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LOCALLY LOOP ALGEBRAS AND LOCALLY AFFINE LIE ALGEBRAS

JUN MORITA AND YOJI YOSHII

ABSTRACT. In this study, we investigate a new class of Lie algebras, i.e., tame locally
extended affine Lie algebras of nullity 1, which are an infinite-rank analog of affine Lie
algebras. This type of algebra is called a locally affine Lie algebra. A certain ideal of a
locally affine Lie algebra, called a core, is a universal extension of a local version of a
loop algebra, which is called a locally loop algebra. We classify locally loop algebras and
locally affine Lie algebras.

Throughout this study, F is a field of characteristic 0. All of the algebras are assumed
to be unital, except the Lie algebras. The tensor products are over F .

1. INTRODUCTION

Historically, root systems have played very important roles in Lie theory and many other
areas. To obtain a root system, we usually need a certain ad-diagonalizable subalgebra H
of a Lie algebra L over F . Then, we have a decomposition:

L =
⊕

ξ∈H ∗
Lξ ,

where H ∗ is the dual space of H and Lξ = {x ∈L | [h,x] = ξ (h)x for all h ∈H }. An
element ξ ∈H ∗ is called a root if Lξ 6= 0, and the set of roots is defined by

R = {ξ ∈H ∗ |Lξ 6= 0}.
The subspace Lξ is called the root space of ξ and the direct sum above is called the root
space decomposition of L associated with H . In many cases, a root has its own length,
which may come from a symmetric invariant bilinear form B on L . Therefore, it is natural
to consider a triplet (L ,H ,B) in general.

Such a triplet (L ,H ,B) is called a locally extended affine Lie algebra if conditions
(A1) – (A4) are satisfied, as follows:

(A1) H is ad-diagonalizable and self-centralizing, i.e.,

L =
⊕

ξ∈H ∗
Lξ and H = L0,

(A2) B is nondegenerate,
(A3) adx ∈ EndF L is locally nilpotent for all ξ ∈ R× and all x ∈ Lξ , where R× =

{ξ ∈ R |B(tξ , tξ ) 6= 0} and tξ is an element of H such that ξ (h) = B(tξ ,h) for
all h ∈H .

(A4) R× is irreducible, i.e., there is no nontrivial partition, R× = R1 ∪R2, of R× such
that B(tξ1

, tξ2
) = 0 for all ξ1 ∈ R1, ξ2 ∈ R2.
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A locally extended affine Lie algebra is abbreviated as a LEALA. We note that the class
of LEALAs contains:

(1) all finite dimensional split simple Lie algebras,
(2) all affine Lie algebras,
(3) all locally finite split simple Lie algebras,
(4) all extended affine Lie algebras, and
(5) all Heisenberg Lie algebras (as null systems).

We can refer to them all as LEALAs and study them uniformly. The class of LEALAs is
assumed to be the best (or the widest) class of (L ,H ,B) in the following sense.

If we fix ξ ∈ R× and select a ∈ F× such that aB(tξ , tξ ) ∈Q>0, as well as defining (·, ·)
as a symmetric bilinear form on V = ∑ξ∈R Qξ ⊂ h∗ by(

∑
ξ∈R

pξ ξ , ∑
η∈R

qη η

)
= aB

(
∑

ξ∈R
pξ tξ , ∑

η∈R
qη tη

)
for pξ ,qη ∈Q, then we find that the properties of the form (·, ·) are actually Q-valued and
that

(·, ·) is positive semi-definite, while (ξ ,v) = 0 for all ξ ∈ R0 and all v ∈V ,

where R0 = {ξ ∈ R | (ξ ,ξ ) = 0}. This property is usually called the Kac Conjecture,
which was proved for EALAs (defined below) in [AABGP] and for LEALAs in [MY].

Note that R× = {ξ ∈ R | (ξ ,ξ ) 6= 0}. An element of R× is called an anisotropic root,
and an element of R0 is called an isotropic root. We can also refer to R× as the root
system. Note that R× is a finite root system and R0 = {0} when L is a finite-dimensional
split simple Lie algebra (cf. [Bo]), while R× is an affine root system and R0 = Zξ0 for some
ξ0 ∈H ∗ when L is an affine Lie algebra (cf. [Ma]). A LEALA is called an extended
affine Lie algebra (EALA), when dimH < ∞.

The nullity of a LEALA is defined as the rank of the additive group generated by R0.
In particular, we only use the term ‘nullity’ when the additive group is free (see Remark
4.6). The core Lc of a LEALA L is defined as the subalgebra of L generated by Lξ for
all ξ ∈ R×. In fact, Lc is an ideal of L , which is obtained by the Kac Conjecture. If the
centralizer CL (Lc) of Lc in L is contained in Lc, this LEALA L is referred to as tame.
The core Lc modulo of its center Z(Lc), i.e., the quotient Lie algebra Lc/Z(Lc), is called
the centerless core of L .

Previously, we classified LEALAs of nullity 0 in [MY]. The second simplest class
comprises LEALAs of nullity 1. The main aim of the present study is to classify the class
of tame LEALAs of nullity 1, which we call a locally affine Lie algebra (LALA).

The centerless core
L := Lc/Z(Lc)

of a LALA L is a local version of a loop algebra, which we call a locally loop algebra. In
fact, we show that a locally loop algebra is a directed union of loop algebras. We also show
that the core Lc of a LALA L is a universal covering of a locally loop algebra L. (These
classifications were also shown by Neeb [N2, Cor. 3.13] in a different manner.) Thus, we
may say that a LALA is also a local analog of an affine Lie algebra. However, a LALA
L has a more complex structure in a complement of the core Lc, such as L = Lc⊕D.
Note that for an affine Lie algebra, the complement D is simply a 1-dimensional space
spanned by the degree derivation. However, for a LALA, the corresponding complement
D is rather large in general. Due to tameness, D can be embedded into DerF Lc. Then, d ∈
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DerF Lc induces a derivation of L = Lc/Z(Lc) since d(Z(Lc))⊂ Z(Lc), and we see that
d(x) ∈ Z(Lc) for x ∈Lc implies that d = 0 in DerF Lc since Lc = [Lc,Lc]. Therefore,
we can find D⊂DerF Lc ⊂DerF L, but also D⊂OderF Lc ⊂OderF L, where OderF(·) =
DerF(·)/ad(·), which comprises the outer derivations. There is a unique maximal choice
of D in OderF L, such as Dmax in this case, and there are many minimal choices of D in
OderF L, such as D(p) with a specific diagonal matrix p. Thus, a homogeneous space D
such that D(p) ⊂ D ⊂ Dmax leads to our classification. Thus, the classification of LALAs
is obtained by saying that any homogeneous subalgebra L of L max := Lc⊕Dmax that
satisfies

L (p) := Lc⊕D(p)⊂L ⊂L max

is a LALA, and that any LALA can be obtained in this manner. We roughly explain the
LALAs of type A(1)

I and C(2)
I to obtain a better understanding.

Let I be an index set. We suppose that I is any index set, i.e., I can be finite or
infinite. Let MI(F) =

{
(ai j)i, j∈I | ai j ∈ F

}
be the vector space of matrices of size I, and

let TI = TI(F) =
{
(ai j) ∈MI(F) | ai j = 0 for i 6= j

}
be the subspace of MI(F), which

comprises all diagonal matrices.

[A(1)
I ] First, we explain the untwisted type A(1)

I . Let slI(F) be the subspace of MI(F)
that comprises trace 0 matrices with only finitely many nonzero entries. Let F [t±1] be the
algebra of Laurent polynomials, and let slI(F [t±1]) be the Lie algebra slI(F)⊗F [t±1]. For
example, if I = N (the natural numbers), then we see that

slN(F [t±]) =
∞∪

n=2

sln(F [t±]) =
∪
n

(
sln(F [t±]) O

O O

)
.

We refer to slI(F [t±1]) as a locally loop algebra of type A(1)
I , which is simply an infinite-

rank analog of a loop algebra sl`+1(F [t±1]) of type A(1)
` . We use the following conventions.{

slI has type AI if I is an infinite index set,
slI = sl`+1 has type A` if I is a finite index set that comprises `+1 elements.

As in the case of sl`+1(F [t±1]), a universal covering slI(F [t±1])⊕Fc of slI(F [t±1]) exists,
where Fc is the 1-dimensional center. Then we can construct the Lie algebra

L ms := slI(F [t±1])⊕Fc⊕Fd(0), (1)

where d(0) = t
d
dt

is the degree derivation. This L ms is the simplest example of a LALA,

which is called a minimal standard LALA of type A(1)
I . In contrast to the affine Lie

algebra case, there are more examples of type A(1)
I , which are obtained by adding diagonal

derivations of slI(F [t±1]), and we explain these as follows. First, note that

slI(F)+TI

is a Lie algebra with center Fι , where ι = ιI = (δi j)i, j∈I is in TI. Let

AI :=
(

slI(F)+TI

)
/Fι (2)

be the quotient Lie algebra. We identify the subalgebra

slI(F) =
(

slI(F)+Fι
)
/Fι

of AI with slI(F). Consider the Lie algebra AI⊗F [t±1]. We construct the Lie algebra
ˆAI := AI⊗F [t±1]⊕Fc⊕Fd(0) (3)
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as described in (1), which contains L ms.

Theorem 1.1. L max := ˆAI is a maximal LALA of type A(1)
I , i.e., any LALA of type A(1)

I

is a subalgebra of ˆAI. In addition, any LALA of type A(1)
I contains a LALA

L (p) := slI(F [t±1])⊕Fc⊕F(p+d(0)) (4)

for some p ∈ TI.

This L (p) is called a minimal LALA determined by p. In general, we note that L (p)
may be isomorphic to L ms = L (0), but not always isomorphic to L ms (see Example 9.4).
Note that a LALA L of type A(1)

I has a decomposition L = Lc⊕D for a homogeneous
complement D that satisfies D(p) = F(p+d(0))⊂ D⊂ Dmax and Lc⊕Dmax = ˆAI.

[C(2)
I ] Next, we explain the twisted type C(2)

I . Let s =
(

0 −ι
ι 0

)
be the matrix of

size 2I, where ι = ιI, as described above. Define an automorphism σ of period 2 on
sl2I(F)+T2I by

σ(x) = sxT s

for x ∈ sl2I(F)+T2I, where xT is the transpose of x. Let sp2I(F) be the fixed subalgebra
of sl2I(F) by σ , which is of type CI. Let s be the (−1)-eigenspace of σ such that

sl2I(F) = sp2I(F)⊕ s.

Moreover, let T + be the 1-eigenspace and T− is the (−1)-eigenspace of T2I relative to σ .
Note that T2I = T +⊕T−, and thus

sl2I(F)+T2I =
(
sp2I(F)+T +)⊕ (s+T−

)
.

In addition, note that Fι2I is σ -invariant and Fι2I ⊂ T−. Let

A2I :=
(

sl2I(F)+T2I

)
/Fι2I,

as described in (2). We have the induced automorphism on A2I, which is also denoted by
σ for simplicity. Thus, we obtain the fixed algebra

A σ
2I =

(
sp2I(F)+T +),

where we again omit the bars. Let

ˆA2I := A2I⊗F [t±1]⊕Fc⊕Fd(0),

as in (3). We extend σ to ˆA2I as

σ̂(x⊗ tk) := (−1)kσ(x)⊗ tk,

and identically on Fc⊕Fd(0). Then, we obtain the fixed algebra

ˆA σ̂
2I =

(
(sp2I(F)+T +)⊗F [t±2]

)
⊕
(
(s+T−)⊗ tF [t±2]

)
⊕Fc⊕Fd(0). (5)

Note that ˆA σ̂
2I contains the subalgebra

L ms :=
(
sp2I(F)⊗F [t±2]

)
⊕
(
s⊗ tF [t±2]

)
⊕Fc⊕Fd(0),

which is called a minimal standard twisted LALA of type C(2)
I . As in the case of type

A(1)
I , we have



LOCALLY LOOP ALGEBRAS AND LOCALLY AFFINE LIE ALGEBRAS 5

Theorem 1.2. L max := ˆA σ̂
2I is a maximal twisted LALA of type C(2)

I , i.e., any LALA of

type C(2)
I is a subalgebra of ˆA σ̂

2I. Moreover, any LALA of type C(2)
I contains a minimal

twisted LALA

L (p) :=
(
sp2I(F)⊗F [t±2]

)
⊕
(
s⊗ tF [t±2]

)
⊕Fc⊕F(p+d(0))

for some p ∈ T +.

We must emphasize that the usual twisting process works for the locally loop algebra
sl2I(F)⊗ F [t±1] but also for the bigger algebra

(
sl2I(F) + T2I

)
⊗ F [t±1]. Note that a

LALA L of type C(2)
I has a decomposition L = Lc⊕D for a homogeneous complement

D that satisfies D(p) = F(p+d(0))⊂ D⊂ Dmax and Lc⊕Dmax = ˆA σ̂
2I.

Next, we explain how the classification of LALAs is conducted. First, we classify the
cores of the LALAs. We show that the core of a LALA is a locally Lie 1-torus and that the
core is a universal covering of a locally loop algebra. We also show that there is a one to
one correspondence between reduced root systems extended by Z (which are classified in
[Y3, Cor.15], as the class of reduced locally affine root systems) and the cores of LALAs.

The second step of the classification process involves determining a complement D of
the core Lc of a LALA L = Lc⊕D. As explained above, we can obtain D⊂ DerF Lc ⊂
DerF L or D⊂OderF Lc ⊂OderF L, where L = Lc/Z(Lc) is the centerless core (which is
a locally loop algebra).

Now, we need some information about DerF L. Derivations of this type of algebra were
studied in [BM], [B], and [NY]. However, the derivations of a locally loop algebra are
new. We can use some results from [A1] for the untwisted case since L is a tensor product
algebra (see Remark 7.4). However, we need to determine the twisted case. Thus, we
propose a new method. Clearly, we need to use the classification of DerF g for a locally
finite split simple Lie algebra g, as described by Neeb in [N1]. Fortunately, we do not
need all of the information about DerF L to classify D. In fact, we only need to know the
diagonal derivations of degree m. To explain this, we note that L has double grading, i.e.,

L =
⊕

α∈∆∪{0}

⊕
k∈Z

Lk
α ,

where ∆ is a locally finite irreducible root system. The diagonal derivations of degree m
denote the space

(DerF L)m
0 := {d ∈ DerF L | d(Lk

α)⊂ Lk+m
α for all α ∈ ∆ and k ∈ Z}.

It is crucial to determine the case where m = 0, i.e., (DerF L)0
0. Next, (DerF L)m

0 can be
determined easily for the untwisted case. However, for the twisted case, (DerF L)m

0 is still
difficult when m is odd. Finally, using some new techniques (see Lemma 8.8 and Lemma
8.9), the classification of (DerF L)m

0 is completed in Theorem 8.10.
If we take D as a homogeneous complement of the graded algebra Lc, then D has

Z-grading, e.g.,
D =

⊕
m∈Z

Dm,

and each Dm can be identified with a subspace of the known space (DerF L)m
0 . Finally, we

classify the Lie brackets on D and the concrete brackets are described in Example 6.3.
The remainder of this paper is organized as follows. In Section 2, we define a locally Lie

G-torus and we consider a locally Lie 1-torus as a special case. In Section 3, we introduce a
locally loop algebra, which is a centerless locally Lie 1-torus. We classify locally Lie 1-tori
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in general. We prove that a centerless locally Lie 1-torus is uniquely determined by a root
system extended by Z, and that a locally Lie 1-torus is a locally loop algebra or a universal
covering of a locally loop algebra. In Section 4, we recall the definition of a LEALA and
we prove some general properties of a LEALA. In Section 5, we summarize and prove
several properties related to LEALAs of nullity 0. In Section 6, we define a LALA. We
show that the core of a LALA is a universal covering of a locally loop algebra and we then
construct many examples of LALAs. In Sections 7 and 8, we classify untwisted LALAs
and twisted LALAs. Finally, we provide our main theorem.

Theorem 1.3. The examples in Example 6.3 comprise all LALAs.

In Section 9, we discuss standard LALAs.

The authors thank Karl-Hermann Neeb and Erhard Neher for helpful discussions and
suggestions regarding this study.

2. LOCALLY LIE G-TORI

To classify Lc and L = Lc/Z(Lc), we need to study localy Lie G-tori, which are very
useful. Let ∆ be a locally finite irreducible root system (see [LN1]), and we denote the
Cartan integer

2(µ,ν)
(ν ,ν)

by 〈µ ,ν〉 for µ ,ν ∈ ∆, while we also let 〈0,ν〉 := 0 for all ν ∈ ∆. Recall that ∆ is called
reduced if 2α /∈ ∆ for all α ∈ ∆. We define the subset

∆red := {α ∈ ∆ | 1
2

α /∈ ∆}

of ∆, which is a reduced locally finite irreducible root system. Note that ∆ = ∆red if ∆ is
reduced. To simplify the description later, we partition the locally finite irreducible root
system ∆ according to length. The roots of ∆ of minimal length are called short. The roots
of ∆, which are two times a short root of ∆, are called extra long. Finally, the roots of ∆,
which are neither short nor extra long, are called long. We denote the subsets of the short,
long, and extra long roots of ∆ by ∆sh, ∆lg, and ∆ex, respectively. Thus,

∆ = ∆sht∆lgt∆ex.

Clearly, the last two terms in this union may be empty. Indeed,

∆lg = /0 ⇐⇒ ∆ is a simply laced type or type BC1,

and
∆ex = /0 ⇐⇒ ∆ = ∆red.

Let G = (G,+,0) be an arbitrary abelian group. In general, for a subset S of G, the
subgroup generated by S is denoted by 〈S〉.

Definition 2.1. A Lie algebra L is called a locally Lie G-torus of type ∆ if:
(LT1) L has a decomposition into subspaces

L =
⊕

µ∈∆∪{0}, g∈G

L g
µ

such that [L g
µ ,L h

ν ]⊂L g+h
µ+ν for µ,ν ,µ +ν ∈ ∆∪{0} and g,h ∈ G;
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(LT2) For every g ∈ G, L g
0 = ∑µ∈∆, h∈G [L h

µ ,L g−h
−µ ];

(LT3) For each nonzero x ∈ L g
µ (µ ∈ ∆,g ∈ G), an element y ∈ L −g

−µ exists such that
t := [x,y] ∈L 0

0 satisfies [t,z] = 〈ν,µ〉z for all z ∈L h
ν (ν ∈ ∆∪{0},h ∈ G);

(LT4) dimL g
µ ≤ 1 for µ ∈ ∆ and g ∈ G, and dimL 0

µ = 1 if µ ∈ ∆red;
(LT5) 〈suppL 〉= G, where suppL = {g ∈ G |L g

µ 6= 0 for some µ ∈ ∆∪{0}}.
If ∆ is finite, we omit the term ‘locally’ and simply call it a Lie G-torus. Furthermore,

if G∼= Zn, then L is called a locally Lie n-torus, or simply a locally Lie torus. We refer
to the rank of ∆ as the rank of L .

Remark 2.2. (i) Condition (LT5) is simply for convenience but if it fails to hold, we may
replace G by the subgroup generated by suppL .

(ii) It follows from (LT1) and (LT3) that L admits a grading by the root lattice 〈∆〉.
Let

Lλ :=
⊕
g∈G

L g
λ (6)

for λ ∈ 〈∆〉, where L g
λ = 0 if λ 6∈ ∆∪{0}. Then, L =⊕λ∈〈∆〉 Lλ and [Lλ ,Lµ ]⊂Lλ+µ .

(iii) L is also graded by the group G, i.e., if

L g :=
⊕

µ∈∆∪{0}
L g

µ , (7)

then L =⊕g∈G L g and [L g,L h]⊂L g+h. In addition, suppL = {g ∈ G |L g 6= 0}.
(iv) From (LT3), for µ ∈ ∆red, we can see that the elements eµ ∈L 0

µ , fµ ∈L 0
−µ , and

µ∨ = µ∨L := [eµ , fµ ] exist such that [µ∨,z] = 〈ν ,µ〉z for all z ∈ L h
ν , ν ∈ ∆ and h ∈ G.

Thus, the elements eµ , fµ ,µ∨ determine a canonical basis for a copy of the Lie algebra
sl2(F). (Note that µ∨ is a unique element in [L 0

µ ,L 0
−µ ] that satisfies the property.) The

subalgebra g of L generated by the subspaces L 0
µ for µ ∈ ∆red is a locally finite split

simple Lie algebra with the split Cartan subalgebra

h := ∑
µ∈∆red

[L 0
µ ,L 0

−µ ],

and µ∨ are the coroots in h. (We can show this in the same manner as the proof of [MY,
Prop.8.3], or see [St, Sec.III]). Note that if ∆ is finite, then g is a finite-dimensional split
simple Lie algebra. Furthermore, ∆red may be replaced by ∆ in the definition of g and h
since it can be shown in the same manner described by [Y1, Thm.5.1] that L 0

2ν = 0 for all
ν ∈ ∆red. We say that the pair (g,h) = (g,h)L is the grading pair of L .

(v) A locally Lie G-torus is perfect, and thus it has a universal covering.
(vi) Let L be a locally Lie G-torus and Z is its center. Then, we can see that Z ⊂L0.

In addition, L /Z is a locally Lie G-torus with a trivial center. In general, a Lie algebra
with a trivial center is called centerless.

We define the root systems of locally Lie G-tori. Let L = ⊕µ∈∆∪{0} ⊕g∈G L g
µ be a

locally Lie G-torus. For each µ ∈ ∆, let

Sµ := {g ∈ G |L g
µ 6= 0},

and we refer to
∆̃ := {Sµ}µ∈∆

as the root system of L (which is called an extension datum in [LN2]). This system fits
into the system introduced in [Y1]. Let us state the precise definition. A family of subsets
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Sµ of G indexed by ∆, such as {Sµ}µ∈∆, is called a root system extended by G if

〈∪µ∈∆ Sµ〉= G, (8)

Sν −〈ν,µ〉Sµ ⊂ Sν−〈ν ,µ〉µ for all µ,ν ∈ ∆, and (9)

0 ∈ Sµ for all µ ∈ ∆red. (10)

Moreover, {Sµ}µ∈∆ is called reduced if

S2µ ∩2Sµ = /0 for all 2µ ,µ ∈ ∆. (11)

In the same manner described in [Y1, Thm 5.1], we can show that the root system ∆̃ of L
is a reduced root system extended by G, i.e., ∆̃ satisfies (8), (9), (10), and (11). Moreover,

Sµ = Sν if µ and ν are the same length, and

Sν ⊂ Sµ for all ν ∈ ∆ if µ is a short root. (12)
Finally, if we let

S0 := {g ∈ G |L g
0 6= 0}, (13)

then we obtain
S0 = Sµ +Sµ (14)

for a short root µ .

Lemma 2.3. A locally Lie G-torus L of type ∆ is a directed union of Lie G-tori. In
particular, L =

∪
∆′ L∆′ , where ∆′ is a finite irreducible full subsystem of ∆ that contains

a short root and L∆′ is the subalgebra of L generated by Lα for all α ∈ ∆′.
Furthermore, if G is torsion-free, then a locally Lie G-torus L of type ∆ is a directed

union of Lie n-tori, where n runs over a certain subset of N. In particular, L =
∪

∆′,G′ L G′
∆′ ,

where G′ is a finitely generated subgroup of G and L G′
∆′ is the subalgebra of L generated

by L g
α for all α ∈ ∆′ and g ∈ G′.

Proof. Since S = Sµ generates G for a short root µ by (12), then it is easy to check that L∆′

is a Lie G-torus. Hence, the statement is true since ∆ is a directed union of finite irreducible
full subsystems that contain a short root (see [LN2, 3.15 (b) and the proof]). The second
statement follows from the fact that G is a directed union of finitely generated subgroups,
and the fact that a finitely generated torsion-free abelian group is free. �
Remark 2.4. Let ∆ and G be as given in Lemma 2.3. For a locally finite irreducible full
subsystem ∆′ of ∆, and for a subgroup G′ of G, we put M = L G′

∆′ , which can be defined
as given in Lemma 2.3. Then,

M =
⊕

µ ′∈∆′∪{0}, g′∈G′
M g′

µ ′ ,

where
M g′

µ ′ = M ∩L g′

µ ′ (µ ′ ∈ ∆′∪{0}, g′ ∈ G′).

In fact, we obtain
M g′

µ ′ = L g′

µ ′ (µ ′ ∈ ∆′, g′ ∈ G′),

and since M is generated by L g
µ for all µ ∈ ∆′ and g ∈ G′, then for g′ ∈ G′, we have

M g′
0 = ∑

µ ′∈∆′, h′∈G′
[L h′

µ ′ ,L
g′−h′

−µ ′ ] = ∑
µ ′∈∆′, h′∈G′

[M h′
µ ′ ,M

g′−h′

−µ ′ ].

Thus, we can check conditions (LT1) – (LT5) for M , which implies that M is a locally
Lie G′-torus.
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3. LOCALLY LOOP ALGEBRAS

For any index set I, in the introduction, we defined

MI(F) =
{

(ai j)i, j∈I
∣∣ai j ∈ F

}
≈Map(I×I,F),

as the set of all matrices of size I, which is naturally a vector space over F . Let glI(F)
be the subspace of MI(F) that comprises matrices with only a finite number of nonzero
entries. Then, glI(F) is an associative algebra and a Lie algebra with the usual commutator
bracket. Furthermore, we can define the trace of a matrix in glI(F), and the subalgebra of
glI(F) that comprises trace 0 matrices is denoted by slI(F), as follows.

slI(F) = {x ∈ glI(F) | tr(x) = 0}

We note that MI(F) is not an algebra if I is infinite, but

Mfin
I (F) := {x ∈MI(F) | each row and column of x have only finitely many nonzero entries}

is an associative algebra with the identity matrix ι = ιI, and a Lie algebra with the com-
mutator bracket. In fact, this gives the Lie algebra of derivations of slI(F), as described
by Neeb [N1]. In particular, we have

[Mfin
I (F),slI(F)]⊂ slI(F) and DerF(slI(F))' ad(Mfin

I (F)).

As a result, we note that there are 14 types of locally loop algebras, i.e., we obtain:

A(1)
I , B(1)

I , C(1)
I , D(1)

I , B(2)
I , C(2)

I , BC(2)
I , E(1)

6 , E(1)
7 , E(1)

8 , F(1)
4 , G(1)

2 , F(2)
4 , G(3)

2 ,

where we mainly assume that I is infinite since we already know the affine Lie algebras.

The locally finite split simple Lie algebra of type XI is defined as a subalgebra of
slI(F), sl2I+1(F) or sl2I(F) as follows:

Type AI: slI(F);
Type BI: o2I+1(F) = {x ∈ sl2I+1(F) | sx =−xT s};
Type CI: sp2I(F) = {x ∈ sl2I(F) | sx =−xT s};
Type DI: o2I(F) = {x ∈ sl2I(F) | sx =−xT s},

where I is assumed to be infinite, xT is the transpose of x, and

s =

0 ι 0
ι 0 0
0 0 1

 for BI, s =
(

0 −ι
ι 0

)
for CI, or s =

(
0 ι
ι 0

)
for DI. (15)

Note that s ∈Mfin
2I+1(F) for BI and s ∈Mfin

2I(F) for CI or DI, and that s2 = ι2I+1 for BI,
s2 = −ι2I for CI and s2 = ι2I for DI. In addition, BI, CI, or DI is the fixed algebra of
sl2I+1(F) or sl2I(F) by an automorphism σ , which are defined as

σ(x) =−sxT s for BI or DI, and σ(x) = sxT s for CI. (16)

In [NS], Neeb and Stumme showed that these algebras comprise all of the infinite-
dimensional locally finite split simple Lie algebras. In addition, they are considered to be
locally Lie 0-tori (in the case where G = {0}). Moreover, since locally finite split simple
Lie algebras are centrally closed (see [NS]), we have the equality {infinite-dimensional
locally Lie 0-tori} ={infinite-dimensional locally finite split simple Lie algebras}. We
note that Lie 0-tori are exact finite-dimensional split simple Lie algebras. In the present
study, we are interested in the class of locally Lie 1-tori.



LOCALLY LOOP ALGEBRAS AND LOCALLY AFFINE LIE ALGEBRAS 10

Let F [t±1] be the algebra of Laurent polynomials over F . We call one of the following
four Lie algebras an untwisted locally loop algebra:

(1) Type A(1)
I : slI(F)⊗F [t±1];

(2) Type B(1)
I : o2I+1(F)⊗F [t±1];

(3) Type C(1)
I : sp2I(F)⊗F [t±1];

(4) Type D(1)
I : o2I(F)⊗F [t±1].

(In addition, it is called an untwisted loop algebras if I is finite.) Each of the following
three Lie algebras is called a twisted locally loop algebra:

(5) Type B(2)
I : (o2I+1(F)⊗F [t±2]⊕ (s⊗ tF [t±2]),

where s = F(2I+1) is the natural o2I+1(F)-module;
(6) Type C(2)

I : (sp2I(F)⊗F [t±2])⊕ (s⊗ tF [t±2]),
where s = {x ∈ sl2I(F) | sx = xT s};

(7) Type BC(2)
I : (o2I+1(F)⊗F [t±2])⊕ (s⊗ tF [t±2]),

where s = {x∈ sl2I+1(F) | sx = xT s}. (In addition, it is called a twisted loop algebra if I is
finite.) Note that sl2I(F) = sp2I(F)⊕ s for C(2)

I and sl2I+1(F) = o2I+1(F)⊕ s for BC(2)
I .

The Lie bracket of each untwisted type is natural, i.e., [x⊗ tm,y⊗ tn] = [x,y]⊗ tm+n.
The Lie bracket of type C(2)

I or BC(2)
I is also natural, and we have

[sp2I(F),s]⊂ s and [s,s]⊂ sp2I(F) for C(2)
I ,

[o2I+1(F),s]⊂ s and [s,s]⊂ o2I+1(F) for BC(2)
I .

Note that C(2)
I or BC(2)

I is the fixed subalgebra of sl2I(F)⊗F [t±1] or sl2I+1(F)⊗F [t±1]
by the automorphism σ̂ , which is defined as

σ̂(x⊗ tm) := (−1)mσ(x)⊗ tm (17)

(see (16)). This construction is called a twisting construction by an automorphism σ .

For B(2)
I , we have o2I+1(F)s ⊂ s, and thus we define the bracket of o2I+1(F) and s

by the natural action, i.e., [x,v] = xv = −[v,x] for x ∈ o2I+1(F) and v ∈ s. We define a
bracket on s such that [s,s]⊂ o2I+1(F) as follows. First, let (·, ·) be the bilinear form on s
determined by s. Then, there is a natural identification

o2I+1(F) = Ds,s := spanF{Dv,v′ | v,v′ ∈ s},

where Dv,v′ ∈ End(s) is defined by Dv,v′(v′′) = (v′,v′′)v− (v,v′′)v′ for v′′ ∈ s. Thus, we
define [v,v′] := Dv,v′ . Note that [v′,v] =−[v,v′]. It is easy to check that the bracket

[x⊗ t2m + v⊗ t2m′+1,x′⊗ t2n + v′⊗ t2n′+1]

=[x,x′]⊗ t2(m+n) +Dv,v′ ⊗ t2(m′+n′+1) + xv′⊗ t2(m+n′)+1− x′v⊗ t2(m′+n)+1

defines a Lie bracket for m,m′,n,n′ ∈ Z.

There is a twisting construction for B(2)
I (see [N2]), which we discuss in Section 7, but

we also consider that the simple description of B(2)
I is important for developing the theory

of locally Lie tori.

Remark 3.1. We often omit the term ‘untwisted’ or ‘twisted’ and we simply refer to a
locally loop algebra. In addition, a locally loop algebra can be simply called a loop algebra
in more general theory. For example, A⊗F [t±1] for any algebra A is called a loop algebra
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of A. However, we use the term ‘locally’ in this study to distinguish the familiar loop
algebras in Kac-Moody theory.

We can easily check that

all locally loop algebras are centerless locally Lie 1-tori.
For example, let ∆ be the root system of type BCI, and we put g = o2I+1(F) and s ⊂
sl2I+1(F), as defined above. Let h be the Cartan subalgebra of g that comprises diagonal
matrices. Then, h decomposes g into the root spaces, such as g = h⊕

⊕
µ∈∆red gµ , and s

into the weight spaces, such as s =
⊕

µ∈∆∪{0} sµ , where ∆red is of type BI. Therefore, the

twisted locally loop algebra L := (g⊗F [t±2])⊕(s⊗tF [t±2]) of type BC(2)
I is decomposed

into ⊕
m∈Z

(
(h⊗Ft2m)⊕

⊕
µ∈∆red

(gµ ⊗Ft2m)⊕
⊕

µ∈∆∪{0}
(sµ ⊗Ft2m+1)

)
.

This gives a natural double grading by the groups 〈∆〉 and Z, and we can check the axioms
of a locally Lie torus. In addition, the center is contained in L0 = h⊗F [t±2], and thus L
is a centerless locally Lie 1-torus. The grading subalgebra is equal to g = o2I+1(F). We
refer to the g-module s as the grading module.

The following lemma was proved for the base field C in [ABGP], but it also works for
our base field F . We use the notation

∆̃ := {Sµ}µ∈∆

(defined in Section 2) for the case where 〈∪µ∈∆ Sµ〉 = Z (the root system ∆ extended by
Z).

Lemma 3.2. Let ∆ be a finite irreducible root system. Let L = ⊕µ∈∆∪{0}, m∈Z L m
µ and

M = ⊕µ∈∆∪{0}, m∈Z M m
µ be centerless Lie 1-tori, which have the same root system ∆̃

extended by Z. Then, an isomorphism ϕ : L −→M exists such that

ϕ(µ∨L ) = µ∨M and ϕ(L m
µ ) = M m

µ for all µ ∈ ∆ and m ∈ Z. (18)

Remark 3.3. If L is a loop algebra, then ∆̃ determines L , i.e., there is a one to one
correspondence between loop algebras and root systems extended by Z (see [Y3]). In
particular, ∆̃ determines whether the loop algebra is untwisted or twisted.

Proof. Let 0 6= e±µ ∈L 0
±µ and µ∨ be an sl2-triple for µ ∈Π, where Π is a root base of ∆

and let 0 6= x±ν ∈L ∓1
±ν and ν∨ be an sl2-triple, where ν ∈ ∆ is the highest long (or short)

root relative to Π (depending on the type ∆̃). Then, the set

{e±µ , µ∨, x±ν , ν∨ | µ ∈Π}
satisfies the Serre relations. Hence, using the Gabber-Kac Theorem (e.g., see [MP, Thm
4, p.381]), a homomorphism ψ exists from the derived affine Lie algebra A (which is a
1-dimensional central extension of a loop algebra), which is determined by ∆ and ν (or ∆̃)
into L . Let

A =
⊕

µ∈∆∪{0}, m∈Z
Am

µ

be the loop realization of A (which could be twisted) viewed as a Lie 1-torus such that
ψ(A0

±µ) = Fe±µ and ψ(A∓1
±ν) = Fx±ν . Then, ψ is graded relative to the Z-grading but

also to the double grading 〈∆〉×Z. Note that a centerless Lie torus is Z-graded simple
(see [Y1, Lem.4.4]). Thus, the nontrivial Z-graded ideal of A is exactly the 1-dimensional
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center Fc, and the image of ψ contains ∪µ∈∆Lµ = ∪µ∈∆⊕m∈Z L m
µ . Therefore, ψ is onto

since L is generated by ∪µ∈∆Lµ . Thus, the induced graded isomorphism from the loop
algebra A/Fc onto L exists. Similarly, we obtain a graded isomorphism from the loop
algebra A/Fc onto M . Based on these isomorphisms, we obtain the graded isomorphism
ϕ described above. �

Thus, a centerless Lie 1-torus is isomorphic to a loop algebra, and a Lie 1-torus with
nontrivial center is isomorphic to a derived affine Lie algebra, which has a 1-dimensional
center.

For a Lie 1-torus L =⊕µ∈∆∪{0}, m∈Z L m
µ , we have

dimL m
µ 6= 0 (so dimL m

µ = 1) for all µ ∈ ∆sh and m ∈ Z (so Sµ = Z), and (19)

the center of L is equal to [L m
0 ,L −m

0 ] for any 0 6= m ∈ Z. (20)
This can be seen easily from the loop realization. Furthermore, we have

dim ∑
m∈Z

[L m
µ ,L −m

−µ ] =

{
1 if L is loop
2 if L is derived affine

(21)

since

∑
m∈Z

[L m
µ ,L −m

−µ ] =

{
Fµ∨ if L is loop
Fµ∨+Fc if L is derived affine

for µ ∈ ∆ and a nontrivial central element c.

Lemma 3.4. The center of a locally Lie 1-torus is at most 1-dimensional. In particular,
for a locally Lie 1-torus L =⊕µ∈∆∪{0}, m∈Z L m

µ ,

L has a 1-dimensional center⇐⇒L is a directed union of derived affine Lie algebras,

and
L is centerless⇐⇒L is a directed union of loop algebras

in the following sense:
L =

∪
∆′⊂∆

L∆′ ,

where ∆′ is a finite irreducible full subsystem of ∆ and L∆′ is the homogeneous subalgebra
of L generated by Lµ for µ ∈ ∆′, and L∆′ is a derived affine Lie algebra if the center of
L is 1-dimensional and a loop algebra if L is centerless.

In particular, the properties (19), (20), and (21) given above hold in a locally Lie 1-
torus.

Proof. Most of the statements follow from Lemma 2.3. In fact, Lie 1-tori are either derived
affine Lie algebras or loop algebras, and thus L is a directed union of derived affine Lie
algebras or loop algebras. Considering the loop realization of a derived affine Lie algebra,
we find (19).

Suppose that C is a 2-dimensional subalgebra contained in the center. Then, a derived
affine Lie algebra or a loop algebra exists that contains C. However, this is impossible
because their centers have to be 1-dimensional or zero.

Now, we need to show that derived affine Lie algebras and loop algebras cannot appear
simultaneously. If this is case, e.g., L ′ is a derived affine subalgebra and L ′′ is a loop
subalgebra, then a derived affine or a loop algebra exists that contains both L ′ and L ′′ as
graded subalgebras. Suppose that L ′ and L ′′ are contained in L ′′′ for a loop algebra L ′′′.
However, this is impossible because of property (20) above. Thus, suppose that L ′ and
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L ′′ are contained in L ′′′ for a derived affine Lie algebra L ′′′. Then, this is also impossible
because of property (21) above. Thus, a locally Lie 1-torus is either a directed union of
derived affine Lie algebras, such as Lda, or a directed union of loop algebras, such as Llo.
It is now clear that the center of Llo is zero. To show the 1-dimensionality of the center of
Lda, let C′ (6= 0) be a finite dimensional central subspace of a derived affine subalgebra of
Lda. For any µ ∈ ∆ and m ∈ Z, a derived affine subalgebra M exists that contains L m

µ and
C′. Considering the loop realization of M, we find that C′ is the 1-dimensional center of M
and, in particular, C′ is the 1-dimensional center of Lda.

Finally, let L be a locally Lie 1-torus. Then, (21) is clear. To show (20), let Z :=
[L k

0 ,L −k
0 ] for 0 6= k ∈ Z. For any z ∈ Z, µ ∈ ∆, and m ∈ Z, a derived affine subalgebra

or a loop subalgebra exists that contains z and L m
µ , and z is in the center of the subalgebra

(by (20) for a Lie 1-torus as given above). Hence [z,L m
µ ] = 0 for all µ ∈ ∆ and m ∈ Z.

Therefore, Z is contained in the center of L . Thus, Z = 0 or dimZ = 1. If Z = 0, then a
loop subalgebra exists, and thus L = Llo. Hence, Z = 0 is the center of L . If dimZ = 1,
then Z is the center of L since the center of L is at most 1-dimensional. �

For any two elements x⊗ tm and y⊗ tn, in each locally loop algebra L , we define the
new bracket on a 1-dimensional central extension

L̃ := L ⊕Fc

by

[x⊗ tm,y⊗ tn] := [x,y]⊗ tm+n +m(x,y)δm+n,0c, (22)

where (x,y) is the trace form tr(xy), or for type B(2)
I , the direct sum of the trace form and

the bilinear form on s is determined by the symmetric matrix s given above. Indeed, this
gives a central extension since L is a directed union of loop algebras and L̃ is a derived
LALA, i.e., a 1-dimensional central extension of a loop algebra.

Lemma 3.5. A universal covering of a locally loop algebra is given by (22).

Proof. Suppose that L̂ is a universal covering of a locally loop algebra L . We know
that dimF Z(L̂ ) ≥ 1 since L̃ is a covering. Therefore, if dimZ(L̂ ) > 1, then a cover-
ing L ⊕Fc1⊕Fc2 of L exists. Let x1,y1, . . . ,xm,ym,u1,v1, . . . ,un,vn ∈L be such that
∑m

i=1[xi,yi] = c1 and ∑n
i=1[ui,vi] = c2. Let L ′ be a loop subalgebra of L that contains

xi,yi,u j,v j for 1≤ i≤m and 1≤ j≤ n. Then, L ′⊕Fc1⊕Fc2 is perfect, and thus this is a
covering of L ′. However, a universal covering of a loop algebra has a 1-dimensional cen-
ter, which is a contradiction. Hence, dimZ(L̂ ) = 1. However, it is then clear that L̂ ∼= L̃
since the unique morphism from L̂ onto L̃ has to be one to one. �

Remark 3.6. By Lemma 3.4, a locally Lie 1-torus has at most a 1-dimensional center.
Thus, if we show that L̂ is a locally Lie 1-torus, then we also obtain a proof of Lemma
3.5. In fact, Neher showed that a universal covering of a locally Lie torus is a locally Lie
torus in general (see [Ne3] and [NeS]).

Now, we classify locally Lie 1-tori. The method we use is derived from [NS]. In par-
ticular, we show that there is only one locally Lie 1-torus for each reduced root system
extended by Z. The root systems extended by Z were classified in [Y3, Cor.15] as the class
of locally affine root systems (more general results are given in [LN2]). The following is a
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list of all the reduced root systems extended by Z of infinite rank:

AI×Z, BI×Z, CI×Z, DI×Z,(
(BI)sh×Z

)
t
(
(BI)lg×2Z

)
,
(
(CI)sh×Z

)
t
(
(CI)lg×2Z

)
,((

(BCI)sht (BCI)lg
)
×Z

)
t
(
(BCI)ex× (2Z+1)

)
,

where we write tµ∈∆(µ×Sµ) for {Sµ}µ∈∆, and for a subset ∆′ of ∆, if all Sµ ’s for µ ∈ ∆′
are the same set S, we write ∆′×S instead of tµ∈∆′(µ×Sµ). Furthermore, we simply use
a type instead of writing ∆, e.g., AI for ∆ of type AI.

We can see that these seven systems are the exact root systems of the locally loop
algebras introduced above, and thus we label each system by

A(1)
I , B(1)

I , C(1)
I , D(1)

I , B(2)
I , C(2)

I , BC(2)
I .

We also use the label for the root system as the type of a locally Lie 1-torus. We efer to
the first four types as untwisted and the last three types as twisted. Note that

all Sµ ’s are Z for the untwisted type, and in general,

Sµ = Z for a short root µ . (23)

First, we provide the following lemma when ∆ is finite. Suppose that Π ⊂ ∆ is an
integral base, i.e., ∆ ⊂ 〈Π〉, and Π is linearly independent in the vector space that defines
∆, where 〈Π〉 is the additive subgroup generated by Π, i.e., 〈Π〉 is the Z-span of Π. Note
that

Π⊂ ∆red. (24)

Lemma 3.7. Let L =⊕µ∈∆∪{0},m∈Z L m
µ and M =⊕µ∈∆∪{0},m∈Z M m

µ be centerless Lie
1-tori of the same type ∆̃, where ∆ is finite. Let Π be an integral base of ∆ that contains a
fixed short root ν ∈ ∆ if ∆̃ is of the untwisted type or a fixed short root ν ∈ ∆ if ∆̃ is of the
twisted type. Let 0 6= xµ ∈L 0

µ and 0 6= yµ ∈M 0
µ for each µ ∈Π (see (24)). Furthermore,

let 0 6= x ∈L 1
ν and 0 6= y ∈M 1

ν (see (23)).
Then, a unique isomorphism ψ from L onto M exists such that ψ(x) = y, ψ(µ∨L ) =

µ∨M and ψ(xµ) = yµ for all µ ∈Π.

Proof. By (18), an isomorphism ϕ : L −→M exists such that ϕ(µ∨L )= µ∨M and ϕ(L m
µ )=

M m
µ for all µ ∈ ∆ and m ∈ Z. Hence, we have y = aϕ(x) and yµ = aµ ϕ(xµ) = for some

a and aµ ∈ F×. Let f : 〈Π〉Z×Z −→ F× be the group homomorphism of the abelian
groups defined by f (µ,0) = aµ and f (0,1) = a. Let D f be the diagonal linear automor-
phism on M defined by D f (y) = f (µ ,m)y for y ∈M m

µ . Then, D f is an automorhism of
Lie algebras. Indeed, D f ([y,y′]) = f (µ + µ ′,m + m′)[y,y′] = f ((µ,m)+ (µ ′,m′))[y,y′] =
f (µ,m) f (µ ′,m′)[y,y′] = [ f (µ,m)y, f (µ ′,m′)y′] = [D f (y),D f (y′)] for y ∈M m

µ and y′ ∈
M m′

µ ′ . Hence, ψ := D−1
f ◦ϕ is the required isomorphism.

For the uniqueness, we first note that this isomorphism is unique on L −1
−ν and L 0

−µ for
all µ ∈Π since [L 1

ν ,L −1
−ν ] = Fν∨ (since L is centerless) and [L 0

µ ,L 0
−µ ] = Fµ∨. Thus, it

is sufficient to show that L is generated by L 1
ν , L −1

−ν , and L 0
±µ for all µ ∈ Π. However,

by a standard argument (or see [St, Prop.9.9]), L 0 (= the finite-dimensional split simple
Lie algebra g) is generated by L 0

±µ for all µ ∈ Π. Then, we can choose a root base of ∆
such that ν is the negative highest long root if ∆̃ is of the untwisted type or the negative
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highest short root if ∆̃ is of the twisted type. Using the loop realization of L , it is clear
that L is generated by L 0 = g and L ±1

±ν . �

Now, we can prove that there is a one to one correspondence between the class of
centerless locally Lie 1-tori and the class of reduced root systems extended by Z, and that
locally loop algebras exhaust all of the centerless locally Lie 1-tori. Note that this method
works for any cardinality of ∆.

Theorem 3.8. Let L = ⊕µ∈∆∪{0}⊕m∈Z L m
µ be a locally Lie 1-torus of type ∆̃. If L is

centerless, then L is graded isomorphic to the locally loop algebra of type ∆̃, and if L
has a nontrivial center, then L is graded isomorphic to a universal covering of the locally
loop algebra of type ∆̃ given by (22).

Proof. First, it should be noted that we already know this theorem for Lie 1-tori, i.e., the
case where ∆ is finite. In addition, it is sufficient to show the case where L is centerless
(see Lemma 3.5), and thus we assume that L is centerless. Let M =⊕µ∈∆∪{0}⊕m∈Z M m

µ
be a locally loop algebra of type ∆̃. Furthermore, let ∆̃ = {Sµ}µ∈∆.

Fix a long root ν if ∆̃ is of the untwisted type, or a short root ν if ∆̃ is of the twisted type,
and let 0 6= x ∈L 1

ν and 0 6= eν ⊗ t ∈M 1
ν (see (23)). Let Π be an integral base of ∆ that

contains ν . Let 0 6= xµ ∈L 0
µ and 0 6= eµ ⊗1 ∈M 0

µ for each µ ∈ Π (see (24)). Then, we
claim that the map ψ : µ∨L 7→ µ∨M and xµ 7→ eµ ⊗1 for all µ ∈Π, and x 7→ eν ⊗ t extends
to an isomorphism from L onto M . Indeed, if we let Γ⊂Π be a finite irreducible subset
that contains ν , then Γ is an integral base of the irreducible root system ∆Γ := ∆∩〈Γ〉.

Let ∆̃Γ = {Sµ}µ∈∆Γ be the root system extended by Z. Let LΓ be the subalgebra deter-
mined by ∆Γ, i.e., the subalgebra of L generated by L m

µ for all µ ∈ ∆Γ and m ∈ Z, which
is a centerless Lie 1-torus of type ∆̃Γ (see Lemma 3.4). Similarly, let MΓ be the subalgebra
of M determined by ∆Γ. Then, by Lemma 3.7, a unique graded isomorphism ψΓ from LΓ
onto MΓ exists such that ψΓ(xµ) = eµ ⊗1 for all µ ∈ Γ and x 7→ eν ⊗ t.

Suppose that Γ1,Γ2 ⊂ Π are finite irreducible subsets that contain ν such that LΓ1 ⊂
LΓ2 . Then, the uniqueness of the isomorphisms ψΓ1 and ψΓ2 implies that they agree on
LΓ1 . Since L is the directed union of the subalgebras LΓ ( Γ ⊂ Π is a finite irreducible
subset), we can define an isomorphism ψ : L −→M by ψ(x) = ψΓ(x) for x ∈LΓ, which
has the required properties. �

Note that in (22), we defined the Lie bracket of a universal covering of a locally loop
algebra using a symmetric bilinear form (·, ·) on a locally loop algebra. In particular, we
can write (·, ·) = tr(·, ·)⊗ ε(·, ·), where ε(tm, tn) = δm+n,0. In fact, it is easy to check that
this form is invariant, graded (as a form of a Lie torus defined in [Y2]), and nondegenerate.
We simply refer to a form for a symmetric invariant graded bilinear form on a Lie G-torus.
We use the following lemma later.

Lemma 3.9. A nonzero form on a locally Lie 1-torus exists. In addition, this form is unique
up to a nonzero scalar. In particular, a form of a locally loop algebra is equal to c(·, ·) for
some c ∈ F, where (·, ·) is used in (22).

Proof. Only the uniqueness part is not clear (since we already use a form in (22)). How-
ever, this form is unique up to a scalar for a Lie 1-torus (e.g., see [Y2]). Thus, the unique-
ness follows from a local argument since a locally Lie 1-torus is a directed union of Lie
1-tori. �
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4. LALAS

Let us recall LEALAs in [MY]. A subalgebra H of a Lie algebra L is called ad-
diagonalizable if

L =
⊕

ξ∈H ∗
Lξ ,

where H ∗ is the dual space of H and

Lξ = {x ∈L | [h,x] = ξ (h)x for all h ∈H }.
This decomposition is called the root space decomposition (of L with respect to an ad-
diagonalizable subalgebra H ). Note that an ad-diagonalizable subalgebra H is automat-
ically abelian. To confirm this, we need the well-known fact that every submodule of a
weight module is also a weight module. We can use a common trick to obtain the proof,
e.g., as given in [MP, Prop.2.1], but they assumed that H is abelian. To ensure that this
assumption is unnecessary, we prove it here. First we show that:

Claim 4.1. H =⊕ξ∈H ∗ Hξ , where Hξ = Lξ ∩H .

Proof. Suppose that H 6= ⊕ξ∈H ∗Hξ . Then, x ∈H exists such that x can be written as
x = x1 + · · ·+ xn with n > 1, which satisfies xi ∈Lξi \H for all i. Take x ∈H among all
of these elements such that n is minimal, and choose h∈H such that ξ1(h) 6= ξ2(h). Then,
x′ := adh(x)−ξ1(h)x = (ξ2(h)−ξ1(h))x2 + · · ·+(ξn(h)−ξ1(h))xn ∈H . This contradicts
the minimality of n. Hence, we have H =⊕ξ∈H ∗Hξ . �

Now, suppose that h ∈Hξ and h′ ∈Hξ ′ . Then, [h,h′] = ξ ′(h)h′ =−ξ (h′)h. Hence, if
h and h′ are linearly independent, then [h,h′] = 0. Furthermore, we can see that [h,h′] = 0
if they are linearly dependent. Thus, H is always abelian.

In particular, we have
H = H0 ⊂L0 = CL (H ),

where CL (H ) is the centralizer of H in L .

An element of the set
R = {ξ ∈H ∗ |Lξ 6= 0}

is called a root. (We do not call this R a root system and we simply call it the set of roots.)

Let L be a Lie algebra, H is a subalgebra of L , and B is a symmetric invariant
bilinear form of L . A triple (L ,H ,B) (or simply L ) is called a LEALA if it satisfies
the following four axioms (we explain R× shortly):

(A1) H is ad-diagonalizable and self-centralizing, i.e.,

L =
⊕

ξ∈H ∗
Lξ and H = L0;

(A2) B is nondegenerate;
(A3) adx ∈ EndF L is locally nilpotent for all ξ ∈ R× and all x ∈Lξ ,
(A4) R× is irreducible.
Moreover,

(i) If H is finite-dimensional, then L is called an EALA.
(ii) If R× = /0, then (L ,H ,B) is called a null LEALA (or a null EALA if H is

finite-dimensional) or simply a null system. Note that if R× = /0, then the axioms
(A3) and (A4) are empty statements.
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Now, using (A1) and (A2), we find that BLξ×L−ξ is nondegenerate for all ξ ∈ R. In
particular,

BH ×H is nondegenerate.

Lemma 4.2. For each ξ ∈ R, a unique tξ ∈H exists such that B(h, tξ ) = ξ (h) for all
h ∈H .

Proof. By the nondegeneracy of BLξ×L−ξ , x∈Lξ and y∈L−ξ exist such that B(x,y) =
1. Let tξ := [x,y] ∈H . Then,

B(h, tξ ) = B(h, [x,y]) = B([h,x],y) = ξ (h)B(x,y) = ξ (h)

for all h ∈H . The uniqueness of tξ follows from the nondegeneracy of BH ×H . �
Using these tξ s, we can define an induced form on the vector space spanned by R

over F , which is simply denoted as (·, ·), by

(ξ ,η) := B(tξ , tη)

for ξ ,η ∈ R. Note that the form (·, ·) is well defined, which is easily confirmed by:

B(∑ξ pξ tξ ,∑η qη tη) = ∑ξ pξ B(tξ ,∑η qη tη) = ∑ξ pξ ξ (∑η qη tη)

= ∑ξ p′ξ ξ (∑η qη tη) = ∑ξ p′ξ B(tξ ,∑η qη tη)

= B(∑ξ p′ξ tξ ,∑η qη tη) = B(∑η qη tη ,∑ξ p′ξ tξ )

= ∑η qηB(tη ,∑ξ p′ξ tξ ) = ∑η qη η(∑ξ p′ξ tξ )

= ∑η q′η η(∑ξ p′ξ tξ ) = ∑η q′ηB(tη ,∑ξ p′ξ tξ )

= B(∑η q′η tη ,∑ξ p′ξ tξ ) = B(∑ξ p′ξ tξ ,∑η q′η tη)

for ∑ξ pξ ξ = ∑ξ p′ξ ξ and ∑η qη η = ∑η q′η η .
Now we call an element of

R× := {ξ ∈ R | (ξ ,ξ ) 6= 0}

an anisotropic root. Axiom (A4) means that R× = R1∪R2 and (R1,R2) = 0, which imply
that R1 = /0 or R2 = /0.

Remark 4.3. Null systems have not been studied widely. In [AABGP], they assumed that
R× 6= /0 for an EALA. We also assume that R× 6= /0 throughout this study.

Remark 4.4. We note that there was one more axiom for a LEALA in [MY], but we
showed that axiom is unnecessary by Lemma 4.2 above.

We say that a triple (L ,H ,B) is admissible if it satisfies (A1) and (A2). A funda-
mental property of admissible triples is as follows.

Lemma 4.5. For ξ ∈ R and all x ∈Lξ and y ∈L−ξ , we have

[x,y] = B(x,y)tξ , (25)

where tξ is defined in Lemma 4.2.

Proof. Let h := [x,y]−B(x,y)tξ ∈H . Then, for all h′ ∈H , we have

B(h,h′) = B(x, [y,h′])−B(x,y)B(tξ ,h′) = B(x,y)ξ (h′)−B(x,y)ξ (h′) = 0.

Hence, by the nondegeneracy of BH ×H , we obtain h = 0. �
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We can scale the above form (·, ·) by a nonzero scalar such that (ξ ,η) ∈ Q for all
ξ ,η ∈ R× (see [AABGP, p.16] or [MY, §3]). Let V be the Q-span of R, such as

V := spanQ R.

We showed the Kac Conjecture in [MY, Thm 3.10], which states that

the scaled form (·, ·) on V is positive semidefinite, and (R0,V ) = 0, (26)

where
R0 := {ξ ∈ R | (ξ ,ξ ) = 0},

the set of isotropic roots or null roots. As a corollary, (W,R×) becomes a reduced locally
extended affine root system (LEARS), where W = spanQ R× (see [MY, §4] and [Y3]). We
simply refer to R as the set of roots, but we refer to R× as a LEARS. This R× satisfies the
fundamental properties of classical finite irreducible root systems, locally finite irreducible
root systems, and affine root systems in the sense of Macdonald [Ma], or extended affine
root systems in the sense of Saito [S]. We do not recall the definition of LEARS because
is is not needed in this study. The reader can find the precise definition in [Y3].

The dimension of the radical of V is called the null dimension for a LEALA. If the
additive subgroup of V generated by R0 is free, we call the rank the nullity of a LEALA.
Thus, we only use the term nullity when 〈R0〉 is a free abelian group.

Remark 4.6. Of course, there is a notion of rank for non-free abelian groups, but to be
consistent with the original theory of EALAs, as given in [AABGP] and [Ne2], we assume
that 〈R0〉 is free for nullity. Thus, if we say that a LEALA L has nullity, this means that
〈R0〉 is a free abelian group. (In [MY], we used the term null rank for nullity, and nullity for
null dimension, but we have changed these terms to maintain consistency with the notion
of nullity in [Ne2].)

The core of a LEALA L , denoted by Lc, is the subalgebra of L generated by the root
spaces Lα for all α ∈ R×. Then, by the Kac Conjecture (26), Lc is an ideal of L . If the
centralizer of Lc in L is contained in Lc, then L is called tame. Note that the core is
zero for a null system (since it is generated by an empty set), so a null system is not tame.

Now, as mentioned earlier, (W,R×) is a reduced LEARS. Thus, by [Y3], a locally finite
irreducible root system ∆ and a reflectable section W ′ of W exist such that ∆red is contained
in R× ∩W ′. In particular, W ′ is a complement of radW , such as W = W ′⊕ radW , where
radW is the radical of W relative to the defining positive semidefinite form of the LEARS
(W,R×). Moreover, a family of subsets {Sµ}µ∈∆ of radW indexed by ∆ exists such that

R× =
∪

µ∈∆
(µ +Sµ), (27)

and {Sµ}µ∈∆ is a reduced root system extended by G = 〈∪µ∈∆ Sµ〉, as defined in Section
2. We note that

radW = (radV )∩W,

by the Kac Conjecture (26).
We can give the graded structure of the core Lc from (27). For each µ ∈ ∆ and g ∈ G,

if g ∈ Sµ , where we let
(Lc)

g
µ := Lc∩Lµ+g,

and if g /∈ Sµ , where we let (Lc)
g
µ := 0. Then, we can easily show that

Lc =
⊕

µ∈∆∪{0}

⊕
g∈G

(Lc)
g
µ ,
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where (Lc)
g
0 := ∑µ∈∆ ∑g=h+k [(Lc)h

µ ,(Lc)k
−µ ], and that

Lc is a locally Lie G-torus of type ∆, (28)

or more precisely, of type {Sµ}µ∈∆. Furthermore, if we let

L g
c :=

⊕
µ∈∆∪{0}

(Lc)
g
µ ,

then we obtain a G-graded Lie algebra

Lc =
⊕
g∈G

L g
c .

Next, we note some properties related to R0 for LEALAs. As mentioned in Section 2,
Sµ = Sν if µ and ν are the same length for µ,ν ∈ ∆. If we let

S := Sµ

for a short root µ , then S contains all Sν , as in (12), and S satisfies 0 ∈ S and 2S− S ⊂ S.
In addition,

S spans radW
(see [Thm 8, Y2]).

Lemma 4.7. Let L be a LEALA. Then, S +S⊂ R0, and S +S = R0 if L is tame.
Moreover, we have radV = spanQ R0. In particular, if L has nullity, then (nullity of L )

= (null dimension of L ).

Proof. The first statement follows from (14) in Section 1, but we present this for conve-
nience with respect to the next statement. Let s,s′ ∈ S. Then, L−µ+s 6= 0 and Lµ+s′ 6= 0 for
µ ∈ ∆sh, and [L−µ+s,Lµ+s′ ] 6= 0, by sl2-theory. (Consider the sl2-subalgebra generated
by Lµ−s and L−µ+s, and let it act on Lµ+s′ .) Therefore, 0 6= [L−µ+s,Lµ+s′ ]⊂Ls+s′ and
hence s+ s′ ∈ R0. Thus, S +S⊂ R0.

Suppose that L is tame. Let σ ∈ R0. If α +σ /∈ R for all α ∈ R×, then Lσ centralizes
the core, and thus Lσ is in the core. Therefore, Lσ = ∑µ∈∆, s+s′=σ [Lµ+s,L−µ+s′ ], and
thus σ = s + s′ for some s,s′ ∈ Sµ = S−µ ⊂ S. However, 0 6= Lµ+s = Lµ−s′+σ and 0 6=
Lµ−s′ since−s′ ∈ Sµ . Therefore, µ−s′+σ ∈R with µ−s′ ∈R×, which is a contradiction.
Thus, α ∈ R× exists such that α +σ ∈ R. (This property is called nonisolated. Therefore,
we have shown that any isotropic root is nonisolated if L is tame.) Note that α = µ + s
for some µ ∈ ∆ and s ∈ S. Hence, s+σ ∈ S, so σ ∈ S−S = S +S. Thus, S +S = R0.

For the last statement, it is sufficient to show that radV ⊂ V 0 := spanQ R0 (the other
inclusion is clear). Since V = W +V 0 (where W = spanQ R×), it is sufficient to show that
(radV )∩W = radW ⊂V 0. However, this is clear since radW = spanQ S, as above. �

Note that if we put
R0

c := {δ ∈ R0 |Lδ ∩Lc 6= 0},
then (14) in Section 2 means that we always have

R0
c = S +S. (29)

Remark 4.8. (1) In fact, the rank of 〈R0〉 as a torsion-free abelian group is always of the
null dimension since the null dimension is now simply the Q-dimension of spanQ R0 by
Lemma 4.7.

(2) There are notions of null dimension and nullity for LEARS (W,R×), i.e., (null di-
mension of R×) := dimradW and (nullity of R×) := rank〈S〉 if 〈S〉 is free (see [Y3]).
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For example, if S = Q, then the null dimension is 1, and the rank (= the largest car-
dinality of linearly independent elements over Z) of Q as a torsion-free group is also 1.
However, we do not say that the nullity is 1 when S = Q.

In general, (null dimension of L ) ≥ (null dimension of R×). If L has nullity, then so
does R×and (nullity of L ) ≥ (nullity of R×) since any subgroup of a free abelian group is
free (e.g., see [G]). If L is tame, then (null dimension of L ) = (null dimension of R×),
and if L has nullity, then

(nullity of L ) = (null dimension of L ) = (nullity of R×) = (null dimension of R×)

since S +S = R0.

Now, we present some basic properties of the center of a LEALA.

Proposition 4.9. Let (L ,H ,B) be a LEALA over F with the center Z(L ), and R0 is the
set of isotropic roots of L . Then:

(1) We have

∑
δ∈R0

Ftδ ⊂ Z(L )⊂H ,

where tδ is a unique element in H defined by (25) in Lemma 4.5.
(2) Let Lc be the core of L and R0

c = {δ ∈ R0 |Lδ ∩Lc 6= 0}. Then, for δ ∈ R0
c , we

have tδ ∈Lc and

∑
δ∈R0

c

Ftδ = Z(Lc)∩H ⊂ Z(L ).

(3) Let R× be the set of anisotropic roots of L (which is a LEARS). Let m = dimQ(rad W )
be the null dimension of R×, i.e., the dimension of the radical of the induced form from B
on W = spanQ R×. Then, m ≥ dimF

(
Z(Lc)∩H

)
, and if m ≥ 1, then dimF

(
Z(Lc)∩

H
)
≥ 1. Hence, m = 1 implies that dimF

(
Z(Lc)∩H

)
= 1 and dimF Z(L )≥ 1.

(4) If L is tame, then ∑δ∈R0 Ftδ = ∑δ∈R0
c

Ftδ = Z(Lc)∩H = Z(L ).
Furthermore, let n be the null dimension of L , i.e., n = dimQ spanQ R0. Then, m =

n ≥ dimF Z(L ). Moreover, if n ≥ 1, then dimF Z(L ) ≥ 1. Hence, n = 1 implies that
dimF Z(L ) = 1.

Proof. (1): Since each δ is an isotropic root, we have [tδ ,x] = 0 for any root vector x∈Lξ .
In fact, [tδ ,x] = ξ (tδ )x = (ξ ,δ )x = 0 since δ is in the radical of the form (see (26)). Hence,
[tδ ,L ] = 0, i.e., tδ ∈ Z(L ). Thus, ∑δ∈R0 Ftδ ⊂ Z(L ). The second inclusion is clear due
to the fact that H is self-centralizing.

(2): For δ ∈ R0
c , let 0 6= x∈Lδ ∩Lc. Then, tδ = [x,y] for some y∈L−δ , and hence tδ ∈

Lc since Lc is an ideal. Thus, ∑δ∈R0
c

Ftδ ⊂Lc∩H , and by (1), we obtain ∑δ∈R0
c

Ftδ ⊂
Lc∩Z(L )⊂ Z(Lc). Therefore, we obtain ∑δ∈R0

c
Ftδ ⊂ Z(Lc)∩H .

For the other inclusion, let x ∈ Z(Lc)∩H . Since

Lc∩H = ∑
ξ∈R×

[Lξ ,L−ξ ]+ ∑
δ∈R0

c

[Lδ ,L−δ ],

we can write
x = ∑

ξ∈R×
aξ tξ + ∑

δ∈R0
c

aδ tδ ,

where aξ ,aδ ∈ F . Let ∆ ⊂ R× be a locally finite irreducible root system determined by a
reflectable section of R̄× and S is a reflection space for a short root in ∆. Then, we know
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that R× ⊂ ∆+S and R0
c = S +S (see (29)). Thus, we obtain

x = ∑
α∈∆,δ ′∈S

aα+δ ′tα+δ ′ + ∑
δ∈S+S

aδ tδ

= ∑
α∈∆,δ ′∈S

(aα+δ ′tα +aα+δ ′tδ ′)+ ∑
δ∈S+S

aδ tδ

= ∑
α∈∆,δ ′∈S

aα+δ ′tα + ∑
α∈∆,δ ′∈S

aα+δ ′tδ ′ + ∑
δ∈S+S

aδ tδ ,

and hence,
y := ∑

α∈∆,δ ′∈S
aα+δ ′tα ∈ Z(Lc).

However, y ∈ h⊂ g, and since g is a locally finite split simple Lie algebra, then y has to be
0. Therefore,

x = ∑
α∈∆,δ ′∈S

aα+δ ′tδ ′ + ∑
δ∈S+S

aδ tδ ∈ ∑
δ∈R0

c

Ftδ ,

and we obtain Z(Lc)∩H ⊂ ∑δ∈R0
c

Ftδ . Hence, ∑δ∈R0
c

Ftδ = Z(Lc)∩H . The second
inclusion follows from (1).

(3): We know that R× ⊂ ∆ + S and m = dimQ(rad W ) = dimQ spanS. However, since
R0

c = S +S, we have m = dimQ spanR0
c . Using B, we define an injective linear map

ϕB : H −→H ∗,

where ϕB(h)∈H ∗ for h∈H is given by ϕB(h)(h′) = B(h,h′) for all h′ ∈H . Note that
ϕB(tµ) = µ for µ ∈ R, where tµ ∈H satisfies [x,y] = B(x,y)tµ for x ∈Lµ and y ∈L−µ .
Set H ◦ = imϕB ⊂H ∗. If we put

t = ϕ−1
B : H ◦ −→H

and tν = t(ν) = ϕ−1
B (ν) ∈ H for ν ∈ H ◦, then we find that tν+ν ′ = tν + tν ′ for all

ν ,ν ′ ∈ H ◦, and taν = atν for ν ∈ H ◦ and a ∈ F . Since R ⊂ H ◦, there is a one to
one correspondence

{δ ∈ R0
c}↔ {tδ}δ∈R0

c
,

and, in particular, we can see that tδ+δ ′ = tδ + tδ ′ for δ ,δ ′ ∈ R0
c and taδ = atδ for δ ∈ R0

c
and a ∈ F . Thus, m = dimQ ∑δ∈R0

c
Qtδ ≥ dimF ∑δ∈R0

c
Ftδ = dimF

(
Z(Lc)∩H

)
. Finally,

if m ≥ 1, then 0 6= δ ∈ R0
c exists and thus tδ 6= 0. Thus, Ftδ 6= 0, and hence we obtain the

last statement.
(4): We have R0 = S +S = R0

c since L is tame (see Lemma 4.7). Hence, ∑δ∈R0 Ftδ =
∑δ∈R0

c
Ftδ . Furthermore, by (2), we already have ∑δ∈R0

c
Ftδ = Z(Lc)∩H ⊂ Z(L ). More-

over, for x ∈ Z(L ), we have x ∈ Z(Lc) since L is tame. Hence, Z(Lc)∩H = Z(L ).
The remaining assertions follow from the fact that R0 = R0

c using (3) and Lemma 4.7. �

Remark 4.10. There are examples of a tame LEALA or EALA where the nullity is ∞
but the center is simply 1-dimensional. For example, L = sl2(C[t±1

i ]i∈N)⊕Cc⊕Cd is a
tame EALA over C of type A1, where d = ∑∞

i=1 aidi with degree derivation di = ti ∂
∂ ti

, and
{ai}i∈N ⊂C is linearly independent over Q. This L has nullity of ∞ but the center is equal
to Fc. Note that the Cartan subalgebra H of L is simply 3-dimensional (for details, see
[MY, Rem.5.2(2)]).

Lemma 4.11. Let (L ,H ,B) be a tame LEALA. Then, we have the natural embedding

L /Z(Lc) ↪→ DerF Lc and L /Z(Lc) ↪→ DerF
(
Lc/Z(L )

)
.
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(Note that Z(L ) = Z(Lc)∩H by Proposition 4.9.)
In particular, if N is a complement of the core Lc, i.e., L = Lc⊕N , then N can be

identified with a subspace of OderF
(
Lc/Z(L )

)
, i.e., the outer derivations.

Proof. Since Lc is an ideal of L , we find that the restriction adx |Lc for x ∈ L is in
DerF Lc and that Z(Lc) is an ideal of L . Let

f : L −→ DerF Lc

be the induced map obtained by this restriction. Since L is tame, we have ker f =
CL (Lc) = Z(Lc). Hence, we obtain the first embedding. In addition, adx |Lc induces
a derivation of Lc/Z(L ) since Z(L ) = Z(Lc)∩H ⊂ Z(Lc). Let

f ′ : L −→ DerF
(
Lc/Z(L )

)
be the induced map. Let x ∈ ker f ′. Then, we have [x,Lc]⊂ Z(L ) = Z(Lc)∩H . For any
w ∈Lc, since Lc is perfect, we can write w = ∑i[ui,vi] for some ui,vi ∈Lc. Then, [x,y] =
∑i[[x,ui],vi]+∑i[ui, [x,vi]] = 0, and thus [x,Lc] = 0. Hence, ker f ′ ⊂ Z(Lc). It is clear that
Z(Lc)⊂ ker f ′. Thus, ker f ′ = Z(Lc), and hence we obtain the second embedding.

For the second assertion, suppose that adx for x ∈N is inner in DerF
(
Lc/Z(L )

)
, i.e.,

adx = ady on Lc/Z(L ) for some y ∈Lc. Then, we have [x− y,Lc] ⊂ Z(L ). However,
since Lc is perfect, for w = ∑i[ui,vi] (ui,vi ∈Lc), we have [x− y,w] = ∑i[[x− y,ui],vi]+
∑i[ui, [x− y,vi]] = 0. Hence, x− y ∈ CL (Lc) = Z(Lc) by tameness. In particular, x−
y ∈ Lc, but x ∈ Lc, which forces x to be 0. Therefore, adx is an outer derivation of
Lc/Z(L ). �

Finally, we give some definitions for later use.

Definition 4.12. Let V be a vector space over Q, and G is an additive subgroup of V . Let

A =
⊕
g∈G

A g

be a G-graded algebra. Define a linear transformation di on A by

di(ag) = giag

for ag ∈A g, where gi is the i-coordinate of g obtained by a fixed basis of V . Note that di
depends on a basis of V . Then, di is a derivation of A where we have

di(agah) = (gi +hi)agah = giagah +hiagah = di(ag)gh +agdi(ah)

for ah ∈A h and h ∈ G. We refer to each di as an i-th coordinate-degree derivation.
If dimF V = 1, then d1 is simply called a degree derivation.

We define a standard LEALA.

Definition 4.13. If a LEALA L contains all coordinate-degree derivations that act on the
G-graded core, i.e., a locally Lie G-torus, then L is called standard. This concept depends
on the G-graded structure of the core, which is not unique. Thus, when we use this term
more precisely, we say that L is standard (or non-standard) relative to the locally Lie
G-torus.

We define the minimality of a LEALA (see [N2] and Remark 9.2).

Definition 4.14. A LEALA L is called minimal if L is the only LEALA that contains
Lc and which is contained in L (equivalently, if there is no LEALA L ′ that satisfies
Lc ⊂L ′ ( L ). Note that if the nullity is positive, then Lc is never a LEALA. Thus, if L
has positive nullity and Lc is a hyperplane in L (i.e., dimL /Lc = 1), then L is minimal.
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Example 4.15. Let L ms = slN(F [t±1])⊕Fc⊕Fd(0) (as explained in the Introduction),
L1 = slN(F [t±1])⊕Fc⊕F(e11 +d(0)), where e11 is the matrix unit of size N (only (1,1)-
entry is 1 and all the other entries are 0), and L2 = slN(F [t±1])⊕Fc⊕F(p+d(0)), where

p = diag(1,
1
2
,

1
3
, . . . ,

1
n
, . . .) (a diagonal matrix of size N).

Then, these three Lie algebras are all minimal LEALAs. (See Definition 6.1. In fact, these
are minimal LALAs.) In addition, L ms is standard, but L1 and L2 are not standard.

In Example 9.3, we show that L1 is isomorphic to L ms. We note that the concept of
standard is not an isomorphic invariant because it depends on the grading of the core. In
Example 9.4, we also show that L2 is not isomorphic to L ms.

5. LEALAS OF NULLITY 0

We classified LEALAs of nullity 0 in [MY, Thm 8.7]. Now, we describe the tame
LEALAs of nullity 0 in a slightly different manner compared with the description in [MY].

Let M := MI(F), M2I+1(F) or M2I(F) be the space of matrices of an infinite size I,
2I + 1, or 2I, respectively, and TI, T2I+1, or T2I is the subspace of M that comprises
diagonal matrices. Let T ′ be a complement of FιI in TI, where ιI is the identity matrix
such that

TI = T ′⊕FιI.

Then, the following list comprises infinite-dimensional maximal tame LEALAs of nullity
0. (The term “maximal” is used in the usual sense, i.e., no tame LEALA contains each
listed LEALA of each type.)

• Type AI:
slI(F)+T ′ with a Cartan subalgebra T ′ (30)

(Note that T ′ is the unique modulo FιI. In addition, see Remark 5.9 and Lemma
5.10),

• Type BI: o2I+1(F)+T + with a Cartan subalgebra T +, where

T + := {x ∈ T2I+1 | sx =−xs},
• Type CI: sp2I(F)+T + with a Cartan subalgebra T +, where

T + := {x ∈ T2I | sx =−xs},
• Type DI: o2I(F)+T + with a Cartan subalgebra T +, where

T + := {x ∈ T2I | sx =−xs},
and each matrix s is the same as s defined in (15).

We note that FιI is the center of slI(F)+TI, and that

slI(F)+T ′ ∼=
(

slI(F)+TI

)
/FιI

for any T ′. It is sometimes better to embed T ′ into TI/FιI.
As with locally finite split simple Lie algebras, each of type BI, CI, or DI is the fixed

algebra of sl2I+1(F) + T2I+1 or sl2I(F) + T2I by the automorphism σ defined in (16).
This is why we write T + because this is the eigenspace of eigenvalue 1 of σ . We write the
eigenspace of eigenvalue −1 of σ as T−.

Any subalgebra of a maximal tame LEALA of nullity 0 that contains each locally finite
split simple Lie algebra is a tame LEALA of nullity 0. Thus, let L be a tame LEALA of
nullity 0. Then,
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• Type AI: slI(F)⊂L ⊂ slI(F)+T ′ with a Cartan subalgebra L ∩T ′,
• Type BI: o2I+1(F)⊂L ⊂ o2I+1(F)+T + with a Cartan subalgebra L ∩T +,
• Type CI: sp2I(F)⊂L ⊂ sp2I(F)+T + with a Cartan subalgebra L ∩T +,
• Type DI: o2I(F)⊂L ⊂ o2I(F)+T + with a Cartan subalgebra L ∩T +.

(We describe the defining bilinear form B shortly.)

We consider TI more carefully. Set

T as
I = {d ∈ TI | d is almost scalar}= {d ∈ TI | d−aιI ∈ glI(F) for some a ∈ F},

i.e., d has only finitely many different diagonal entries from the identity ιI. Clearly,
T as
I is a subspace of MI(F).

Lemma 5.1. Let h be the diagonal subalgebra of slI(F). Then, we have

T as
I = h⊕FιI⊕Fe j j, (31)

where e j j is the matrix in MI(F) such that the ( j, j)-entry is 1 and all the other entries are
0 for any fixed index j ∈ I. In particular, we have

glI(F) = slI(F)⊕Fe j j

for any j ∈ I.
Furthermore, let I be any finite subset of I, and ιI := ∑i∈I eii. Then, we have

T as
I = hI⊕FιI⊕T as

I\I , (32)

where hI is the subspace of h such that all (k,k)-components of k ∈ I\ I are 0, and T as
I\I is

the subspace of T as
I such that all (i, i)-components of i ∈ I are 0.

Moreover, we have
TI = hI⊕FιI⊕TI\I , (33)

where TI\I is the subspace of TI such that all (i, i)-components of i ∈ I are 0.

Proof. It is clear that T as
I ⊃ h⊕FιI⊕Fe j j. For the other inclusion, let x∈ T as

I . Then, a∈F
exists such that y := x−aιI ∈ TI∩glI(F). Hence, y = y− tr(y)e j j + tr(y)e j j and note that
h := y− tr(y)e j j ∈ h. Thus, x = h + aιI + tr(y)e j j ∈ h⊕FιI⊕Fe j j. This completes the
description of (29).

For the second decomposition (30), we have T as
I = TI ⊕T as

I\I , where TI is the subset of
T as
I such that all (k,k)-components of k ∈ I \ I are 0. However, it is then easy to see that

TI = hI⊕FιI . The last decomposition (31) is now clear. �

We have not mentioned the defining bilinear form B of a tame LEALA L of nullity 0.
Thus, as described in [MY], let g be one of the the locally finite split simple Lie algebra

slI(F), o2I+1(F), sp2I(F) or o2I(F),

contained in L , as defined above. The restriction BL×g of B to the space L × g is a
nonzero scalar multiple of the trace form, and the remaining part, i.e., the restriction to
C×C, where C is a complement of g, can be any symmetric bilinear form.

In fact, in [MY], we did not state clearly why the restriction BL×g of B is a nonzero
scalar multiple of the trace form. However, this follows from the perfectness of g and the
invariance of B. We summarize this phenomenon in a slightly more general setup. Let us
refer to a symmetric invariant bilinear form simply as a form for convenience.
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Lemma 5.2. Let L be a Lie algebra with a form B and let g be a perfect ideal of L. If any
form of g is equal to B′ := B |g×g up to a scalar, then any invariant bilinear form on L×g
or on g×L is equal to B |L×g or B |g×L up to a scalar. In this case, “invariant on L×g”
means that B([x,y],z) = B(x, [y,z]) for x,y ∈ L and z ∈ g.

Proof. Let E be an invariant bilinear form on L×g. For x∈ L and y∈ g, since y = ∑i[ui,vi]
for some ui,vi ∈ g, then we have

E(x,y)= E(x,∑
i
[ui,vi])= c∑

i
B′([x,ui],vi)= c∑

i
B([x,ui],vi)= cB(x,∑

i
[ui,vi])= cB(x,y)

for some c ∈ F . We can prove the result for g×L in a similar manne. �

Recall that the associative algebra

Mfin
I (F) = {x ∈MI(F) | each row and column of x have only finitely many nonzero entries}

is a Lie algebra under the commutator. Using the matrix s ∈Mfin
I (F) defined in (15), we

can define an automorphism of Mfin
K (F), where K = 2I or 2I+1, by the same definition of

σ in (16). We also denote the automorphism by σ . Thus, each fixed Lie algebra Mfin
K (F)σ

contains a locally finite split simple Lie algebra g := slK(F)σ .

Lemma 5.3. Let L be any subalgebra of Mfin
I (F), and let M be any subalgebra of glI(F).

Then, the trace form tr on L×M and M×L is well defined and it is invariant.
Hence, if L contains slI(F), then any invariant bilinear form on L× slI(F) or on

slI(F)×L is equal to c tr for some c ∈ F. In particular, slI(F) is a perfect ideal of L.
Moreover, if L is a subalgebra of Mfin

K (F)σ that contains g = slK(F)σ , then g is a perfect
ideal of L, and any invariant bilinear form on L× g or on g×L is equal to c tr for some
c ∈ F.

Proof. Since xy ∈ glI(F) for x ∈ L and y ∈M, then the trace form tr(xy) is well defined.
To show the invariance, i.e., tr([A,B]y) = tr(A[B,y]) for A,B ∈ L and y ∈M, it is sufficient
to show this for y = ei j (the matrix unit of (i, j)-component).

Let A = (amn), B = (bmn), and C = (cmn) = [A,B]. Then, cmn = ∑k(amkbkn− bmkakn)
and tr([A,B]y) = tr((cmn)ei j) = c ji = ∑k(a jkbki−b jkaki) and

tr(A[B,y]) = tr((amn)
(
∑
m

bmiem j−∑
n

b jnein)) = ∑
k

(a jkbki−akib jk).

Therefore, the trace form is invariant. We can prove this for the case where M× L in a
similar manner. We note that slI(F) or g is a perfect ideal of L. By [NS, Lem. II.11], any
form on slI(F) is equal to c tr for some c ∈ F×. Therefore, the second and last statements
follow from Lemma 5.2. �
Remark 5.4. We employ the notation given in Lemma 5.3. We can identify Mfin

I (F) with
the derivation algebra Der

(
glI(F)

)
, and Mfin

K (F)σ with the derivation algebra Derg (see
[N1]).

Suppose that B is a symmetric invariant bilinear form on

MI := slI(F)+TI.

Then, by Lemma 5.3, the restriction of B to MI× slI(F) or slI(F)×MI is equal to
c tr for some c ∈ F . We claim that such a form B does exist. Therefore, we select any
complement hc of h in TI, i.e.,

TI = hc⊕h.
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Let
ψ : hc×hc −→ F

be an arbitrary symmetric bilinear form. Now, we define a symmetric bilinear form B on
MI as

B(x,y) = ψ(x,y)
on hc, and c tr on MI× slI(F) and slI(F)×MI. To show that B is invariant, we prove
the following.

Claim 5.5. Let x ∈ TI \FιI and yk ∈ slI(F) for k = 1,2, . . . ,r. Then, a finite subset I of I,
0 6= h ∈ h and g ∈ TI exist such that yk ∈ slI(F) for all k, h ∈ hI ,

x = h+g, [x,yk] = [h,yk] and B(x,yk) = B(h,yk)

for all k. Moreover, if B is nontrivial, then y ∈ slI(F) and h′ ∈ h exist such that [x,y] 6= 0
and

B(x,h′) 6= 0. (34)

Proof. Let I be a finite subset of I such that yk ∈ slI(F) for all k. Moreover, if the I× I-
block submatrix of x is a scalar matrix, then we enlarge I until the I× I-block submatrix
of x is not a scalar matrix. For I, by (33) in Lemma 5.1, 0 6= h ∈ hI exists such that
x = h + bιI + x′ for some b ∈ F and x′ ∈ TI\I . Put g := bιI + x′. Then, clearly [g,yk] = 0.
In addition, we have B(g,yk) = c tr(gyk) = cb tr(yk) = 0 since tr(yk) = 0.

To show the second statement, it is sufficient to select y ∈ slI(F) and h′ ∈ hI such that
[h,y] 6= 0 and tr(hh′) 6= 0. �
Claim 5.6. B is invariant.

Proof. It is sufficient to consider the case that involves some elements in hc. Since hc is an
abelian subalgebra, the case that involves three elements in hc is clear.

For the case that involves one element in hc, let x ∈ hc and y,z ∈ slI(F). Then, it is
sufficient to show that

B([x,y],z) = B(x, [y,z]).
If x ∈ Fι , then both sides are clearly 0. Thus, by Claim 5.5, we can change x into h for
y and [y,z] such that B([x,y],z) = B([h,y],z) and B(x, [y,z]) = B(h, [y,z]). This follows
from the invariance on slI(F).

The case that involves two elements in hc can be shown in a similar manner. Let x,y∈ hc

and z ∈ slI(F). Then, it is sufficient to show that

B(x, [y,z]) = 0 and B([x,z],y) = B(x, [z,y]).

Again, if x or y ∈ Fι , then both sides of both equations are clearly 0. Thus, by Claim 5.5,
the left-hand side of the first equation is equal to B(h, [h′,z]) for some h,h′ ∈ hI , and this is
equal to 0 by the invariance on slI(F). For the second equation, change x into h for z and
[z,y] such that (LHS) = B([h,z],y) and (RHS) = B(h, [z,y]). However, these are equal
according to the case involving one element, as described above. Thus, we have proved
that the symmetric bilinear form B is invariant. �

The radical of B is contained in FιI whenever the restriction to slI(F) is not zero. In
fact, this follows from [MY, Lem. 8.5] since the center of MI = slI(F)+ TI is equal to
FιI. However, for convenience, we show this directly. First, let us mention the graded
structure of MI.

Let g := slI(F) and let g = h⊕
(⊕

µ∈AI⊂h∗ gµ
)

be the root-space decomposition of g

relative to h. We extend each root µ ∈ h∗ to an element in T ∗I as follows.
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Let AI = {±(εi− ε j) | i, j ∈ I}, where εi is the linear form of glI(F) determined by
ekl 7→ δlkδki. Since an element p ∈ TI can be written as p = diag(aii)i∈I, we can define
εi(p) = aii. In this manner, we can embed AI into T ∗I . Thus, M := MI has the root-space
decomposition

M =
⊕

µ∈T ∗I

Mµ

relative to TI, where Mµ = gµ for µ 6= 0 and M0 = TI, and Mµ = 0 if µ /∈ AI. This is
an 〈AI〉-graded Lie algebra, and B is graded in the sense that B(Mξ ,Mη) = 0, unless
ξ + η = 0 for all ξ ,η ∈ AI. In general, a symmetric invariant bilinear form on a Lie
algebra with a root-space decomposition relative to a subalgebra is graded.

In particular, the radical of B is graded. Thus, we can check the nondegeneracy for
each homogeneous element. The elements of degree µ ∈ AI cannot be in the radical by
Lemma 5.3. For the elements of degree 0, the only candidate is an element in FιI by (34),
which implies that the radical of B) is contained in FιI.

Therefore, we have the following.

Lemma 5.7. Let B be nontrivial. Then, the radical of B is equal to FιI if B(ιI, ιI) = 0,
and B is nondegenerate if B(ιI, ιI) 6= 0. �

Thus, for any symmetric bilinear form ψ on hc with the radical FιI, the quotient Lie
algebra MI/FιI with the induced form B̄ is a LEALA of type AI of nullity 0. Note
that MI/FιI is isomorphic to M ′

I := slI(F)⊕ t, where t is a complement of h⊕FιI
in TI. Conversely, if ψ ′ is any symmetric bilinear form on t, we can define a symmetric
nondegenerate invariant form B′ on M ′

I as described above, and M ′
I is isomorphic to

MI/FιI. By a similar argument, we can say that a LEALA of type AI of nullity 0 is
isomorphic to a subalgebra of MI/FιI that contains slI(F) = (slI(F)+ FιI)/FιI with
the induced form B̄.

Example 5.8. The centerless Lie algebra glI(F) = slI(F)⊕ Fe j j is an example of a
LEALA of type AI of nullity 0, where e j j is the matrix unit for j ∈ I. However, gln(F) =
sln(F)⊕Fe j j has the center Fιn if j ∈ {1,2, · · · ,n}, where ιn is the identity matrix on
gln(F), and this is a non-tame EALA of nullity 0.

Suppose that B is a nondegenerate form on glI(F). Then, B is a nonzero scalar mul-
tiple c ∈ F of the trace form, except on Fe j j×Fe j j, by Lemma 5.3. Conversely, we can
take any value to B(e j j,e j j) and extend a nondegenerate form to glI(F).

For the finite case where gln(F) = sln(F)⊕Fe j j, suppose that B is a nondegenerate
form on gln(F). Since radB is in the center of gln(F), we find that B is nondegenerate
⇐⇒B(ιn, ιn) 6= 0. Moreover, this is equivalent to

B(e j j,e j j) 6=
n−1

n
c. (35)

In fact, consider the expression ιn = ιn−ne j j +ne j j, where we note that tr(ιn−ne j j) = 0.
Since x := ιn−ne j j ∈ slI(F), we have B(ιn, ιn) =

B(x+ne j j,x+ne j j) = B(x,x)+2nB(x,e j j)+n2B(e j j,e j j)

= c tr(x2)+2nc tr(xe j j)+n2B(e j j,e j j)

= c tr(ιn−2ne j j +n2e j j)+2nc tr(e j j−ne j j)+n2B(e j j,e j j)

= c(n−2n+n2)+2nc(1−n)+n2B(e j j,e j j)

= cn− cn2 +n2B(e j j,e j j).
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Hence, B(ιn, ιn) = 0 if and only if n2B(e j j,e j j) = c(n2−n), and thus (35) holds.

Remark 5.9. In the classification of tame LEALAs of nullity 0 of type AI in [MY], we
select slI(F)⊕t′ for a complement t′ of T as

I in TI as the maximal one. However, a subalge-
bra of the bigger Lie algebra slI(F)⊕ t defined above is actually a maximal tame LEALA
of nullity 0, which is shown essentially by the following lemma.

Lemma 5.10. Let p ∈ TI. Suppose that [p,slI(F)] = 0. Then, p ∈ FιI. In particular,
slI(F)+T ′ is a tame LEALA of nullity 0 for any complement T ′ of FιI in TI.

Proof. Let I be any finite subset of I. Decompose p = h⊕ sιI⊕q in TI = hI⊕FιI⊕TI\I
for some s ∈ F (see (33)). Since slI(F)⊂ g and [ιI ,slI(F)] = 0, we have 0 = [p,slI(F)] =
[h,slI(F)]. Hence, h = 0, and thus p = sιI ⊕ q. For a different subset I′, we have p =
s′ιI′ ⊕ q′. However, for I′′ = I ∪ I′, we have p = s′′ιI′′ ⊕ q′′. Since I, I′ ⊂ I′′, we have
s = s′ = s′′. Therefore, p = sιI. �

Now, we consider the forms on the other types BI, DI and CI. Let B be a symmetric
invariant form on

MK = slK(F)+TK

such that the restriction to slK(F) is not zero, where K = 2I or 2I+ 1. Let M σ
K be the

fixed algebra by the automorphism σ defined above with the restricted form Bσ . Then,
Bσ is still invariant, and by Lemma 5.3, the restriction to slK(F)σ is equal to c tr for some
c ∈ F×.

Moreover, Bσ is nondegenerate. This follows from [MY, Lem. 8.5] since M σ
K has

a trivial center. We can also show this using the following lemma, which is similar to
Lemma 5.1. Recall that T + denotes the eigenspace of eigenvalue +1 of σ , and T− is the
eigenspace of eigenvalue −1 of σ .

Lemma 5.11. Let I be any finite subset of I and fix some index i0 ∈ I. Then, we have

T +
2I = h+

2I⊕T +
2I\2I and T−2I = h−2I⊕F(ei0i0 + eI+i0,I+i0)⊕T−2I\2I ,

where h+
2I or h−2I is a subset of h+ or h− such that all (k,k) and (I+ k,I+ k) components

for k ∈ I \ I are 0, and T +
2I\2I or T−2I\2I is a subset of T +

2I or T−2I such that all (i, i) and
(I+ i,I+ i) components for i ∈ I are 0.

Furthermore, we have

T +
2I+1 = h+

2I+1⊕T +
(2I+1)\(2I+1) and T−2I+1 = h−2I+1⊕Fe2I+1,2I+1⊕T−(2I+1)\(2I+1),

where h+
2I+1 or h−2I+1 is a subset of h+ or h− such that the (k,k) and (I+ k,I+ k) com-

ponents of all k ∈ I \ I are 0, and T +
(2I+1)\(2I+1) or T−(2I+1)\(2I+1) is a subset of T +

2I+1 or

T−2I+1 such that the (2I+1,2I+1) component and the (i, i) and (I+ i,I+ i) components
of all i ∈ I are 0.

Moreover, we have

T−2I = h−2I⊕Fι2I⊕T−2I\2I and T−2I+1 = h−2I+1⊕Fι2I+1⊕T−(2I+1)\(2I+1). (36)

Proof. All of these statements are clear except (36). To show this, we consider the two
equalities

T−2I = h−2I⊕F(ei0i0 + eI+i0,I+i0) and T−2I+1 = h−2I+1⊕Fe2I+1,2I+1,

where T−2I is a subset of T−2I such that (i, i) and the (I+ i,I+ i) components of all i ∈ I\ I
are 0, and T−2I+1 is a subset of T−2I+1 such that (i, i) and the (I+ i,I+ i) components of all
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i ∈ I\ I are 0. However, as in the proof of Lemma 5.1, for y ∈ T−2I or T−2I+1, it follows from
the equation that

y = y− 1
2

tr(y)(ei0i0 + eI+i0,I+i0)+
1
2

tr(y)(ei0i0 + eI+i0,I+i0)

or
y = y− tr(y)e2I+1,2I+1 + tr(y)e2I+1,2I+1.

Hence, (36) holds. �

Corollary 5.12. Let x ∈ T + or x ∈ T− \ Fι . Then, some 0 6= h ∈ h± exists such that
B(x,h) 6= 0.

Proof. By (36) in Lemma 5.11, a finite subset I⊂ I and 0 6= h′ ∈ h±2I or h±2I+1 exist such that
x = h′+bι2I +x′ or x = h′+bι2I+1 +x′ for some b ∈ F and x′ ∈ T2I\2I or T2I+1\2I+1 (since
x /∈ Fι). Since the trace form is nondegenerate on h±2I or h±2I+1, we can select h ∈ h±2I or
h±2I+1 such that tr(h′h) 6= 0. Then, we have B(x,h) = tr(h′h)+b tr(h)+ tr(x′h) = tr(h′h) 6= 0
(since x′h = 0). �

By Corollary 5.12 related to T +, we can also see that Bσ is nondegenerate. (We use the
result related to T− later.) Moreover, the restriction of Bσ to any subalgebra L of M σ

K
that contains slK(F)σ is still a nondegenerate form.

Conversely, let U be a complement of hσ in L ∩T σ , and ϕ is an arbitrary symmetric
bilinear form on U . Then, we can extend ϕ to a nondegenerate form on L , using Lemma
5.11 (or embedding L into MK) and Corollary 5.12 again. Consequently, we can say that
a LEALA of type XI 6= AI of nullity 0 is isomorphic to a subalgebra of M σ

K that contains
slK(F)σ .

6. LALAS

The next interesting objects are LEALAs of null dimension 1. In fact, our aim in this
study is to classify tame LEALAs of nullity 1.

Definition 6.1. A tame LEALA of nullity 1 is called a LALA.

We know that the core of a LALA is a locally Lie G-torus (see (28)), and since R× is
a LEARS of nullity 1, the core is a locally Lie 1-torus. Moreover, using the notations in
Section 4, we have the following.

Lemma 6.2. Let L be a LALA. Then:
(1) The core Lc is a universal covering of a locally loop algebra.
(2) Z(L ) = Z(Lc), and a natural embedding adL ↪→ DerF

(
Lc/Z(Lc)

)
exists.

In particular, if N is a complement of the core Lc, i.e., L = Lc⊕N , then N can
be identified with a subspace of OderF

(
Lc/Z(Lc)

)
, i.e., the outer derivations of a locally

loop algebra.

Proof. By Proposition 4.9, Lc has a nontrivial center. Hence, by Theorem 3.8, (1) is true.
For (2), we have Z(Lc) = Z(L ) by Proposition 4.9. Since adL ∼= L /Z(L ), we obtain
the embedding using Lemma 4.11. �

To complete the classification of LALAs, we need to classify a complement of the core.
First, we give some examples of LALAs.
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Example 6.3. Let I be an arbitrary index set. We can construct 14 minimal standard
LALAs (see Defintion 4.13 and 4.14) from the 14 locally loop algebras L(X(i)

I ) given in
Section 3. Thus,

L ms = L ms(X(i)
I ) := L(X(i)

I )⊕Fc⊕Fd(0)

is a LALA of type X(i)
I , where c is central and d(0) is the degree derivation, i.e.,

d(0)(tm) = mtm

with a Cartan subalgebra

H = h⊕Fc⊕Fd(0),

where h is the subalgebra of g(XI), which comprises diagonal matrices if I is infinite
or any Cartan subalgebra if I is finite. In addition, a nondegenerate invariant symmetric
bilinear form B on L ms is an extension of the form defined in Section 3 for loop algebras
using the trace form or the Killing form if I is finite, and a nondegenerate symmetric
associative bilinear form on F [t±1], and by defining B(c,d(0)) = 1. In particular, we define
B(d(0),d(0)) = 0 as usual, although B(d(0),d(0)) can be any number in F . These LALAs
are minimal LALAs. Note that any standard LALA contains a minimal standard LALA.
In addition, we note that if I is finite, then LALAs are automatically minimal standard
LALAs, which are the affine (Kac-Moody) Lie algebras. Note that a minimal standard
LALA L ms is also denoted by L (0).

Now, we give examples of bigger (and the biggest) LALAs when I is infinite. Note that

slI(F)+T = glI(F)+T,

where T = TI is the subspace of all the diagonal matrices in the matrix space MI(F) of
size I, which is a Lie algebra with the split center Fι , where ι is the diagonal matrix and
its diagonal entries are all 1. Thus, its loop algebra

U = UI :=
(

slI(F)+T
)
⊗F [t±1] (37)

is a Lie algebra with the split center ι⊗F [t±1].
Assume that B is a symmetric invariant bilinear form on U , which is not a zero on

slI(F). Then, by Lemma 3.9 and Lemma 5.2, B is unique up to a scalar to tr⊗ε on(
slI(F)⊗F [t±1]

)
×U and U ×

(
slI(F)⊗F [t±1]

)
, (38)

i.e., for x,y ∈U , and if x or y ∈ slI(F), then

B(x⊗ tm,y⊗ tn) = a tr(xy)δn,−m (39)

for some a ∈ F×. We claim that such a form B does exist. As in the case of nullity 0, we
select a complement hc of h in T , i.e., T = hc⊕h. For each m ∈ Z, let

ψm : hc×hc −→ F

be an arbitrary bilinear form. We define a symmetric bilinear form B on U as

B(x⊗ tm,y⊗ tn) = ψm(x,y)δn,−m

on hc⊗F [t±1], and (39) on (38). We can prove that B is invariant in a similar manner
to the case of nullity 0 using the following claim (which can also be proved in a similar
manner to Claim 5.5).
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Claim 6.4. Let x ∈ T \Fι and yk ∈ slI(F) for k = 1,2, . . . ,r. Then, a finite subset I of I,
0 6= h ∈ h exist and g ∈ T such that yk ∈ slI(F) for all k, and h ∈ hI ,

x = h+g, [x⊗tm,yk⊗tn] = [h⊗tm,yk⊗tn] and B(x⊗tm,yk⊗tn)=B(h⊗tm,yk⊗tn)

for all m,n ∈ Z and all k. Moreover, y ∈ slI(F) and h′ ∈ h exist such that

[x⊗ tm,y⊗ tn] 6= 0 and B(x⊗ tm,h′⊗ t−m) 6= 0. (40)

�

Now, we can use a general construction, i.e., a one-dimensional central extension by the
2-cocycle

ϕ(u,v) := B
(
d(0)(u),v

)
for u,v ∈ U , where d(0) is the degree derivation on U . This is well known (e.g., see
[AABGP]), but for convenience, we show that ϕ is a 2-cocycle in a slightly more general
setup. Note that d(0) is a skew derivation relative to B, i.e.,

B
(
d(0)(u),v

)
=−B

(
u,d(0)(v)

)
.

More generally, for a Z-graded algebra A =
⊕

m∈Z Am with a symmetric graded bilinear
form ψ , the degree derivation d(0) is skew relative to ψ . In fact, for x = ∑m xm and y =
∑m ym ∈A, we have ψ

(
d(0)(x),y

)
= ∑m mψ(xm,y) = ∑m mψ(xm,y−m) = ∑m mψ(x,y−m) =

−∑m mψ(x,ym) =−ψ
(
x,d(0)(y)

)
. Hence, d(0) is skew.

In general, on a Lie algebra L with a symmetric invariant bilinear form B, we can de-
fine ϕ(u,v) := B

(
d(u),v

)
for any skew derivation d and u,v ∈ L. Then, ϕ(u,v) is a 2-

cocycle (which is also well known). In fact, the first condition of the cocycle clearly holds,
i.e., ϕ(u,u) = 0 for all u ∈ L, since ϕ(u,u) = B(d(u),u) = −B(u,d(u)) = −B(d(u),u) =
−ϕ(u,u). For the second condition, we have

ϕ([u,v],w)+ϕ([v,w],u)+ϕ([w,u],v)

= B
(
d([u,v]),w)−B

(
[v,w],d(u)

)
−B
(
[w,u],d(v)

)
= B

(
[d((u),v]),w)+B

(
[u,d(v)]),w)−B

(
[v,w],d(u)

)
−B
(
[w,u],d(v)

)
= B

(
d(u), [v,w])−B

(
d(v), [u,w])−B

(
[v,w],d(u)

)
−B
(
[w,u],d(v)

)
= 0.

Thus, we obtain a 1-dimensional central extension

Ũ := U ⊕Fc

using the 2-cocyle ϕ(u,v) = B
(
d(0)(u),v

)
given above. Then,

Û = ÛI := Ũ ⊕Fd(0)

is naturally a Lie algebra that defines

[c,d(0)] = 0,

anti-symmetrically. Thus, the center of Û is equal to Fc⊕Fι . We also extend the form B
by

B(c,d(0)) = 1 and B(U ,d(0)) = 0,

symmetrically (where the value of B(d(0),d(0)) can be any). Then, we can also check that
this extended form is invariant.

Let g := slI(F) and let
g = h⊕

⊕
µ∈AI⊂h∗

gµ
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be the root-space decomposition of g relative to h. Let

H := T ⊕Fc⊕Fd(0).

We extend each root µ ∈ h∗ to an element in H ∗ as follows. First, we can extend µ to T
as in the case of nullity 0. Then, we define µ(Fc⊕Fd(0)) = 0. We also define δ ∈H ∗ as
δ (T ⊕Fc) = 0 and δ (d(0)) = 1. Then, Û has the root space decomposition

Û =
⊕

ξ∈H ∗
Ûξ

relative to H , where Ûµ+mδ = gµ⊗tm for µ ∈AI, Ûmδ = T ⊗tm for m 6= 0 and Û0 = H ,

and Ûξ = 0 if ξ /∈ A(1)
I = (AI∪{0})+Zδ . For convenience, we assume that 0 6∈ AI but

0 ∈ A(1)
I . In the above, Û is an 〈A(1)

I 〉-graded Lie algebra, and B is graded in the sense

that B(Ûξ ,Ûη) = 0, unless ξ + η = 0 for all ξ ,η ∈ A(1)
I . In particular, the radical of B

is graded.

Claim 6.5. The radical of B is contained in ι⊗F [t±1].

Proof. Since the radical of B is graded, we can check the nondegeneracy for each homo-
geneous element. It is clear that the elements of degree µ + mδ for µ ∈ AI cannot be in
the radical. The elements of degree mδ are also outside of the radical by (40). Hence, the
radical should be in ι⊗F [t±1]. �

Now, it is easy to check that (Û ,H ,B) is a LEALA of nullity 1 by defining ψ0(ι , ι) 6=
0. Since the center of Û is equal to Fc⊕Fι , this is not tame. However, since ι⊗F [t±1] is
an ideal of Û , the quotient LEALA

L max := Û /
(
ι⊗F [t±1]

)
is tame, by defining ψ0(ι , ι) = 0. Thus, L max is a LALA, which is isomorphic to the Lie
algebra (3) described in the Introduction. The core L max

c is equal to slI(F)⊗F [t±1]⊕Fc.
(As stated in the Introduction, we omit bars for the quotient Lie algebra.) Moreover, it is
easy to check that a 1-dimensional extension of the core, such as

L (p) = L max
c ⊕F(d(0) + p)

for some p∈ T , is a minimal LALA of type A(1)
I (which is a subalgebra of L max). In addi-

tion, we can show that any homogeneous subalgebra of L max that contains some L (p) is
a LALA. In Section 6, we show that any LALA of type A(1)

I is a homogeneous subalgebra
of L max that contains some L (p).

We describe the other untwisted LALAs using Û2I and Û2I+1, and the automorphism
σ is again defined in (16). Let

T = T σ ⊕T−

be the decomposition of T = T2I or T2I+1, where T σ is the eigenspace of eigenvalue 1 (the
fixed algebra of T by σ ) and T− is the eigenspace of eigenvalue −1. Instead of T σ , we
use T + because we consider the fixed algebra by another automorphism τ later. Thus, we
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have

T σ = {(akk) ∈ T2I+1 | aii =−aI+i,I+i (∀i ∈ I), a2I+1,2I+1 = 0} and

T− = {(akk) ∈ T2I+1 | aii = aI+i,I+i (∀i ∈ I)} for B(1)
I ,

T σ = {(akk) ∈ T2I | aii =−aI+i,I+i (∀i ∈ I)} and

T− = {(akk) ∈ T2I | aii = aI+i,I+i (∀i ∈ I)} for C(1)
I or D(1)

I . (41)

Note that Fι is σ -invariant and Fι ⊂ T−. Since h is σ -invariant, we have

h = hσ ⊕h−, hσ = h∩T σ ⊂ T σ and h− = h∩T− ⊂ T−.

Let us extend the automorphism on Û = Û2I or Û2I+1 as

σ̂(x⊗ tk) := σ(x)⊗ tk, σ̂(c) := c and σ̂(d(0)) := d(0).

Then, the fixed algebra Û σ̂ with the restriction of the form B is a LALA of type B(1)
I , C(1)

I

or D(1)
I , depending on the type of σ . In particular,

Û σ̂ =
(
(g+T σ )⊗F [t±1]

)
⊕Fc⊕Fd(0),

where g = sl2I+1(F)σ or sl2I(F)σ is a locally finite split simple Lie algebra of each type.
The nondegeneracy of the restricted form B follows from the next lemma, where the

proof is similar to the case in nullity 0.

Lemma 6.6. Let 0 6= x ∈ T σ or x ∈ T− \Fι . Then, some h ∈ hσ or h ∈ h− exist such that

B(x⊗ tm,h⊗ t−m) 6= 0

for all m ∈ Z. �

As in the case of type A(1)
I , a 1-dimensional extension of the core Û σ̂

c , such as

L (p) = Û σ̂
c ⊕F(d(0) + p)

for some p ∈ T σ , is a minimal LALA of each type. In addition, we can check that any
homogeneous subalgebra of L max = Û σ̂ that contains some L (p) is a LALA of each
type. In Section 6, we show that any LALA of each type is a homogeneous subalgebra of
L max = Û σ̂ that contains some L (p).

We now give examples of twisted LALAs. Again, we use the automorphism σ defined
in (16) to obtain the type CI or BI, and we extend the automorphism on Û = Û2I or
Û2I+1 as

σ̂(x⊗ tk) := (−1)kσ(x)⊗ tk, σ̂(c) = c and σ̂(d(0)) := d(0). (42)

Then, the fixed algebra Û σ̂ with the restriction of the form B is a LALA of type C(2)
I or

BC(2)
I , depending on the type of σ . In particular,

Û σ̂ =
(
(gσ ⊕T σ )⊗F [t±2]

)
⊕
(
(g−+T−)⊗ tF [t±2]

)
⊕Fc⊕Fd(0), (43)

where gσ = sl2I(F)σ = sp2I(F) or sl2I+1(F)σ = o2I+1(F), and g− is the minus space of
sl2I(F) or sl2I+1(F) by σ . Since ι⊗ tF [t±2] is an ideal of Û , the quotient LEALA

Û σ̂ := Û σ̂ /
(
ι⊗ tF [t±2]

)
is tame, by defining ψ0(ι , ι) = 0. Thus, Û σ̂ is a LALA. (For the type C(2)

I , this is isomor-
phic to the Lie algebra (5) described in the Introduction.)
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The nondegeneracy of the restricted form B follows from Lemma 6.6. As in the un-
twisted case, a 1-dimensional extension of the core (Û σ̂ )c, such as

L (p) := (Û σ̂ )c⊕F(d(0) + p)

for some p ∈ T σ , is a minimal LALA of each type. We can also show that any homoge-
neous subalgebra of L max := Û σ̂ that contains some L (p) is a LALA of each type. In
Section 7, we show that any LALA of each type is a homogeneous subalgebra of L max

that contains some L (p).
For the type B(2)

I , as described by Neeb in [N2, App.1], we introduce an automor-

phism τ on the untwisted LALA M := Û σ̂
2I+2 of type D(1)

I+1, which is defined by s =(
0 ιI+1

ιI+1 0

)
. For convenience, let I+1 = { j | j ∈ I}∪{ j0} and

2I+2 = (I+1)+(I+1) =
(
{ j | j ∈ I}∪{ j0}

)
∪
(
{− j | j ∈ I}∪{− j0}

)
.

Let
g = ι2I + e j0,− j0 + e− j0, j0

be the matrix of exchanging rows or columns, and let τ be an involutive automorphism of
o2I+2(F) defined by

τ(x) = gxg.

Then, we can see that the fixed algebra o2I+2(F)τ = o2I+1(F) (which is of type BI) and
the minus space

s := {x ∈ o2I+2(F) | τ(x) =−x} (44)

by τ is isomorphic to F2I+1 as a natural o2I+1(F)-module with

s0 = s∩hσ = F(e j0 j0 − e− j0,− j0).

We can extend τ on o2I+2(F)+T σ
2I+2. Then, we have(

T σ
2I+2

)τ = T σ
2I+1(∼= T σ

2I) and {x ∈ T σ
2I+2 | τ(x) =−x}= s0. (45)

We can also extend τ on M in the same manner as (42), i.e.,

τ̂(x⊗ tk) := (−1)kτ(x)⊗ tk, τ̂(c) := c and τ̂(d(0)) := d(0),

and we obtain a LALA M τ̂ of type B(2)
I . In particular, we have

M τ̂ =
(
(o2I+1(F)+T σ

2I+1)⊗F [t±2]
)
⊕
(
s⊗ tF [t±2]

)
⊕Fc⊕Fd(0).

(The odd degree part of t is the same as that in an affine Lie algebra of type B(2)
` = D(2)

`+1.)
The nondegeneracy of the restricted form B follows from Lemma 6.6. As in the above,

a 1-dimensional extension of the core M τ̂
c , such as

L (p) = M τ̂
c ⊕F(d(0) + p)

for some p ∈ T σ
2I+1, is a minimal LALA of type B(2)

I . In addition, we can show that any
homogeneous subalgebra of L max := M τ̂ that contains some L (p) is a LALA of type
B(2)

I . In Section 7, we show that any LALA of type B(2)
I is a homogeneous subalgebra of

L max that contains some L (p).
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7. CLASSIFICATION OF THE UNTWISTED LALAS

Let L be an untwisted LALA of infinite rank, i.e., the core Lc is a universal covering
of an untwisted locally loop algebra of type A(1)

I , B(1)
I , C(1)

I or D(1)
I for an infinite index I.

By selecting a homogeneous complement of the Z-graded core, we can write

L = Lc⊕
⊕
m∈Z

Dm.

Note that the complement is assumed to be included in the null space:⊕
m∈Z

Dm ⊂
⊕

δ∈R0

Lδ =
⊕
m∈Z

Lmδ1 and Dm ⊂Lmδ1 ,

where δ1 is a generator of 〈R0〉Z = 〈S +S〉Z ∼= Z (see (23) and Lemma 4.7).
Let

L ′
c := Lc/Z(Lc)

be the centerless core. Moreover, let (g,h) be the grading pair of the Lie 1-torus Lc such
that h is the set of diagonal matrices of a locally finite split simple Lie algebra g:

g = h⊕
⊕
α∈∆

gα = [L 0
c ,L 0

c ]⊂Lc =
⊕
m∈Z

L m
c ,

where
L m

c =
⊕

α∈∆∪{0}
(Lc)m

α .

We identify the grading pair (g,h) of the Lie 1-torus L ′
c and Lc. Moreover, we identify

L ′
c with

L := g⊗F [t±1].
Now, we classify the diagonal derivations of an untwisted locally loop algebra L in

general. Let

(DerF L)0
0 = {d ∈ DerF L | d(gα ⊗ tm)⊂ gα ⊗ tm for all α ∈ ∆ and m ∈ Z}.

We refer to such an element as a diagonal derivation of degree 0. Let d ∈ (detF L)0
0. Note

that since g0 = h = ∑α∈∆[gα ,g−α ], then we have

d(h⊗ tm) = ∑
α∈∆

d([gα ,g−α ]⊗ tm) = ∑
α∈∆

d([gα ⊗ tm,g−α ⊗1])

= ∑
α∈∆

(
[d(gα ⊗ tm),g−α ⊗1]+ [gα ⊗ tm,d(g−α ⊗1)]

)
⊂ ∑

α∈∆
[gα ⊗ tm,g−α ⊗1] = h⊗ tm.

In addition, we note that d |g is a diagonal derivation of g. Hence, by Neeb [N1], we obtain
d |g= ad p for a certain diagonal matrix p of an infinite size. In particular, we have p ∈ P,
where

P = TI for AI, and T +
2I or T +

2I+1 for the other types (46)
as defined in Example 6.3. Put

d′ := d− ad p ∈ (DerF L)0
0.

Then, we have
d′(g⊗1) = 0.

In particular, we have d′(h⊗1) = 0. Thus, for 0 6= x⊗ t ∈ gα ⊗ t, if

d′(x⊗ t) = ax⊗ t (47)
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for a ∈ F , then
d′(y⊗ t−1) =−ay⊗ t−1 (48)

for all y ∈ g−α . In fact, for y 6= 0, since 0 6= [x,y] = h ∈ h and d′(y⊗ t−1) = by⊗ t−1 for
some b ∈ F , then we have

0 = d′(h⊗1) = d′([x⊗ t,y⊗ t−1]) = [d′(x⊗ t),y⊗ t−1]+ [x⊗1,d′(y⊗ t−1)]

= (a+b)[x⊗ t,y⊗ t−1] = (a+b)[x,y]⊗1 = (a+b)h⊗1.

Hence, b =−a.

Lemma 7.1. Let g = h⊕
⊕

α∈∆ gα be a locally finite split simple Lie algebra. Then,
U (g).gβ = g for any β ∈ ∆, where U (g) is the universal enveloping algebra of g.

Proof. Since U (g).gβ is a nonzero ideal of g, it must be equal to g by simplicity. �

By Lemma 7.1, for a fixed α ∈ ∆, three subspaces

g⊗1, gα ⊗ t, and g−α ⊗ t−1

generate L as a Lie algebra.
Let

d′′ := d′−ad(0),

where d(0) = t
d
dt

. Then, we have d′′(g⊗1) = d′(g⊗1) = 0 and using (47),

d′′(x⊗ t) = d′(x⊗ t)−ax⊗ t = 0

for x ∈ gα . Similarly, using (48),

d′′(y⊗ t−1) = d′(y⊗ t−1)+ay⊗ t−1 = 0

for y ∈ g−α . Thus, we have d′′(L) = 0 and d′′ = 0. Hence, we obtain

d = ad p+ad(0), and (DerF L)0
0 = adP⊕Fd(0). (49)

We define the shift map sm for m ∈ Z on L = g⊗F [t±1] by

sm(x⊗ tk) := x⊗ tk+m

for all k ∈ Z. (Shift maps were discussed in the classification of affine Lie algebras by
Moody in [Mo].) Clearly, the shift maps have the property

sm([x,y]) = [sm(x),y] = [x,sm(y)]

for x,y ∈ L. (In other words, the shift maps are in the centroid of L.) Thus, sm ◦ d is a
derivation for any derivation d of L. In fact, for x,y ∈ L,

sm ◦d([x,y]) = sm([d(x),y]+ [x,d(y)]) = [sm ◦d(x),y]+ [x,sm ◦d(y)].

Now, let

d ∈ (DerF L)m
0 = {d ∈ DerF L | d(gα ⊗ tk)⊂ gα ⊗ tk+m for all α ∈ ∆ and k ∈ Z}.

Then, we have
s−m ◦d ∈ (DerF L)0

0.

Hence, by (49), p = pd ∈ P and some a = ad ∈ F exist such that

s−m ◦d = ad p+ad(0),

and thus
d = sm ◦ (ad p+ad(0)).
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Therefore, we have classified diagonal derivations of the untwisted locally loop algebra.
Thus:

Theorem 7.2. For all m ∈ Z, we have

(DerF L)m
0 = sm ◦ (DerF L)0

0 = sm ◦ (adP⊕Fd(0)),

where P is defined in (46). �

The following property of diagonal derivations is useful later.

Lemma 7.3. For all m ∈ Z, let

(Der′F L)m
0 := {d ∈ (DerF L)m

0 | sn ◦d = d ◦ sn for some 0 6= n ∈ Z}

and
(Der′′F L)m

0 := {d ∈ (DerF L)m
0 | sn ◦d = d ◦ sn for all n ∈ Z}.

Then, we have
(Der′F L)m

0 = sm ◦ adP = (Der′′F L)m
0 .

Proof. First, it is clear that

(Der′F L)m
0 ⊃ (Der′′F L)m

0 ⊃ sm ◦ adP

for all m ∈ Z. Thus, it is sufficient to show that

(Der′F L)m
0 ⊂ sm ◦ adP. (50)

Therefore, let sm ◦ (ad p+ad(0)) ∈ (Der′F L)m
0 ⊂ (DerF L)m

0 . Then, for

h⊗ tk ∈ h⊗ tk ⊂ L,

we have
sn ◦ sm([p+ad(0),h⊗ tk]) = sn(akh⊗ tk+m) = akh⊗ tk+m+n

and
[sm ◦ (p+ad(0)),h⊗ tk+n] = a(k +n)h⊗ tk+n+m

for some n 6= 0. Hence, an = 0, and we obtain a = 0. Therefore, we obtain

sm ◦ (ad p+ad(0)) = sm ◦ ad p ∈ sm ◦ adP.

Thus, we have shown (50). �

Remark 7.4. We can use some results given by Azam related to the derivations of tensor
algebras (see [A2, Thm 2.8]). However, their direct application to our tensor algebra g⊗F
F [t±1] yields an isomorphism such that

DerF(g⊗F F [t±1])∼= DerF g
←−⊗F F [t±1] ⊕ C(g)−→⊗F DerF F [t±1],

where C(g) is the centroid of g and←−⊗F and−→⊗F are special types of tensor products (since
g is infinite-dimensional). Thus, we need to perform some more work to obtain our desired
form as given above. We only need a special type of subspace, i.e., (DerF L)m

0 , so we can
approach them directly without using Azam’s result. In addition, we investigate derivations
of twisted locally loop algebras later that are not tensor algebras.
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Now, we return to classifying Dm. Let d ∈ Dm. Then, add ∈ (DerF L)m
0 by Lemma 6.2.

Hence, by Theorem 7.2, p = pd ∈ P (see (46)) and some a = ad ∈ F exist such that

add = sm ◦ (ad p+ad(0)).

We claim that a = 0 for all m 6= 0. First, we note that h, h′ ∈ h exist such that tr(hh′) 6= 0.
In addition, we have

B(h⊗ t,h′⊗ t−1) = B(h⊗ tm,h′⊗ t−m) = c tr(hh′) 6= 0

for all m ∈ Z and some 0 6= c ∈ F since B = c tr⊗ε (see Lemma 3.9 and we note that ε is
defined in the previous paragraph). Now, using a pair h and h′, we have

B([d,h⊗ t],h′⊗ t−m−1) = aB(h⊗ tm+1,h′⊗ t−m−1)

= aB(h⊗ t,h′⊗ t−1)

while

B([d,h⊗ t],h′⊗ t−m−1) =−B(h⊗ t, [d,h′⊗ t−m−1])

= a(m+1)B(h⊗ t,h′⊗ t−1).

Hence, a = a(m+1), i.e., am = 0. Thus, m 6= 0 implies that a = 0.
Moreover, suppose that a = ad = 0 for all d ∈ D0. Then, adD0 ⊂ adP (see (46)) and

for the Cartan subalgebra H of the original LALA of L , we have H = h⊕Fc⊕D0.
However, this contradicts the axiom L0 = H since

[
h⊗F [t±1],H

]
= 0. Hence, p ∈ P

exists such that ad p+d(0) ∈ adD0.
Consequently, we obtain

adDm ⊂ sm ◦ adP
for m 6= 0, and

ad p+d(0) ∈ adD0 ⊂ adP+Fd(0)

for some p ∈ P.

Remark 7.5. In some cases, d(0) /∈ adD0. Thus, a LALA is not always standard. We can
easily construct a non-standard LALA even if dimF D0 ≥ 2.

Finally, we investigate the bracket on D :=
⊕

m∈Z Dm. Let D′ :=
⊕

m6=0 Dm. First, note
that [D′,D′] acts trivially on L since [ad(p⊗ tm),ad(p′⊗ tn)] = ad[p⊗ tm, p′⊗ tn] = 0 in
DerF L. Hence,

[D′,D′]⊂ Fc = Ftδ1 ⊂H ,

by tameness. In addition, for dm ∈ Dm (m 6= 0) and dn ∈ Dn (n 6= 0), by the fundamental
property (25) of a LEALA (see Lemma 4.5), we have,

[dm,dn] = δm,−nB(dm,dn)tmδ1 = mδm,−nB(dm,dn)tδ1 .

Note that B(dm,dn) can be zero since h∈ h exists such that tr(dmh) 6= 0 (and thus B(dm,h) 6=
0).

Next, since D0 ⊂H , we have [D0,D0] = 0. Moreover, for d ∈ D0 such that adL d =
adL p ∈ D0, we have [d,Dm] = 0. For the last case, i.e., for d ∈ D0 such that adL d =
adL p+ad(0) ∈ adD0 and dm ∈ Dm, we have

[d,dm] = [ad(0),dm] = amdm.

Now, ι⊗ tm centralizes the Lc, and hence we obtain the following identifiication:

L ∼=
(
L + ι⊗F [t±1]

)
/ι⊗F [t±1].

Thus:
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Theorem 7.6. Let L be an untwisted LALA. Then, L is isomorphic to that in Example
6.3. �

8. CLASSIFICATION OF THE TWISTED LALAS

As mentioned earlier, each twisted loop algebra M is a subalgebra of an untwisted loop
algebra M̃. In particular, we have

M has type B(2)
I =⇒ M̃ has type D(1)

I+1

M has type C(2)
I =⇒ M̃ has type A(1)

2I

M has type BC(2)
I =⇒ M̃ has type A(1)

2I+1.

Remark 8.1. In the case where I is finite, such as I = {1,2, ...,n}, the type AI usually
means the Lie algebra slI+1(F). Therefore, it may be better to write

L has type C(2)
I = C(2)

n =⇒ L̃ has type A(1)
2I−1 = A(1)

2n−1

L has type BC(2)
I = BC(2)

n =⇒ L̃ has type A(1)
2I = A(1)

2n

in order to follow the common notations. However, in this study, we use the type of the
Lie algebra slI(F) as AI, instead of AI+1 provided that I is an infinite set, as mentioned
in the Introduction.

First, we provide some basic lemmas for twisted locally loop algebras, as follows:

(1) (gσ ⊗F [t±2])⊕ (g−⊗ tF [t±2]) for type C(2)
I or BC(2)

I , and

(2) (o2I+2(F)τ ⊗F [t±2])⊕ (s⊗ tF [t±2]) for type B(2)
I

where in (1) g = sl2I+1(F) or g = sl2I(F) (see (43) for σ ), and in (2) s is the minus space
of o2I+2(F) by τ , as described in (44). Note that o2I+2(F)τ = o2I+1(F), which has type
BI.

Lemma 8.2. (1) g− is an irreducible gσ -module.
(2) s is an irreducible o2I+2(F)τ -module.

Proof. For (1), it is sufficient to show that w ∈ U (gσ )v for any v,w ∈ g−, where U (gσ )
is the universal enveloping algebra of gσ . However, this is a local property. Thus, a finite-
dimensional split simple subalgebra f of g exists of the same type such that v,w ∈ f− ⊂ g−

and fσ ⊂ gσ . It is well known that this property holds in the finite-dimensional case (e.g.,
see [K]). Thus, we are finished. Similarly, (2) holds. �

Lemma 8.3. (1) Let C be the centralizer of gσ in g+T . If 0 6= x ∈C, then x ∈ T− \g−.
(2) Let C be the centralizer of o2I+2(F)τ in sl2I+2(F)σ + T σ

2I+2 = o2I+2(F)+ T σ
2I+2.

Then, C = 0.

Proof. For (1), we can write each Lie algebra as

g+T = (g+T )σ ⊕ (g+T )− = (gσ +T σ )⊕ (g−+T−).

Let
x = x+⊕ x− ∈ (g+T )σ ⊕ (g+T )− = (gσ +T σ )⊕ (g−+T−)
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be in C. Then, for any y ∈ gσ , we have

0 = [x,y] = [x+,y]+ [x−,y].

Hence, [x+,y] = 0 and [x−,y] = 0. However, the centralizer Cgσ +T σ (gσ ) = 0 since gσ +T σ

is tame, as well as Z(gσ ) = 0 (given that L = Lc +T σ is tame and Lc = (gσ ⊗F [t±2])⊕
(g−⊗tF [t±2])⊕Fc, cf. Section 4). Hence, x+ = 0, and we obtain x∈ (g+T )− = g−+T−.
If x ∈ g−, then U (gσ )x, where U (gσ ) is the universal enveloping algebra of gσ , is a gσ -
submodule of g−. However, since dimF g− > 1 and g− is an irreducible gσ -module (by
Lemma 8.2), then we have g− ⊃ U (gσ )x = Fx, which implies that x has to be 0 in this
case. Similarly, (2) holds by property (45). �

Lemma 8.4. (1) Let h ∈ T2I+1 for type BC(2)
I or h ∈ T2I for type C(2)

I . Suppose that
[h,gσ ]⊂ g−, then h ∈ T−2I+1 or h ∈ T−2I, respectively.

(2) Let h ∈ T σ
2I+2 for type B(2)

I . Suppose that [h,o2I+2(F)] ⊂ s, then h ∈ s0 = s∩ hσ

(for s0, see (44) in the last paragraph of Section 5).

Proof. For (1), let x ∈ gσ and y = [h,x] ∈ g−. Then, −y = σ(y) = [σ(h),x]. Hence,
[h+σ(h),x] = 0 for all x∈ gσ . Therefore, h+σ(h)∈C in Lemma 8.3, and thus h+σ(h)∈
T−. However since h + σ(h) ∈ T σ , we obtain h + σ(h) = 0. Thus, σ(h) = −h, i.e.,
h ∈ T−2I+1 or T−2I, respectively.

Similarly for (2), we obtain h+ τ(h) = 0 by Lemma 8.3. Thus, h ∈ s0. �

Let L be a twisted LALA of infinite rank, i.e., the core Lc is a universal covering of
a twisted locally loop algebra of type B(2)

I , C(2)
I or BC(2)

I for an infinite index I. As in
the untwisted case, by selecting a homogeneous complement of the Z-graded core, we can
write

L = Lc⊕
⊕
m∈Z

Dm,
⊕
m∈Z

Dm ⊂
⊕

δ∈R0

Lδ =
⊕
m∈Z

Lmδ1 and Dm ⊂Lmδ1 ,

where δ1 is a generator of 〈R0〉Z. Let

L ′
c := Lc/Z(Lc)

be the centerless core and let (g,h) be the grading pair of the Lie 1-torus Lc such that
h is the set of diagonal matrices of a locally finite split simple Lie algebra g, as before.
According to this terminology, L ′

c = Lc/Z(Lc) can be identified with

L :=
(
g⊗F [t±2]

)
⊕
(
s⊗ tF [t±2]

)
.

We note that the subalgebras g+ = gσ and g− in the previous terminology correspond
to g and s in this new terminology.

Let L be a locally loop algebra of type X (2)
I . Then, L is ∆-graded, where ∆ is a locally

finite irreducible root system of type XI. In addition, we can see that g is ∆red∪{0}-graded
and s is ∆′∪{0}-graded, where ∆red and ∆′ are given as follows.

∆ ∆red ∆′

BI ∆ ∆sh = (A1)×I

CI ∆ ∆sh = DI

BCI ∆sh∪∆lg = BI ∆
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In this case, our new notation (A1)×I denotes the (orthogonal disjoint) union

(A1)×I = ṫi∈I∆i = {±εi | i ∈ I}

of root systems ∆i = {±εi} of type A1, which satisfy ∆i ⊥ ∆ j for distinct i, j. In particular,
we have

g =
⊕

α∈∆red∪{0}
gα and s =

⊕
β∈∆′∪{0}

sβ .

As in the untwisted case, we can classify diagonal derivations of a twisted locally loop
algebra L in general.

Let

(DerF L)0
0 := {d ∈ DerF L | d(gα ⊗ t2m)⊂ gα ⊗ t2m

and d(sβ ⊗ t2m+1)⊂ sβ ⊗ t2m+1 for all α ∈ ∆red, β ∈ ∆′ and m ∈ Z}

and take d ∈ (DerF L)0
0. Then, as before, d |g is a diagonal derivation of g, and thus, by

Neeb [N1], d |g= ad p for some p ∈ P, depending on the type of g (see (46)). Let

d′ := d− ad p ∈ (DerF L)0
0.

Then, we have d′(g⊗ 1) = 0. In particular, we have d′(h⊗ 1) = 0. Thus, in the same
manner as the untwisted case, we can show that for 0 6= x⊗ t ∈ sβ ⊗ t, if

d′(x⊗ t) = ax⊗ t (51)

for a ∈ F , then
d′(y⊗ t−1) =−ay⊗ t−1 (52)

for all y ∈ s−β .

Lemma 8.5. For the above s, we have U (g).sβ = s for any β ∈ ∆′, where U (g) is the
universal enveloping algebra of g.

Proof. Since U (g).sβ is a nonzero submodule of s, then it must be s by the irreducibility
of s. �

By Lemma 8.5, for a fixed β ∈ ∆′, the three subspaces

g⊗1, sβ ⊗ t, and s−β ⊗ t−1

generate L as a Lie algebra. As before, let d′′ := d′− ad(0). Then, we have d′′(g⊗ 1) =
d′(g⊗ 1) = 0 and using (51), we obtain d′′(x⊗ t) = d′(x⊗ t)− ax⊗ t = 0 for x ∈ sβ .
Similarly, using (52), we have d′′(y⊗ t−1) = d′(y⊗ t−1)+ay⊗ t−1 = 0 for y ∈ s−β . Thus,
we have d′′(L) = 0 and d′′ = 0. Hence, we obtain

d = ad p+ad(0). (53)

Again, we define the shift map s2m for m ∈ Z on L =
(
g⊗F [t±2]

)
⊕
(
s⊗ tF [t±2]

)
by

s2m(x⊗ t2k) := x⊗ t2k+2m and s2m(v⊗ t2k+1) := v⊗ t2k+2m+1

for x ∈ g and v ∈ s. Let

(DerF L)2m
0 := {d ∈ DerF L | d(gα ⊗ t2k)⊂ gα ⊗ t2k+2m

and d(sβ ⊗ t2k+1)⊂ sβ ⊗ t2k+2m+1 for all α ∈ ∆red, β ∈ ∆′ and k ∈ Z}
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and we take d2m ∈ (DerF L)2m
0 . Then, we have s−2m ◦ d2m ∈ (DerF L)0

0. Hence, by (53),
some p = pd2m ∈ P and a = ad2m ∈ F exist such that s−2m ◦d2m = ad p+ad(0), and thus

d2m = s2m ◦ ad p+at2md(0) = s2m ◦ ad p+at2m+1 d
dt

.

Therefore, as in Theorem 7.2, we have the following.

Lemma 8.6. For all m ∈ Z, we have

(DerF L)2m
0 = s2m ◦ (DerF L)0

0 = s2m ◦ (adP⊕Fd(0)),

where P is defined in (46). �

Moreover, as in Lemma 7.3, we have the following.

Lemma 8.7. For all m ∈ Z, let

(Der′F L)2m
0 := {d ∈ (DerF L)2m

0 | s2n ◦d = d ◦ s2n for some 0 6= n ∈ Z}

and
(Der′′F L)2m

0 := {d ∈ (DerF L)2m
0 | s2n ◦d = d ◦ s2n for all n ∈ Z}.

Then, we have
(Der′F L)2m

0 = s2m ◦ adP = (Der′′F L)2m
0 .

�

Now, we return to the classification of Dm. Let d2m ∈ D2m. Then, add2m = s2m ◦ ad p+
at2md(0) for some p ∈ P and a ∈ F by Lemma 8.6. Then, as in the untwisted case, we can
show that a = 0 for all m 6= 0, using

B([d,h⊗ t],h′⊗ t−m−1) =−B(h⊗ t2, [d2m,h′⊗ t−2m−2])

for some h,h′ ∈ h such that tr(h,h′) 6= 0. Furthermore, as in the untwisted case, some p∈ P
exists such that ad p+d(0) ∈ adD0. Thus, the spaces Dm for even m s coincide with those
in Example 6.3.

Next, we determine (DerF L)2m+1
0 , where

(DerF L)2m+1
0 := {d ∈ DerF L | d(gα ⊗ t2k)⊂ sα ⊗ t2k+2m+1

and d(sβ ⊗ t2k+1)⊂ gβ ⊗ t2k+2m+2 for all α ∈ ∆red, β ∈ ∆′ and k ∈ Z}.

Lemma 8.8. Let q ∈ (DerF L)2m+1
0 . Then, q commutes with a shift map s2i for all i ∈ Z.

Proof. We note that

q(xα ⊗ t2k) = 0 (xα ∈ gα , α ∈ ∆lg, k ∈ Z)

for BI or CI, and that

q(xβ ⊗ t2k+1) = 0 (xβ ∈ sβ , β ∈ ∆ex, k ∈ Z)

for BCI, since sα = 0 and gβ = 0. Therefore, in particular,

q◦ s2i(z) = s2i ◦q(z)

for z = xα⊗t2k in the case of type BI or CI, and for z = xβ ⊗t2k+1 in the case of type BCI.
For any other given homogeneous element x we can find suitable homogeneous elements
y and z such that x = [y,z] in the following sense.
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x y z
BI or CI xα ⊗ t2k yα ′ ⊗ t2k zα ′′ ⊗1

xα ∈ gα (α ∈ ∆sh) yα ′ ∈ gα ′ (α ′ ∈ ∆sh) zα ′′ ∈ gα ′′ (α ′′ ∈ ∆lg)
xβ ⊗ t2k+1 yβ ′ ⊗ t2k+1 zα ′′ ⊗1

xβ ∈ sβ (β ∈ ∆sh) yβ ′ ∈ sβ ′ (β ′ ∈ ∆sh) zα ′′ ∈ gα ′′ (α ′′ ∈ ∆lg)

The table shown above is for BI or CI. For example, we can understand that for any
x = xα ⊗ t2k (xα ∈ gα , α ∈ ∆sh), there are y = yα ′ ⊗ t2k (yα ′ ∈ gα ′ α ′ ∈ ∆sh) and z =
zα ′′ ⊗1 (zα ′′ ∈ gα ′′ , α ′′ ∈ ∆lg) such that x = [y,z].

Similarly, for BCI, we obtain the following table.

x y z
BCI xα ⊗ t2k yβ ′ ⊗ t2k−1 zβ ′′ ⊗ t

xα ∈ gα (α ∈ ∆sh) yβ ′ ∈ sβ ′ (β ′ ∈ ∆sh) zβ ′′ ∈ sβ ′′ (β ′′ ∈ ∆ex)
xα ⊗ t2k yα ′ ⊗ t2k−1 zβ ′′ ⊗ t

xα ∈ gα (α ∈ ∆lg) yβ ′ ∈ sβ ′ (α ′ ∈ ∆lg) zα ′′ ∈ sβ ′′ (β ′′ ∈ ∆ex)
xβ ⊗ t2k+1 yβ ′ ⊗ t2k zβ ′′ ⊗ t

xβ ∈ sβ (β ∈ ∆sh) yα ′ ∈ gα ′ (α ′ ∈ ∆sh) zβ ′′ ∈ sβ ′′ (β ′′ ∈ ∆ex)
xβ ⊗ t2k+1 yα ′ ⊗ t2k zβ ′′ ⊗ t

xβ ∈ sβ (β ∈ ∆lg) yα ′ ∈ gα ′ (α ′ ∈ ∆lg) zα ′′ ∈ sβ ′′ (β ′′ ∈ ∆ex)

In the expression x = [y,z], we note that q(z) = 0 is always true for all BI, CI and BCI as
before, which is the most important fact in this case. Hence, we obtain

q◦ s2i(x) = q◦ s2i([y,z]) = q([y,s2i(z)])
= [q(y),s2i(z)]+ [y,q◦ s2i(z)]
= [q(y),s2i(z)]
= s2i([q(y),z])
= s2i([q(y),z]+ [y,q(z)])
= s2i ◦q([y,z])
= s2i ◦q(x).

Therefore, q◦ s2i = s2i ◦q on L. �

Lemma 8.9. Let L =
(
g⊗F [t±2]

)
⊕
(
s⊗ tF [t±2]

)
be a twisted loop algebra, which is

double graded by ∆∪{0} and Z as above. Let d be in (DerF L)2m+1
0 such that s2◦d = d◦s2.

Then, a unique derivation d̃ on L̃ exists such that

d̃ |L= d, d̃(x⊗ t2k+1) = s1 ◦d(x⊗ t2k) and d̃(v⊗ t2k) = s−1 ◦d(v⊗ t2k+1)

for all x ∈ g, v ∈ s, and k ∈ Z. Moreover,

d̃ ∈ (DerF L̃)2m+1
0 such that sk ◦ d̃ = d̃ ◦ sk for all k ∈ Z.

Proof. The uniqueness is clear since the image of all the homogeneous elements has been
determined. Therefore, it is sufficient to show that d̃ is a derivation. Thus, we need to
check the following: For x,y ∈ g and v,w ∈ s,

(a) d̃([x⊗ t2k,y⊗ t2`+1]) = [d̃(x⊗ t2k),y⊗ t2`+1]+ [x⊗ t2k, d̃(y⊗ t2`+1)]
(b) d̃([x⊗ t2k,v⊗ t2`]) = [d̃(x⊗ t2k),v⊗ t2`]+ [x⊗ t2k, d̃(v⊗ t2`)]
(c) d̃([x⊗ t2k+1,y⊗ t2`+1]) = [d̃(x⊗ t2k+1),y⊗ t2`+1]+ [x⊗ t2k+1, d̃(y⊗ t2`+1)]
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(d) d̃([x⊗ t2k+1,v⊗ t2`+1]) = [d̃(x⊗ t2k+1),v⊗ t2`+1]+ [x⊗ t2k+1, d̃(v⊗ t2`+1)]
(e) d̃([x⊗ t2k+1,v⊗ t2`]) = [d̃(x⊗ t2k+1),v⊗ t2`]+ [x⊗ t2k+1, d̃(v⊗ t2`)]
(f) d̃([v⊗ t2k+1,w⊗ t2`]) = [d̃(v⊗ t2k+1),w⊗ t2`]+ [v⊗ t2k+1, d̃(w⊗ t2`)]
(g) d̃([v⊗ t2k,w⊗ t2`]) = [d̃(v⊗ t2k),w⊗ t2`]+ [v⊗ t2k, d̃(w⊗ t2`)].

All of these equations involve simple calculations, but we check them to be sure.
For (a), we have

(LHS) = d̃([x,y]⊗ t2k+2`+1) = s1 ◦d([x,y]⊗ t2k+2`) = s1 ◦d([x⊗ t2k,y⊗ t2`])

= s1
(
[d(x⊗ t2k),y⊗ t2`]+ [x⊗ t2k,d(y⊗ t2`)]

)
= [d(x⊗ t2k),y⊗ t2`+1]+ [x⊗ t2k,s1 ◦d(y⊗ t2`)] = (RHS).

For (b), we have

(LHS) = d̃([x,v]⊗ t2k+2`) = s−1 ◦d([x,v]⊗ t2k+2`+1])

= s−1
(
[d(x⊗ t2k),v⊗ t2`+1]+ [x⊗ t2k,d(v⊗ t2`+1)]

)
= [d(x⊗ t2k),v⊗ t2`]+ [x⊗ t2k,s−1 ◦d(v⊗ t2`+1)] = (RHS).

For (c), we have

(LHS) = d̃([x,y]⊗ t2k+2`+2) = d([x,y]⊗ t2k+2`+2])

= d([x⊗ t2k,y⊗ t2`+2]) = [d(x⊗ t2k),y⊗ t2`+2]+ [x⊗ t2k,d(y⊗ t2`+2)]

= s1
(
[d(x⊗ t2k),y⊗ t2`+1]

)
+[x⊗ t2k,d ◦ s2(y⊗ t2`)]

= [s1 ◦d(x⊗ t2k),y⊗ t2`+1]+ s2
(
[x⊗ t2k,d(y⊗ t2`)]

)
(since s2 and d commute)

= [d̃(x⊗ t2k+1),y⊗ t2`+1]+ [x⊗ t2k+1,s1 ◦d(y⊗ t2`)] = (RHS).

For (d), we have

(LHS) = d̃([x,v]⊗ t2k+2`+2) = s−1 ◦d([x,v]⊗ t2`+3])

= s−1 ◦d([x⊗ t2k,v⊗ t2`+3])

= s−1
(
[d(x⊗ t2k),v⊗ t2`+3]+ [x⊗ t2k,d(v⊗ t2`+3)]

)
= s1

(
[d(x⊗ t2k),v⊗ t2`+1]

)
+ s−2

(
[x⊗ t2k+1,d(v⊗ t2`+3)]

)
= [s1 ◦d(x⊗ t2k),v⊗ t2`+1]+ [x⊗ t2k+1,s−2 ◦d(v⊗ t2`+3)]

= (RHS) (since s2 and d commute).

For (e), we have

(LHS) = d̃([x,v]⊗ t2k+2`+1) = d([x,v]⊗ t2k+2`+1]) = d([x⊗ t2k,v⊗ t2`+1])

= [d(x⊗ t2k),v⊗ t2`+1]+ [x⊗ t2k,d(v⊗ t2`+1)]

= [s1 ◦d(x⊗ t2k),v⊗ t2`]+ [x⊗ t2k, d̃(v⊗ t2`+1)] = (RHS).
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For (f), we have

(LHS) = d̃([v,w]⊗ t2k+2`+1]) = s1 ◦d([v,w]⊗ t2k+2`])

= s1 ◦d([v⊗ t2k−1,w⊗ t2`+1])

= s1
(
[d(v⊗ t2k−1),w⊗ t2`+1]+ [v⊗ t2k−1,d(w⊗ t2`+1)]

)
= s2[d(v⊗ t2k−1),w⊗ t2`]

)
+[v⊗ t2k,d(w⊗ t2`+1)]

= [d(v⊗ t2k+1),w⊗ t2`]+ s−1
(
[v⊗ t2k+1,d(w⊗ t2`+1)]

)
= (RHS).

For (g), we have

(LHS) = d̃([v,w]⊗ t2k+2`]) = d([v,w]⊗ t2k+2`]) = d([v⊗ t2k−1,w⊗ t2`+1])

= [d(v⊗ t2k−1),w⊗ t2`+1]+ [v⊗ t2k−1,d(w⊗ t2`+1)]

= [s1 ◦d(v⊗ t2k−1),w⊗ t2`]+ [v⊗ t2k,s−1 ◦d(w⊗ t2`+1)] = (RHS).

For the second assertion, it is clear that d̃ ∈ (DerF L̃)2m+1
0 . In addition, since d commutes

with s2, then the same is true of d̃. Hence, by Lemma 7.3, d̃ commutes with sk for all
k ∈ Z. �

Thus, together with Lemma 8.6, we have classified the diagonal derivations of twisted
locally loop algebras.

Theorem 8.10. Let L be a twisted loop algebra. Then, we have (DerF L)0
0 = adP⊕Fd(0),

where P is defined in (46), and

(DerF L)2m
0 = s2m ◦ (DerF L)0

0 and (DerF L)2m+1
0 = s2m+1 ◦ adT−

for all m ∈ Z, where T− = s0 for B(2)
I , T− = T−2I for C(2)

I or T− = T−2I+1 for BC(2)
I ,

as defined in Example 6.3.

Proof. By Lemma 8.8, 8.9, and the classification of the untwisted case, if d ∈ (DerF L)2m+1
0 ,

then d̃ ∈ s2m+1 ◦ (DerF L̃)0
0. In addition, by Lemma 8.8 and Lemma 8.7, we obtain d̃ ∈

s2m+1 ◦ adP. Thus, ad p := s−2m−1 ◦ d̃ ∈ adP, and we have [p,g+] ⊂ g− according to the
terminology used in Lemma 8.4. Hence, by Lemma 8.4, we obtain p ∈ T−. Therefore,
d ∈ s2m+1 ◦ adT−. �

Remark 8.11. If L is a twisted loop algebra of type B(2)
I , then (DerF L)2m+1

0 = s2m+1 ◦
ads0 = ad(s0⊗ t2m+1). Thus, there is no outer derivation of odd degree.

We return to the classification of twisted LALAs. By Theorem 8.10, if d ∈D2m+1, then
adL d ∈ s2m+1 ◦ adL T−. The bracket on D :=

⊕
m∈Z Dm can be investigated in the same

manner as the untwisted case. In particular, for type BC(2)
I or C(2)

I , we use the isomorphism

L ∼=
(
L + ι⊗F [t±1]

)
/ι⊗ tF [t±2].

Thus, Dm for m ∈ Z is an exact example for each type described in Example 6.3. Thus, we
have completed the classification.

Theorem 8.12. Let L be a twisted LALA. Then, L is isomorphic to that in Example
6.3. �
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Remark 8.13. We can show that any twisted LALA is the fixed algebra of some untwisted
LALA. Moreover, for any untwisted LALA L of type A(1)

I or D(1)
I , a twisted LALA L ′

exists, which is a subalgebra of L such that L ′ is the intersection of L and the fixed
algebra of a maximal untwisted LALA L max that contains L . Note that a maximal twisted
LALA is also unique up to isomorphism, as in the case of a maximal untwisted LALA.

Remark 8.14. By Theorem 7.6 and Theorem 8.12, the LALAs in Example 6.3 comprise
all of the algebras. Given this fact, the following statement is clear and it is a useful
criterion.

If a diagonal matrix p ∈ T with a trace that is a nonzero value (e.g., eii or eii + eI+i,I+i,
etc.) is used in a LALA, then this LALA must be of type A(1)

I , C(2)
I , or BC(2)

I . Moreover,

if the type is C(2)
I or BC(2)

I , then p has to be used in odd degree.

9. STANDARD LALAS

We prove the following criterion whether a LALA is standard or not.

Lemma 9.1. Let (L ,H ,B) be a LALA with center Fc and Lc is its core, which is a
locally Lie 1-torus with grading pair (g,h). If 0 6= d ∈L exists such that [d,g] = 0 and
B(d,c) 6= 0, then the action of d on the Z-graded core coincides with a nonzero multiple
of a degree derivation relative to Z, and thus L contains the degree derivation. Hence, L
is standard.

Proof. Let d = ∑ξ∈R xξ for xξ ∈Lξ . If ξ ∈ R×, then [h,xξ ] = Fxξ ⊂Lξ , and thus xξ = 0
since [d,g] = 0. If ξ ∈ R0 \ {0}, then xξ ∈ T ⊗ tm for some 0 6= m ∈ Z, by Theorem 7.6
and 8.12. However, if xξ 6= 0, then a root vector y ∈ gα (α ∈ ∆) exists such that [y,xξ ] 6= 0,
which is a contradiction. Hence, xξ = 0. Thus, d = x0 ∈L0 = H . Then, by Theorems 7.6
and 8.12,

d = p+ad(0) +bc
for some p ∈ T = T ⊗ t0 and a,b ∈ F , as well as a 6= 0, since B(d,c) 6= 0. Therefore, we
have 0 = [d,g] = [p,g]. However, unless L has type A(1)

I , we have p ∈ T σ , and thus p

must be zero. If L has type A(1)
I , then p ∈ Fι , by Lemma 5.10, and thus p must again be

zero (modulo Fι). Thus, we obtain d = ad(0) +bc. �

Remark 9.2. In [N2, Def.3.6], Neeb defined a minimal LALA L , which is minimal in
the sense described above and that satisfies one more condition:

∃ d ∈H such that W ′ := spanQ{α ∈ R× | α(d) = 0} is a reflectable section

of W = spanQ R×. Thus, [g,d] = 0. Moreover, if δ (d) = 0, where δ is a generator of
R0 ∼= Z, then α(d) = 0 for all α ∈ R×. Hence, W ′ = W , which is a contradiction. Thus,
δ (d) 6= 0. However, d is a nonzero multiple of a degree derivation modulo of the center by
Lemma 9.1, and thus a minimal LALA in [N2] is a minimal standard LALA in our sense.

Example 9.3. The minimal LALA L = slN(F [t±1])⊕Fc⊕F(e11 +d(0)) is isomorphic to
a minimal standard LALA L ms = slN(F [t±1])⊕Fc⊕Fd(0). In fact, let g = diag(t,1,1, . . .).
Then, g−1Xg for X ∈ slN(F [t±1]) gives an automorphism f of slN(F [t±1]). Therefore, we
can extend f from L ms onto L such that f (c) = c and f (d(0)) = e11 + d(0). Thus, L is
isomorphic to L ms, as in Lie algebras.
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Example 9.4. Let p = diag(1,
1
2
,

1
3
,

1
4
, . . .) and put d = p+d(0). Then, the minimal LALA

L = slN(F [t±1])⊕Fc⊕Fd is not isomorphic to a minimal standard LALA L ms. In fact,
if L is isomorphic to L ms, then an isomorphism

ψ : L ms −→L

exists such that ψ(d(0)) = x + ad = x + a(d(0) + p) for some x ∈Lc = slN(F [t±1])⊕Fc
and some nonzero a ∈ F . Then, we have

ψ ◦ add(0) ◦ψ−1 = ad(ψ(d(0))) = ad(x+ad(0) +ap)

in DerF(L ). Now, we can compare the eigenvalues of the same operators ψ ◦add(0) ◦ψ−1

and ad(x +ad(0) +ap). Note that the eigenvalues of ψ ◦ add(0) ◦ψ−1 are all integers. We
can select h = e``− e`+1,`+1 ∈ slN(F [t±1]) such that

[x,h] = 0,

by taking ` >> 0, where ei j is a matrix unit. Then,

[x+ad(0) +ap,h⊗ t] = a(h⊗ t),

which implies that a is a nonzero integer since a is an eigenvalue of ad(x+ad(0) +ap). We
can also choose sufficiently large different integers m 6= n >> 0 that satisfy

[x,emn] = 0

and
a(n−m)

mn
6∈ Z. (54)

For these integers, m and n, we can see that

[x+ad(0) +ap,emn] = a
(

1
m
− 1

n

)
emn =

a(n−m)
mn

emn.

Since
a(n−m)

mn
is an eigenvalue of ad(x+ad(0) +ap), it must be an integer, which contradicts (54). Hence,
L is not isomorphic to L ms.
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