, we provide some basic lemmas for twisted locally loop algebras, as follows:
(1) (g°@F[*]) @ (g~ @tF[t*?]) for type C(jz) or BC(;), and

@ (023:2(F) @ F[*2)) @ (s@1F[r*?])  for type B}
where in (1) g = sly341(F) or g = sly5(F) (see (43) for 0), and in (2) s is the minus space

of 0y542(F) by 7, as described in (44). Note that 0552 (F)® = 02541 (F), which has type
Bj.

Lemma 8.2. (1) g~ is an irreducible g°-module.
(2) s is an irreducible 0,5, (F)*-module.

Proof. For (1), it is sufficient to show that w € % (g°)v for any v,w € g—, where % (g°)
is the universal enveloping algebra of g®. However, this is a local property. Thus, a finite-
dimensional split simple subalgebra f of g exists of the same type such that vw € f~ C g~
and f° C g°. It is well known that this property holds in the finite-dimensional case (e.g.,
see [K]). Thus, we are finished. Similarly, (2) holds. ([l

Lemma 8.3. (1) Let C be the centralizer of g° ing+T. If0£x€C, thenx €T~ \ g .
(2) Let C be the centralizer of 03512(F)* in shy2(F)° + T, = 02512(F) + T3 .
Then, C =0.

Proof. For (1), we can write each Lie algebra as
g+T=(g+T)°@(g+T) =(@°+T%)@(g" +T").

Let
x=x;0x_€(g+T)°d(g+T) =@ +T%) @ (g +7")
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be in C. Then, for any y € g°, we have

0= [x,y] = bre, v+ [x-,)].
Hence, [x;,y] =0and [x_,y] = 0. However, the centralizer Cgo 70 (g°) = 0 since g° +T°
is tame, as well as Z(g®) = 0 (given that ¥ = %, + T is tame and .%, = (g° @ F[t2]) @
(9~ ®tF[tT2])© Fec, cf. Section 4). Hence, x; =0, and we obtainx € (g+7) =g~ +7T".
If x € g~, then % (g°)x, where % (g°) is the universal enveloping algebra of g°, is a g°-
submodule of g~. However, since dimp g~ > 1 and g~ is an irreducible g®-module (by
Lemma 8.2), then we have g~ D % (g°)x = Fx, which implies that x has to be 0 in this
case. Similarly, (2) holds by property (45). (I

Lemma 84. (1) Let h € T)5. for type BC(j2> or h € T3 for type C(j2).

[h,9°] C g™, then h € T, | or h € Ty, respectively.
(2) Let h € T, for type B(jz). Suppose that [h,005.2(F)] C s, then h € 5o =sNHh°
(for s¢, see (44) in the last paragraph of Section 5).

Suppose that

Proof. For (1), let x € g° and y = [h,x] € g~. Then, —y = o(y) = [0(h),x]. Hence,
[h+ o (h),x] =0 forall x € g°. Therefore, h+ 0o (h) € Cin Lemma 8.3, and thus 1+ o (h) €
T—. However since h+ o(h) € T°, we obtain h+ o(h) = 0. Thus, o(h) = —h, ie.,
h € T,5 , or T,5, respectively.

Similarly for (2), we obtain 2+ (k) = 0 by Lemma 8.3. Thus, /4 € 5. O

Let . be a twisted LALA of infinite rank, i.e., the core .Z. is a universal covering of

a twisted locally loop algebra of type B(32>, ng) or BC(jz) for an infinite index J. As in
the untwisted case, by selecting a homogeneous complement of the Z-graded core, we can
write

L=%o@D", PD'cP L=EP L5 and D"CZ,,
mez mez SeR0 meZ
where &) is a generator of (R%)7. Let
L =4 )Z2( L)

be the centerless core and let (g,h) be the grading pair of the Lie 1-torus .%. such that
b is the set of diagonal matrices of a locally finite split simple Lie algebra g, as before.
According to this terminology, .&! = %./Z(.%.) can be identified with

L:=(g@F[r*]) & (s@tF[r*]).

We note that the subalgebras g™ = g° and g~ in the previous terminology correspond
to g and s in this new terminology.

Let L be a locally loop algebra of type Xj(z). Then, L is A-graded, where A is a locally
finite irreducible root system of type X5. In addition, we can see that g is A U {0}-graded
and s is A’ U {0}-graded, where A™ and A’ are given as follows.

A H Ared ‘ A

Bj A Ag = (A
Cy A Aqp =Dgy
BCy || Aqh UAlg =Bj A
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In this case, our new notation (A;)*? denotes the (orthogonal disjoint) union
(A1)7 = UiesAi = {+& | i €7}
of root systems A; = {£¢;} of type A, which satisfy A; L A; for distinct , j. In particular,

we have
6= @D g ad s= P s
acA*dU{0} BeA'U{0}

As in the untwisted case, we can classify diagonal derivations of a twisted locally loop
algebra L in general.

Let
(Derp L)) := {d € Derr L | d(go ®1*™) C go ®1*"
and d(sg @1*"*") C s @12 forall o € A4, B € A and m € Z}

and take d € (Derp L)8. Then, as before, d |4 is a diagonal derivation of g, and thus, by
Neeb [N1], d |g= ad p for some p € P, depending on the type of g (see (46)). Let

d' :=d—adp € (Derr L)).
Then, we have d'(g® 1) = 0. In particular, we have d'(h ® 1) = 0. Thus, in the same
manner as the untwisted case, we can show that for 0 # x®1 € s ®1, if
d(x®t) =ax®t (51)
fora € F, then
diyot ) =—ayor! (52)
forally €s_g.

Lemma 8.5. For the above s, we have % (g).sg = s for any B € A, where % (g) is the
universal enveloping algebra of g.

Proof. Since % (g).sp is a nonzero submodule of s, then it must be s by the irreducibility
of 5. ]

By Lemma 8.5, for a fixed § € A’, the three subspaces

g1, s 1, and 5,ﬁ®t*l

generate L as a Lie algebra. As before, let d” := d' —ad®). Then, we have d"(g® 1) =
d'(g®1) = 0 and using (51), we obtain d"(x®1) = d'(x®1t) —ax®t = 0 for x € sp.
Similarly, using (52), we have d"(y®1™ ') =d'(y®1 ') +ay®1~! = 0fory € s_g. Thus,
we have d”(L) =0 and d” = 0. Hence, we obtain

d=adp+ad"?. (53)

Again, we define the shift map s,, form € Z on L= (g® F[1*?]) & (s ® tF [t*?]) by

2k+2m 2k+1) =R t2k+2m+l

Szm(x®t2k) =Xt and s, (vt =
forxegandves. Let
(Derg L)(z)’" :={d €DerpL|d(gg@t*) C goq@1H+2m

and d(sg @ 1%t C sg @122 forall o0 € A, B € A and k € Z}
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and we take dp,, € (Derp L)%m. Then, we have s_y, o dp,, € (Derg L)8. Hence, by (53),
some p = pg, € Panda=ay,, € F exist such that s_,, 0 do,, = ad p+ad'?), and thus

doy = somoadp+ at?d®) = s,,, 0 ad p + ar®"*! %
Therefore, as in Theorem 7.2, we have the following.
Lemma 8.6. For all m € Z, we have

(Derp L)(Z)'" = som o (Derp L)g = symo0(adP® Fd(o)),
where P is defined in (46). U

Moreover, as in Lemma 7.3, we have the following.
Lemma 8.7. Forallm € 7Z, let
(Der L)3" := {d € (Derg L)3" | 52, 0d = d 0 53, for some 0 #n € 7}

and
(Derf L)3" := {d € (Derp L)3" | 53, 0d = d o 55, for all n € 7}.
Then, we have
(Der L)3" = symoad P = (Dery L)3™.
O

Now, we return to the classification of D™. Let da,, € D*". Then, adda,, = s 0 ad p+
at*d®) for some p € Pand a € F by Lemma 8.6. Then, as in the untwisted case, we can
show that a = 0 for all m # 0, using

B(d.ht),H @t ) = —Bh 1, [dom,H @177 ?))

for some h, k' € b such that tr(h, h") # 0. Furthermore, as in the untwisted case, some p € P
exists such that adp+d 0) ¢ ad DO, Thus, the spaces D™ for even m s coincide with those
in Example 6.3.

Next, we determine (Derp L)%m“, where

(Derg L)§"*" := {d € Derp L | d(gq ®1*) C 56 @ 1221
and d(sg @ 1%+ C gg @122 forall o € A™, B € A and k € Z}.

Lemma 8.8. Let g € (Derp L)(z)’"H. Then, g commutes with a shift map sy; for all i € Z.
Proof. We note that
qxa @) =0 (x4 € ga, & € Ay, k€ Z)
for By or C5, and that
qlxg @t =0 (xg €sp, B E Aoy, kETZ)
for BC, since s = 0 and g9 = 0. Therefore, in particular,
qo0%i(z) = $2i04(2)

for z=xq ®1°" in the case of type B; or C3, and for z = x5 ® 1*+1 in the case of type BC5.
For any other given homogeneous element x we can find suitable homogeneous elements
y and z such that x = [y, z] in the following sense.

l‘2k
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I x | y | z
By or Cy Xot Q1% ya/®t2k Zg' ® 1
Xo € ga (A €EAg) | Yo € 9 (06/ € Ash) Zg" € Go (OC” € Alg)
xp @17 v @5 2 @1
xg €55 (BEAw) | ypr €5p (B € Awn) | 27 € g (" € Ag)

The table shown above is for By or C5.

x = xq @17 (xq € ga, & € Ay,), there are y = yu @12
2o @1 (2o € g, @& € Agg) such that x = [y, z].
Similarly, for BC5, we obtain the following table.

For example, we can understand that for any

(Vor € gy @' € Aypy) and z =

| x \ y \ z
BCj Xa ®[2k yp! ®l‘2k71 zpr Xt
Xa € 9a (OC S Ash) Y’ S 5p/ (ﬁ/ S Ash) 2p" € Spgr (ﬁ” S Aex)
Xo ®12k Yo! ®t2k—] Zﬁ//@l
Xa € 9a ((X S Alg) yp! € Sp/ (OC/ S Alg) Zg! € 5p1 (ﬁ” € Aex)
X ®l2k+1 yp! ®12k zpn Xt
xp €55 (B E€Aw) | Yo € 9o (& € Agp) | zpr € 5pr (B” € Auy)
xp @ £2FFT Yoy DI 27 ®1
xg €55 (B EAL) | yor € gar (& € Arg) | zgr € 5pr (B” € Ax)
In the expression x = [y, z], we note that ¢(z) = 0 is always true for all By, C5 and BC5 as
before, which is the most important fact in this case. Hence, we obtain
gosi(x) = gosi([y,z]) =q([y,i(z)])
[q(¥),2i(2)] + [, g ©52i(2)]
= lg(y),52(2)]
= i([q(v).2])
= i([g().q + [»4(2)])
= 82 O‘]([yv D
= 82 Oq(x)

Therefore, g o sy; = sp;0q on L. [l

Lemma 8.9. Let L= (g® F[1*?]) @ (s @ tF[t*?]) be a twisted loop algebra, which is
double graded by AU{0} and Z as above. Let d be in (Derp L)3™*! such that s,0d = dos.
Then, a unique derivation d on L exists such that

dli=d, dxo* Y =s50dx®*) and dvor*)=s_jod(ve )
forall x € g, v € 5, and k € 7. Moreover,

d € (Derp )™ suchthat syod =dosy, forallk € Z.

Proof. The uniqueness is clear since the image of all the homogeneous elements has been
determined. Therefore, it is sufficient to show that d is a derivation. Thus, we need to
check the following: Forx,y € gand v,w € s,

(@) d(xat* yer ) = [dxe?h),yo ]+ o d(ye )]

) d(x®@t* verX]) =[dx®*),ver*]| + xo2 dvor?)]

(c) d‘([x® 12k+1 Y ®t2€+1}) _ [J(x®t2k+1),y ® t2€+1] + [x® t2k+17j(y ®t2[+1)}
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(d) ([x®t2k+1,v®t2£+1]) — [ ~(x®t2k+1),v®t2€+l] + [x®t2k“,d~(v®t2”1)}
(e) d([x®t2k+1,v®t2£]) — [ ~(x®t2k+l) v®t2ﬂ + [x®t2k+l’j(v®[2£)]
) d(per* 1 wer]) =[dyer ) wert ]+ ver T dwe?)

(@ d(vat* wat?]) =[dvet?*),war? ]+ vet?* dwet?)).
All of these equations involve simple calculations, but we check them to be sure.
For (a), we have

(LHS) _ ([x7y] ®t2k+2[+1) =5 Od([x,y} ®t2k+2£) =5 Od([x®t2k,y®t2[])
=si([dxe),yer |+ e dyer)
[d(x@r),yo 2 + @™ s 0d(y®r*)] = (RHS).

For (b), we have

(LHS) = d([x,v] @ £*720) = s_y o d([x,v] @ 2 2041))
=s 1 ([dxe),varr™ + ke dyort))
=[dx@) ver? ]+ xor* s 1 od(ve )] = (RHS).

For (c), we have

(LHS) = d([x,] ®t2k+2z+2) = d([x, ]®t2k+2Z+2])
=d(x@* ya ) = [dxer),yo P+ ke dyor )
=51 ([dxe),y@r* ) + k@™ dos(y@1*))]

I+

=[s10d(x®@r*),y@ M+ 5 (k@ d(ya*))
(since s and d commute)

— [J(x®l2k+l),y®t%+l] + [x®t2k+l’s1 Od(y®l‘2[>] — (RHS)
For (d), we have

(LHS) = d([x,V] ®t2k+2£+2) — s_1 0d([x,v] ®tzé+3])
=51 Od([x®t2k,v®[22+3])
=5 1 ([dx@),v@ 2 )+ ko d(vo )
:s1([d(x®t2k),v®t%+1]) +s,z([x®t2k+1,d(v®t2£+3)])
=[s1od(x@),v@ N+ x@ s Hod(ve )]

= (RHS) (since s and d commute).
For (e), we have

(LHS) — ([ 7‘}] ®t2k+2£+1) ([x V} ®t2k+2£+1]> d([x®t2k,v®t25+l])
=[d(x@*),vo X + ko, dve )]
= [s10d(x® ),y + ko dve )] = (RHS).

44
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For (f), we have
(LHS) = d([v,w] @ 12 *H1)) = 51 0d([v,w] @ 2+24])
—s10d(vo 1 wa )
=si([dver* wer M+ e dwer )
=sldve* N wert])) + vt dwe )
= [d(v®t2k+l)7w®t2[] +s_1([v®t2k+'7d(w®t25+l)]) = (RHS).
For (g), we have
(LHS) = d([vw] 024 2]) = d([vw] @2 = (v we )
= [dr @), w2 + X! dwe 2]
= [s10d(v@ ), we ]+ v or¥, s_ od(we )] = (RHS).

For the second assertion, it is clear that d € (Derg Z) %"’H . In addition, since d commutes

with s», then the same is true of d. Hence, by Lemma 7.3, d commutes with sy for all
keZ. O

Thus, together with Lemma 8.6, we have classified the diagonal derivations of twisted
locally loop algebras.

Theorem 8.10. Let L be a twisted loop algebra. Then, we have (Derg L)g =adP® FdO),
where P is defined in (46), and

(Derg L)%m = sy o (Derp L)8 and (Derp L)%’"Jrl =somr1oadT™

forallm € Z, where T~ = s for B%Z), T~ =T, for C(jz) or T~ =Ty;,, for BC%Z),
as defined in Example 6.3.

Proof. By Lemma 8.8, 8.9, and the classification of the untwisted case, if d € (Derg L)%erl ,
then d € 53,11 o (Derp I:)g In addition, by Lemma 8.8 and Lemma 8.7, we obtain d €
Somi10adP. Thus, adp := s_y,_; od € ad P, and we have [p,g"] C g~ according to the
terminology used in Lemma 8.4. Hence, by Lemma 8.4, we obtain p € T~. Therefore,
d e syprr10adT . |

Remark 8.11. If L is a twisted loop algebra of type B(32>, then (Derg L)(z)"“rl = $omi1 0
adsp =ad(so® 2mtl ). Thus, there is no outer derivation of odd degree.

We return to the classification of twisted LALAs. By Theorem 8.10, if d € D21 then
adrd € symy10ad, T~. The bracket on D := €, D™ can be investigated in the same

manner as the untwisted case. In particular, for type BC(j2 ) or C(jz), we use the isomorphism

L= (L +1@F ")) 1@tF ).

Thus, D™ for m € Z is an exact example for each type described in Example 6.3. Thus, we
have completed the classification.

Theorem 8.12. Let £ be a twisted LALA. Then, £ is isomorphic to that in Example
6.3. |
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Remark 8.13. We can show that any twisted LALA is the fixed algebra of some untwisted
LALA. Moreover, for any untwisted LALA £ of type Ag}) or D(31>, a twisted LALA &’
exists, which is a subalgebra of % such that .#’ is the intersection of .Z and the fixed
algebra of a maximal untwisted LALA £ that contains .Z. Note that a maximal twisted
LALA is also unique up to isomorphism, as in the case of a maximal untwisted LALA.

Remark 8.14. By Theorem 7.6 and Theorem 8.12, the LALAs in Example 6.3 comprise
all of the algebras. Given this fact, the following statement is clear and it is a useful
criterion.

If a diagonal matrix p € T with a trace that is a nonzero value (e.g., e;; Or €;; + €5 51,

etc.) is used in a LALA, then this LALA must be of type A(31>, C(32>, or BC%z). Moreover,

if the type is ng) or BC?), then p has to be used in odd degree.

9. STANDARD LALAS
We prove the following criterion whether a LALA is standard or not.

Lemma 9.1. Let (£, ,PB) be a LALA with center Fc and %, is its core, which is a
locally Lie 1-torus with grading pair (g,h). If 0 # d € £ exists such that [d,g] = 0 and
PB(d,c) # 0, then the action of d on the Z-graded core coincides with a nonzero multiple
of a degree derivation relative to 7, and thus £ contains the degree derivation. Hence, £
is standard.

Proof. Letd =Y ¢cg xe forxg € L. If § € R*, then [h,xg] = Fxg C Z, and thus xg =0
since [d,g] = 0. If & € R°\ {0}, then x; € T ®™ for some 0 # m € Z, by Theorem 7.6
and 8.12. However, if xg # 0, then a root vector y € go (@ € A) exists such that [y, xg] # 0,
which is a contradiction. Hence, xg = 0. Thus, d = xg € £ = 4. Then, by Theorems 7.6
and 8.12,
d=p+ad® +bc

forsome p € T =T ®1t° and a,b € F, as well as a # 0, since A (d,c) # 0. Therefore, we
have 0 = [d,g] = [p,g]. However, unless £ has type Ag), we have p € T°, and thus p

must be zero. If .Z has type A(jl), then p € F1, by Lemma 5.10, and thus p must again be
zero (modulo F1). Thus, we obtain d = ad©) + be. [l

Remark 9.2. In [N2, Def.3.6], Neeb defined a minimal LALA .#, which is minimal in
the sense described above and that satisfies one more condition:

3d €  such that W' := spang{a € R* | at(d) = 0} is a reflectable section

of W = spang R*. Thus, [g,d] = 0. Moreover, if §(d) = 0, where J is a generator of
R® =27, then a(d) =0 for all ¢ € R*. Hence, W = W, which is a contradiction. Thus,
0(d) # 0. However, d is a nonzero multiple of a degree derivation modulo of the center by
Lemma 9.1, and thus a minimal LALA in [N2] is a minimal standard LALA in our sense.

Example 9.3. The minimal LALA .% = sly(F[*!]) @ Fc @ F (eq1 +d?) is isomorphic to
aminimal standard LALA 2" =sly(F[r*'])) @ Fe® Fd(©). Infact, let g = diag(z,1,1,...).
Then, g~ 'Xg for X € sly(F[t*!]) gives an automorphism f of sly(F [t*!]). Therefore, we
can extend f from £ onto .Z such that f(c) = c and f(d?)) = e;; +d?). Thus, 2 is
isomorphic to £, as in Lie algebras.
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111
33 .)and putd = p+d?. Then, the minimal LALA
£ =sly(F[t*']) @ Fc @ Fd is not isomorphic to a minimal standard LALA %" In fact,
if . is isomorphic to .Z™, then an isomorphism
v —
exists such that y(d(¥)) = x+ad = x +a(d?) + p) for some x € .Z. = sly(F[t*']) @ Fc
and some nonzero a € F. Then, we have

yoadd® oy~ = ad(y(d"”)) = ad(x+ad® + ap)

in Derg (.%). Now, we can compare the eigenvalues of the same operators yoadd 0o y!
and ad(x + ad®) + ap). Note that the eigenvalues of yoadd @0 v~ ! are all integers. We
can select h = ey — eyt ¢41 € sly (F[t*"]) such that

[xvh] =0,

by taking ¢ >> 0, where ¢;; is a matrix unit. Then,

Example 9.4. Let p = diag(1

x+ad® +ap,hot] =a(h®1),

which implies that @ is a nonzero integer since a is an eigenvalue of ad(x+ad?) +ap). We
can also choose sufficiently large different integers m % n >> 0 that satisfy

[x,emn] =0
and
an=m g (54)
mn

For these integers, m and n, we can see that

et ad® +ap,em] = a <1 _ 1) o = nzm

m n mn

Since
a(n—m)

mn

is an eigenvalue of ad(x+ ad ©) +ap), it must be an integer, which contradicts (54). Hence,
Z is not isomorphic to .Z".
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