
LOCALLY EXTENDED AFFINE ROOT SYSTEMS

Yoji Yoshii

Akita National College of Technology
1-1 Iijima Bunkyocho Akita-shi, Japan 011-8511

yoshii@akita-nct.jp

Abstract. We consider a natural generalization of both locally finite irreducible root systems

and extended affine root systems defined by Saito. We classify the systems.

Introduction

Let us recall the definition of a finite irreducible root system in a euclidean space V , i.e.,
V ≈ Rn with a positive definite form (·, ·).

Definition 0. A subset R of V is called a finite irreducible root system if
(A1) 0 /∈ R and R spans V ;
(A2) 〈α, β〉 ∈ Z for all α, β ∈ R, where 〈α, β〉 = 2(α,β)

(β,β) ;
(A3) σα(β) ∈ R for all α, β ∈ R, where σα(β) = β − 〈β, α〉α;
(A4) R = R1 ∪ R2 and (R1, R2) = 0 imply R1 = ∅ or R2 = ∅. (R is irreducible.)

We note that R becomes automatically a finite set (see [LN1, 4.2] or [MY1, Prop.
4.2]). Needless to say, these interesting subsets were crucial in the classification of finite-
dimensional simple Lie algebras and of finite reflection groups in the 20th century. In 1985,
K. Saito introduced the notion of a generalized root system [S]. He changed the frame V
from the euclidean space to a general vector space over R equipped with a symmetric bilinear
form, not necessarily a positive definite form, and replaced the axiom (A1) to:

(α, α) ̸= 0 for all α ∈ R, and R spans V .

This change is natural since (α, α) ̸= 0 whenever α ̸= 0 in a euclidean space. Moreover,
Saito added two extra axioms:

(A5) the additive subgroup generated by R is a full lattice in V ;
(A6) the codimension of the radical of V is finite.

He called such a root system an extended affine root system if the form is positive semidefinite.
(Later the notion of an extended affine root system was used in a different sense [A-P], but
it was proved in [A2] there is a natural correspondence between both notions.) If the
dimension of the radical of the positive semidefinite form is 1, the extended affine root
systems are irreducible affine root systems in the sense of Macdonald [M]. One of the Saito’s
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main purposes was to construct a Lie algebra whose anisotropic roots form an extended
affine root system having a 2-dimensional radical.

Our interest now is not Saito’s root systems but extended affine root systems. We general-
ize Saito’s axioms of extended affine root systems with good reasons. First of all, we make our
new concept contain the so-called locally finite irreducible root systems (see [LN1]), which are
obtained simply by changing the frame V in Definition 0 to an infinite-dimensional euclidean
space, i.e., an infinite-dimensional vector space over R with a positive definite form. (Then
R becomes automatically a locally finite set, i.e., |W ∩ R| < ∞ for any finite-dimensional
subspace W of V .) It turns out that if we simply take off the axiom (A6), locally finite
irreducible root systems are contained. Next, we assume the base field to be Q, not R.
Notice that in the setting of finite-dimensional simple Lie algebras, root systems naturally
appear in vector spaces over Q, and then one gets a euclidean space by simply tensoring
with R. Besides, our theory of extended affine Lie algebras also produces a root system in
a vector space over Q (see [MY1]). Once we start with a vector space over Q, the axiom
(A5) is equivalent to saying that the abelian group generated by R, say 〈R〉, is free. Thus,
it seems better to have as axiom that

(A7) 〈R〉 is free

in our setup. However, we can say much about the classification without assuming (A7).
So we simply take off the axiom (A5) (and we do not assume (A7) either), and we get our
definition of a locally extended affine root system in Definition 1. As a special case, we call
a locally extended affine root system an extended affine root system if (A6) and (A7) hold.
Thus our extended affine root systems are the same as Saito’s if we consider the embedding
of ours into the real vector space R ⊗Q V .

We classify locally extended affine root systems in terms of triples of reflection spaces
by the methods from [A-P] (see Theorem 7), which was also done in [LN2] in a more
general setting. Also, we show some relations between the isomorphisms of locally extended
affine root systems and the similarities of reflection spaces in Theorem 10. Then, when
dimQ V 0 = 1, we get more information by a simple observation about subgroups of Q in
Corollary 13. Finally, we give some interesting examples of Lie algebras whose root systems
are locally extended affine root systems.

We thank Professors Saeid Azam, Jun Morita and Erhard Neher for their several sugges-
tions.

Basic Concepts

Definition 1. Let V be a vector space over Q with a positive semidefinite bilinear form
(·, ·). A subset R of V is called a locally extended affine root system or a LEARS for short if

(A1) (α, α) ̸= 0 for all α ∈ R, and R spans V ;
(A2) 〈α, β〉 ∈ Z for all α, β ∈ R, where 〈α, β〉 = 2(α,β)

(β,β) ;
(A3) σα(β) ∈ R for all α, β ∈ R, where σα(β) = β − 〈β, α〉α;
(A4) R = R1 ∪ R2 and (R1, R2) = 0 imply R1 = ∅ or R2 = ∅. (R is irreducible.)

A LEARS R is called reduced if 2α /∈ R for all α ∈ R.

Note that if V is finite-dimensional and (·, ·) is positive definite, then R is exactly a finite
irreducible root system (see [MY1, Prop. 4.2]).

Let
V 0 := {x ∈ V | (x, y) = 0 for all y ∈ V }
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be the radical of the form. Note that

V 0 = {x ∈ V | (x, x) = 0}.

We call dimQ V 0 the null dimension of R, which can be any cardinality.
We denote the additive subgroup of V generated by a subset S of V by 〈S〉.
We call a LEARS (R, V ) an extended affine root system or an EARS for short, if

dimQ V/V 0 < ∞ and 〈R〉 is free.

This coincides with the concept, which was firstly introduced by Saito in 1985 [S]. As we
mentioned in the Introduction, the notion of an EARS was also used in a different sense in
[A-P], but Azam showed that there is a natural correspondence between the two notions in
[A2]. We use here the Saito’s one since he is the first person who defined it and his root
system naturally generalized Macdonald’s affine root systems in [M].

In Corollary 5 later, we will see that if the abelian group 〈R〉 ∩ V 0 is free, then 〈R〉 is
free. So the condition that 〈R〉 is free can be replaced by the condition that 〈R〉∩V 0 is free.

Recall the notion of rank for a torsion-free abelian group G, that is, rank G = dimQ(Q⊗Z
G). It is easy to check that if G is a subgroup of a Q-vector space W , then rankG =
dimQ spanQ G, where spanQ G is the subspace of W spanned by G over Q.

Thus, in our root system (R, V ), we have

rank(〈R〉 ∩ V 0) = dimQ spanQ(〈R〉 ∩ V 0) = dimQ V 0 = (the null dimension of R).

Now, when our torsion-free abelian group 〈R〉∩V 0 happens to be free, we say that R has
nullity. (We simply want to distinguish the easier case “free”.) For example, R has nullity
1 means that 〈R〉 ∩ V 0 ∼= Z, and R has null dimension 1 means that 〈R〉 ∩ V 0 is isomorphic
to a nonzero subgroup of Q. Also, by Corollary 5, if an EARS R has finite nullity, then 〈R〉
is free of finite rank. Thus we simply say that R is an EARS of finite rank when the EARS
has finite nullity.

Our LEARS are a natural generalization of the existing concept EARS. In fact, Saito’s
EARS are the same as our EARS embedded into the real vector space R ⊗Q V . Similarly,
irreducible affine root systems in the sense of Macdonald [M] are our EARS of nullity 1.
Note that the reduced irreducible affine root systems are the real roots of affine Kac-Moody
Lie algebras. The elliptic root systems defined by Saito [S] are our EARS of nullity 2. Also,
the sets of nonisotropic roots of EARS in [A-P] are our reduced EARS of finite rank (see
[A2]).

Finally, we call a LEARS of nullity 1 a locally affine root system or a LARS for short.

Let (R, V ) be a LEARS, and (R̄, V̄ ) the canonical image onto V/V 0. Then V̄ admits the
induced positive definite form, and thus

(R̄, V̄ ) is a locally finite irreducible root system.

Note that our definition of a locally finite irreducible root system is a LEARS (in Definition
1) so that the form is positive definite, and then one can show that the system is in fact
locally finite (see [LN1, 4.2] or [MY1, Prop.4.2]).
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Reflectable bases

Locally finite irreducible root systems which are not finite were classified as the reduced
types AI, BI, CI, DI, and the nonreduced type BCI for any infinite index set I (see
[LN1, Ch.8]). More precisely, let {ϵi}i∈I be an orthonormal basis for an infinite-dimensional
euclidean space V (or an infinite-dimensional vector space over Q with positive definite
form), and let

AI = {ϵi − ϵj | i ̸= j ∈ I},
BI = {±ϵi, ±(ϵi ± ϵj) | i ̸= j ∈ I},
CI = {±(ϵi ± ϵj), ±2ϵi | i ̸= j ∈ I},
DI = {±(ϵi ± ϵj) | i ̸= j ∈ I},

BCI = BI ∪ CI.

Note that each root system spans V except AI. If |I| = ℓ is finite, then an ordinary notation
of the root system is Aℓ−1 instead of Aℓ. So it might be better to write something like AI−1

or ȦI instead of just AI. However, to simplify the notation, we stipulate to write AI when
|I| is infinite.

Let (R, V ) be a locally finite irreducible root system (including the finite case) and assume
it is reduced. A basis Π of V is called a reflectable base of R if Π ⊂ R and for any α ∈ R,

α = σα1 · · ·σαk
(αk+1)

for some α1, . . . , αk+1 ∈ Π. (Any root can be obtained by reflecting a root of Π relative to
hyperplanes determined by Π.) This is a well-known property which a root base of a reduced
finite root system possesses. It is known that a locally finite irreducible root system which
is countable possesses a root base, but this is not the case for a locally finite irreducible root
system which is uncountable. (See [LN1, §6]. They also prove that there always exists an
integral base even in the uncountable case. However, it is easy to see that an integral base
is not necessarily a reflectable base.) Thus we need to show the existence of a reflectable
base in a reduced locally finite irreducible root system which is uncountable, and we have:

Lemma 2. There exists a reflectable base in any reduced locally finite irreducible root sys-
tem [LN2, Lem. 5.1]. In particular, the additive subgroup generated by each locally finite
irreducible root system is free (see also [LN1, Thm 7.5]).

Classification

We devote this section to classifying LEARS. (The argument below is a special case of
[LN2, 4.9, 5.2].)

Let (R, V ) be a LEARS. Let V ′ be a subspace of V so that V = V ′ ⊕ V 0, and

∆ = ∆V ′ := {α ∈ V ′ | α + s ∈ R for some s ∈ V 0}.

We note that ∆ is bijectively mapped onto R̄ by ¯. Moreover, ¯ is a linear isomorphism
from V ′ onto V̄ satisfying (v′, w′) = (v̄′, w̄′) for all v′, w′ ∈ V ′. Hence, (∆, V ′) is a locally
finite irreducible root system isomorphic to (R̄, V̄ ). We often say that R has type ∆. For
each α ∈ ∆, we set

Sα := {s ∈ V 0 | α + s ∈ R}.
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Then
R =

⊔
α∈∆

(α + Sα).

Since R spans V ,

(S0) ∪α∈∆ Sα spans V 0.

Also, for any α + s, β + s′ with α, β ∈ ∆, s ∈ Sα and s′ ∈ Sβ , we have

σα+s(β + s′) = β + s′ − 〈β + s′, α + s〉(α + s)

= σα(β) + s′ − 〈β, α〉s ∈ R,

and so s′ − 〈β, α〉s ∈ Sσα(β), i.e.,

(S1) Sβ − 〈β, α〉Sα ⊂ Sσα(β) for all α, β ∈ ∆.

Conversely, let ∆ be a locally finite irreducible root system in a vector space V1 over Q
with positive definite form, and let {Sα}α∈∆ be a family of nonempty subsets in a vector
space V0 indexed by ∆ satisfying (S0) and (S1). Extend the positive definite form on V1

to V := V1 ⊕ V0 so that V0 is the radical of the form. Let R := ⊔α∈∆ (α + Sα). Then R
satisfies the axioms (A1-4) of a LEARS. In particular (assuming that Corollary 5 holds), if
∆ is finite and the abelian group 〈∪α∈∆ Sα〉 is free, then R is an EARS.

Proposition 3. A LEARS is a directed union of EARS of finite rank. Namely, if R =⊔
α∈∆ (α + Sα) is a LEARS in the description above, then

R =
∪
∆′

∪
Λ∆′

⊔
α∈∆′

(
α + (Λ∆′ ∩ Sα)

)
,

where
∪

∆′ means a directed union over finite irreducible subsystems ∆′ of ∆ and
∪

Λ∆′

means a directed union over subgroups Λ∆′ generated by a subset ∪α∈∆′ S′
α, where S′

α is
chosen to be any nonempty finite subset of Sα.

Proof. Note that a locally finite irreducible root system is a directed union of finite irre-
ducible subsystems [LN1, Cor.3.15]. Hence ∆ is a directed union of finite irreducible sub-
systems ∆′, and so R is a directed union of

⊔
α∈∆′ (α+Sα), i.e., R =

∪
∆′

⊔
α∈∆′ (α+Sα).

Now, since Sα is a directed union of Λ∆′ ∩ Sα, say Sα =
∪

Λ∆′ (Λ∆′ ∩ Sα), we have⊔
α∈∆′ (α + Sα) =

∪
Λ∆′

⊔
α∈∆′

(
α + (Λ∆′ ∩ Sα)

)
. Moreover, 〈

∪
α∈∆′ (Λ∆′ ∩ Sα)〉 = Λ∆′ is

free of finite rank. So
⊔

α∈∆′

(
α + (Λ∆′ ∩Sα)

)
is an EARS of finite rank since ∆′ is a finite

irreducible root system, Λ∆′ ∩ Sα is nonempty for all α ∈ ∆′, and {Λ∆′ ∩ Sα}α∈∆′ satisfies
(S1). ¤

Let us recall that we have chosen a complementary subspace V ′ of V 0 to get {Sα}α∈∆.
To classify LEARS, we now choose a nice complementary subspace. First we define for any
LEARS R,

Rred :=
{

R if R is reduced
{α ∈ R | 1

2α /∈ R} otherwise.

Now, note that (R̄red, V̄ ) is a reduced locally finite irreducible root system. Thus there
exists a reflectable base Π of (R̄red, V̄ ) (by Lemma 2). We fix a preimage α ∈ R for each
ᾱ ∈ Π. Let

V ′ be the subspace of V spanned by {α}ᾱ∈Π.

We call this complementary subspace a reflectable subspace determined by a complete set
of representatives of a reflectable base Π of (R̄red, V̄ ). Then the subsets Sα of V 0 defined
above satisfy the following as in [A-P, Prop.2.11] (see also [LN2, 4.2, 4.5, 4.10, 5.2]).
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Lemma 4. Let ∆red be the corresponding set to R̄red determined by a reflectable subspace
V ′ as above. Then ∆red ⊂ R, or in other words,

(S2) 0 ∈ Sα for all α ∈ ∆red.

Moreover, if R is reduced, then

(S3) S2α ∩ 2Sα = ∅ for all 2α, α ∈ ∆.

Proof. For any α ∈ ∆red, by Lemma 2 when R̄ is infinite, or a well-known property for
a root base when R̄ is finite, ᾱ = σᾱ1 · · ·σᾱk

(ᾱk+1) for some ᾱ1, . . . , ᾱk+1 ∈ Π. Then,
α1, . . . , αk+1 ∈ V ′ ∩ R, by our definition of V ′. Hence σα1 · · ·σαk

(αk+1) ∈ V ′, and
σα1 · · ·σαk

(αk+1) = σᾱ1 · · ·σᾱk
(ᾱk+1) = ᾱ. So we get α = σα1 · · ·σαk

(αk+1). Therefore,
α ∈ R by (A3).

For the second statement, if 2s ∈ S2α ∩ 2Sα for some s ∈ Sα, then 2α + 2s ∈ R and
α + s ∈ R, contradiction. ¤

Let
G = 〈∪α∈∆ Sα〉.

Corollary 5. We have 〈R〉 = 〈∆〉 ⊕ G. In particular, 〈R〉 ∩ V 0 = G, and if a LEARS R
has nullity, then 〈R〉 is free.

Proof. Since 〈∆〉 = 〈∆red〉 ⊂ 〈R〉 (by Lemma 4), we have 〈R〉 = 〈∆〉⊕G and 〈R〉∩V 0 = G.
Note that 〈∆〉 is free (by Lemma 2). So if G is free, then 〈R〉 is free. ¤

Now, for a LEARS R, we obtain a family {Sα}α∈∆ of nonempty subsets in V 0 satisfying
(S0), (S1) and (S2). When ∆ is a finite irreducible root system, such a family {Sα}α∈∆

satisfying (S1) and (S2) is called a root system of type ∆ extended by the abelian group G,
and reduced if it satisfies (S3) (see [Y]).

Remark 6. For ᾱ ∈ Π and any sα ∈ Sα, α′ := α+sα is another preimage of ᾱ ∈ Π. Let W
be the subspace of V spanned by {α′}ᾱ∈Π, i.e., W is another reflectable subspace. Or more
generally, let W be a reflectable subspace determined by a different reflectable base. Then
we get the corresponding root system {Tα′}α′∈∆W extended by G′ = 〈∪α′∈∆W Tα′〉 so that

R =
⊔

α′∈∆W

(α′ + Tα′).

The relation between {Sα}α∈∆ and {Tα′}α′∈∆W
will be clarified in Lemma 8.

Root systems extended by G were classified in [Y]. (The main idea comes from the classi-
fication of EARS in [A-P].) To explain the classification, let us introduce some terminology.

Recall that a finite irreducible root system ∆ is one of the following types; ∆ = Aℓ

(ℓ ≥ 1), Bℓ (ℓ ≥ 1, B1 = A1), Cℓ (ℓ ≥ 2, C2 = B2), Dℓ (ℓ ≥ 4), Eℓ (ℓ = 6, 7, 8), F4, G2 or
BCℓ (ℓ ≥ 1). We partition the root system ∆ according to length. Roots of ∆ of minimal
length are called short. Roots of ∆ which are two times a short root of ∆ are called extra
long. Finally, roots of ∆ which are neither short nor extra long are called long. We denote
the subsets of short, long and extra long roots of ∆ by ∆sh, ∆lg and ∆ex respectively. Thus

∆ = ∆sh ⊔ ∆lg ⊔ ∆ex.
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Of course the last two terms in this union may be empty. Indeed,

∆lg = ∅ ⇐⇒ ∆ has simply laced type or type BC1,

and
∆ex = ∅ ⇐⇒ ∆ = ∆red.

If ∆lg ̸= ∅, we use the notation k for the ratio of the long square root length to the short
square root length in ∆. Hence,

k =
{

2 if ∆ has type Bℓ, Cℓ, F4 or BCℓ for ℓ ≥ 2.
3 if ∆ has type G2.

For any abelian group G,
(i) a subset E of G is called a reflection space if E − 2E ⊂ E;
(ii) a reflection space E of G is called full if E generates G;
(iii) a reflection space E of G is called a pointed reflection space if 0 ∈ E.
These notions were introduced in [A-P] when G is a full lattice in a finite-dimensional

real vector space as a name semilattice, or earlier in a more general setting in [L]. We note
that if E is a full reflection space of G, then 2G + E ⊂ 2〈E〉 + E ⊂ E and so 2G + E ⊂ E
(see [A-P, p.23]). Hence,

E is a union of cosets of G by 2G.

Now we can state the classification of root systems {Sα}α∈∆ of type ∆ extended by G
[Y, Thm 3.4]:

Set Sα = S for all α ∈ ∆sh, Sα = L for all α ∈ ∆lg and Sα = E for all α ∈ ∆ex, where S
is a full pointed reflection space, L is a pointed reflection space and E is a reflection space
satisfying

L + kS ⊂ L, S + L ⊂ S, E + 4S ⊂ E,

S + E ⊂ S, E + 2L ⊂ E and L + E ⊂ L;
moreover, S = G if ∆ ̸= A1, Bℓ, BCℓ,

L is a subgroup if ∆ = Bℓ (ℓ ≥ 3), F4, G2, BCℓ (ℓ ≥ 3),

and if {Sα}α∈∆ is reduced, then
E ∩ 2S = ∅.

Conversely, let S, L and E be as above, and define Sα = S for all α ∈ ∆sh, Sα = L for all
α ∈ ∆lg and Sα = E for all α ∈ ∆ex. Then {Sα}α∈∆ is a root system extended by G, and
if E ∩ 2S = ∅, then {Sα}α∈∆ is a reduced root system extended by G. We refer to the root
system {Sα}α∈∆ by R(S,L,E)∆.

For the case where ∆ is a locally finite irreducible root system, one can classify {Sα}α∈∆

satisfying (S1) and (S2) in the same way. In fact they were classified in [LN2, 5.9] as
extension data of locally finite root systems. One can also obtain the classification from
the fact that {Sα}α∈∆ is a directed union

∪
∆′ {Sα}α∈∆′ , where ∆′ is a finite irreducible

subsystem of ∆ (see Proposition 3). Thus the properties for Sα of each infinite type AI,
BI, CI, DI, or BCI are the same as of finite type A2, B3, C3, D4, or BC3, respectively.

We note that E ⊂ L ⊂ S in general, and so S spans V 0 by our extra condition (S0).
Moreover, from the relations L + kS ⊂ L and E + 4S ⊂ E, L or E also spans V 0 if it is not
empty. Thus, the following is known:
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Theorem 7. Let R be a LEARS in V = V ′ ⊕ V 0 so that ∆ is a locally finite irreducible
root system in V ′, described above. Then E ⊂ L ⊂ S, 〈S〉 = G, S always spans V 0, and L
or E also spans V 0 if it is not empty. Moreover:

If ∆ = AI, then R = ∆+S, where S is a pointed reflection space of V 0, and if AI ̸= A1,
then S = G.

If ∆ = BI, then R = (∆sh + S)⊔ (∆lg + L), where S and L are pointed reflection spaces
of V 0 satisfying 2S + L ⊂ L and S + L ⊂ S, and if |I| > 2, then L is a subgroup of V 0.

If ∆ = CI, then R = (∆sh + S)⊔ (∆lg + L), where S and L are pointed reflection spaces
of V 0 satisfying 2S + L ⊂ L and S + L ⊂ S, and if |I| > 2, then S = G.

If ∆ = DI, E6, E7 or E8, then R = ∆ + G.
If ∆ = BCI for |I| ≥ 2, then R = (∆sh + S) ⊔ (∆lg + L) ⊔ (∆ex + E), where S and L

are pointed reflection spaces of V 0 and E is a reflection space of V 0 satisfying 2S + L ⊂ L,
S + L ⊂ S, 4S + E ⊂ E, S + E ⊂ S, 2L + E ⊂ E and L + E ⊂ L, and if |I| > 2, then L is
a subgroup of V 0. Also, if R is reduced, then E ∩ 2S = ∅.

If ∆ = BC1, then R = (∆sh + S) ⊔ (∆ex + E), where S is a pointed reflection space of
V 0 and E is a reflection space of V 0 satisfying 4S + E ⊂ E and S + E ⊂ S. Also, if R is
reduced, then E ∩ 2S = ∅.

If ∆ = F4, then R = (∆sh + G) ⊔ (∆lg + L), where L is a subgroup of V 0 satisfying
2G ⊂ L.

If ∆ = G2, then R = (∆sh + G) ⊔ (∆lg + L), where L is a subgroup of V 0 satisfying
3G ⊂ L.

Conversely, each set R defined above is a LEARS of the specified type (see the paragraph
right before Proposition 3).

The reader should always keep in mind that even if a LEARS R is reduced, the corre-
sponding finite root system R̄ or ∆ could be nonreduced.

Isomorphisms

By Theorem 7, the classification of LEARS is reduced to the classification of triples
{S,L,E} described there. We simply say triples, but they might be {S}, {S,L} or {S,E}
depending on the types. We treat these cases as special cases of triples, and we do not
mention this in the argument below. The reader should ignore the description of L or E if
the system does not have L or E, i.e., the case ∆lg = ∅ or ∆ex = ∅. To investigate when
two triples give the same LEARS, we show the following: (There is a similar statement in
[A1, p.577] for EARS of reduced type.)

Lemma 8. In the description of Theorem 7, let s ∈ S and l ∈ L. Then the triples {S,L,E}
and {S − s, L − l, E − 2s} give the same LEARS (by the same ∆ in Theorem 7).

Conversely, let {S1, L1, E1} be another triple obtained from a reflectable subspace W of
an arbitrary reflectable base. Then, S1 = S − s, L1 = L− l and E1 = E − 2s for some s ∈ S
and l ∈ L.

Proof. Recall from the previous section that for each ᾱ ∈ Π (a reflectable base of R̄), we
have considered a fixed preimage α ∈ R. For each ᾱ ∈ Π ∩ R̄sh, let α′ := α + s, and for
each ᾱ ∈ Π ∩ R̄lg, let α′ := α + l. Let U be the subspace of V spanned by {α′}ᾱ∈Π. In
other words, U is another reflectable subspace. Then the new family {Tα′}α′∈∆U is a root
system extended by G, which gives the same LEARS. In particular, α+ s+Tα′ = α+S and
α+ l+Tα′ = α+L. Thus Tα′ = S− s if ᾱ ∈ Π∩ R̄sh and Tα′ = L− l if ᾱ ∈ Π∩ R̄lg. Hence,
by Theorem 7, we have Tα′ = S − s for all α′ ∈ (∆U )sh and Tα′ = L − l for α′ ∈ (∆U )lg.
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Finally (the case ∆ex ̸= ∅), for ᾱ ∈ Π ∩ R̄sh, we have α′ − α = s, and so 2α′ − 2α = 2s.
Since 2α′ + T2α′ = 2α + E, we get T2α′ = 2α − 2α′ + E = E − 2s. Thus, by Theorem 7,
T2α′ = E − 2s for all ᾱ, 2ᾱ ∈ R̄.

For the second statement, let us remind the reader that the reflectable subspace U de-
termines another root system {Tα′}α′∈∆U

extended by G′ = 〈∪α′∈∆U
Tα′〉, as in Remark 6.

Then by Theorem 7, the system {Tα′}α′∈∆U turns out to be just a triple, that is {S1, L1, E1}
in our assumption. (In particular, G′ = 〈S1〉.) Now, for α′ ∈ (∆U )sh, there exists α ∈ ∆sh

such that α′ = ᾱ. Thus α′ = α + s for some s ∈ S. Hence, S1 = Tα′ = S − s. By the same
argument, we get L1 = L− l for some l ∈ L. Then, by the same argument above, we obtain
E′ = E − 2s. (It is enough that one of the short α′’s satisfies Tα′ = S − s and one of the
long α′’s satisfies Tα′ = L − l.) In particular, G′ = G. ¤

Two LEARS (R, V ) and (S, W ) are called isomorphic if there exists a linear isomorphism
ϕ : V −→ W such that ϕ(R) = S.

The argument to show that ϕ(V 0) = W 0 in the following lemma is adapted from [AY,
Lemma 3.1].

Lemma 9. Suppose that two LEARS are isomorphic, say ϕ : (R, V )−̃→(S,W ). Then
ϕ(V 0) = W 0 and 〈ϕ(α), ϕ(β)〉 = 〈α, β〉 for all α, β ∈ R. Thus ϕ preserves the form up to
nonzero scalar. Also, ϕ ◦ σα ◦ ϕ−1 = σϕ(α) for all α ∈ R.

Proof. We first show that ϕ(V 0) = W 0. Let S and ∆ be as in Theorem 7. Since S spans
V 0, it is enough to show that s ∈ S ⇒ s′ := ϕ(s) ∈ W 0, or equivalently (s′, s′) = 0. Since
S ± 2S ⊂ S, we have ns ∈ S for all n ∈ Z. Let α ∈ ∆sh and α′ := ϕ(α). By Theorem 7,
α + ns ∈ R for all n ∈ Z and so α′ + ns′ = ϕ(α + ns) ∈ ϕ(R) = S. But then by the axiom
(A2) of the definition of a LEARS, we have

〈α′, α′ + ns′〉 =
2(α′, α′ + ns′)

(α′ + ns′, α′ + ns′)
=

2(α′, α′) + 2n(α′, s′)
(α′, α′) + 2n(α′, s′) + n2(s′, s′)

∈ Z

for all n ∈ Z which implies (s′, s′) = 0 (note that (α′, α′) ̸= 0 and let n → ∞). Thus we
have shown that ϕ(V 0) = W 0. Then ϕ induces a linear isomorphism ϕ̄ : V̄ −̃→W̄ with
ϕ̄(R̄) = S̄, and this is what means an isomorphism of locally finite root systems in [LN1].
Thus, by [LN1, Lem.3.7], we have 〈ϕ̄(ᾱ), ϕ̄(β̄)〉 = 〈ᾱ, β̄〉 for all ᾱ, β̄ ∈ R̄. So the second
statement is shown since we always have (α, β) = (ᾱ, β̄). The third statement follows from
the equivalence between connectedness and irreducibility in our systems (see [LN2, Lem.2.7]
or [MP, Prop.3.4.6]). The last statement is now clear. ¤

We introduce a notion of similarity for triples following [A-P].
Let (S1, L1, E1) and (S2, L2, E2) be two triples satisfying the properties in Theorem 7

in vector spaces W1 and W2, respectively. We say that (S1, L1, E1) and (S2, L2, E2) are
similar, denoted (S1, L1, E1) ∼ (S2, L2, E2), if there exists an isomorphism ϕ from W1 onto
W2 such that ϕ(S1) = S2 − s2, ϕ(L1) = L2 − l2 and ϕ(E1) = E2 − 2s2 for some s2 ∈ S2 and
l2 ∈ L2. The similarity is an equivalence relation.

The following theorem says that there is a 1-1 correspondence between the isomorphism
classes of LEARS and the similarity classes of triples. The theorem generalizes [A-P, Thm
3.1] and our proof is simpler.

Theorem 10. Suppose that ϕ : (R1, V1; V ′
1 , ∆1; S1, L1, E1)−̃→(R2, V2; V ′

2 , ∆2; S2, L2, E2) is
an isomorphism of LEARS. Let

ζ :=(projection onto V ′
2) ◦ ϕ |V ′

1
and ψ :=(projection onto V 0

2 ) ◦ ϕ |V ′
1
.
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Then ζ : (∆1, V
′
1)−̃→(∆2, V

′
2) and ϕ(S1) = S2 − s2, ϕ(L1) = L2 − l2 and ϕ(E1) = E2 − 2s2

for some s2 ∈ S2 and l2 ∈ L2.
Conversely, if ζ : (∆1, V1)−̃→(∆2, V2) is an isomorphism of locally finite irreducible root

systems, two triples (S1, L1, E1) in a vector space W1 and (S2, L2, E2) in a vector space W2

satisfy the conditions in Theorem 7 depending on the type of ∆1, and ϕ is an isomorphism
from W1 onto W2 so that ϕ(S1) = S2 − s2, ϕ(L1) = L2 − l2 and ϕ(E1) = E2 − 2s2 for some
s2 ∈ S2 and l2 ∈ L2, then (R(S1, L1, E1), V1⊕W1) is isomorphic to (R(S2, L2, E2), V2⊕W2).

Proof. We have ζ(∆1), ∆2 ⊂ V ′
2 and so ζ(∆1) = R̄2 = ∆̄2 since ϕ(V 0

1 ) = V 0
2 (Lemma

9). Hence ζ(∆1) = ∆2, and so ζ is an isomorphism of the root systems. Also, for a fixed
α ∈ (∆1)sh, we have ϕ(α + S1) = ζ(α) + ψ(α) + ϕ(S1) ⊂ R2, and so ψ(α) + ϕ(S1) = S2

since ζ(α) ∈ (∆2)sh. Also, s2 := ψ(α) ∈ S2 since 0 ∈ ϕ(S1). Similarly, for a fixed
β ∈ (∆1)lg, we get l2 + ϕ(L1) = L2 for l2 := ψ(β) ∈ L2. Finally, if 2α ∈ ∆1, then
ϕ(2α + E1) = ζ(2α) + 2ψ(α) + ϕ(E1), and so 2s2 + ϕ(E1) = E2.

For the second statement, let ϕ̃ = ζ ⊕ ϕ. Then

ϕ̃ : (R(S1, L1, E1), V1 ⊕ W1)−̃→(R(ϕ(S1), ϕ(L1), ϕ(E1)), V2 ⊕ W2)

= (R(S2 − s2, L2 − l2, E2 − 2s2), V2 ⊕ W2)

= (R(S2, L2, E2), V2 ⊕ W2) by Lemma 8. ¤

Remark 11. If two LEARS R1 and R2 are isomorphic, then 〈S1〉/〈L1〉 and 〈S2〉/〈L2〉
are clearly isomorphic as abelian groups. Also the reducibility of LEARS is an isomorphic
invariant.

Special case

We consider LEARS of null dimension 1. Then the abelian group G in Theorem 7 is just
a subgroup of Q. We first observe special properties for a cyclic group or a subgroup of Q.
Let us recall the concept of divisibility for an arbitrary abelian group G. We say that a
prime number p is divisible in G or G is divisible by p if G = pG, or equivalently px = g has
a solution x in G for any g ∈ G. Any cyclic group of infinite order is not divisible by any
prime. The following is a useful exercise ([G, p.8]):

(∗) If mx = ng for (m,n) = 1 has a solution x in G, then my = g has a solution y in G.

Lemma 12. (1) If S is a full reflection space of a cyclic group G, then S = G or S = 2G+s
for any s ∈ G\2G. So if S is a full pointed reflection space of a cyclic group G, then S = G.

(2) Suppose that G is a subgroup of Q. If G is not divisible by a prime p, then G/pnG ∼=
Zpn for any n ∈ N. Moreover, if G/H ∼= Zpn for some subgroup H of G and some n ∈ N,
then G is not divisible by p and H = pnG.

(3) If S is a full reflection space of a subgroup G of Q divisible by 2, then S = G.
(4) The same statement in (1) is true for a subgroup G of Q not divisible by 2.

Proof. For (1), we have G = 2G ⊔ (2G + s) for any s ∈ G \ 2G if G ̸= 2G. (Note that G
is finite of odd order ⇔ G = 2G.) Since S is full, S is a union of cosets of G by 2G, and
S ̸= 2G if G ̸= 2G. So S = G or S = 2G + s. Moreover, 2G ⊂ S if 0 ∈ S, and hence (1) is
proved.

For (2), by the divisibility, there exists g ∈ G \ pG. We claim that 0, g, 2g, . . . , (pn − 1)g
are distinct modulo pnG. (G can be any torsion free group for this claim.) Suppose that
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two of them are equal. Then prqg = png′ for some r < n, (p, q) = 1 and g′ ∈ G. Hence
pn−rg′ = qg (since G is torsion free). Then by (∗) above, py = g has a solution y in G,
which contradicts our choice of g. Thus we showed the claim, and the order of g in G/pnG
is pn.

Let g′ ∈ G. Since G′ := 〈g, g′〉 is cyclic, we have G′/pnG′ ∼= Zpn . Hence, G′/pnG′ = 〈g〉,
and g′ is equal to one of g, 2g, . . . , (pn − 1)g or png modulo pnG′, and so is in the modulo
pnG since pnG′ ⊂ pnG. Hence G/pnG = {0, g, 2g, . . . , (pn − 1)g}, which is a cyclic group
with png = 0. But since the order of g in G/pnG is pn, we obtain G/pnG ∼= Zpn .

For the second statement, if G is divisible by p, then for any g ∈ G, g = png′ for some
g′ ∈ G. So for any ḡ ∈ G/H, ḡ = png′ = 0̄, which means G/H = 0, contradiction. Hence,
G is not divisible by p. Thus by the first statement, we have G/pnG ∼= Zpn . Note that
G/H ∼= Zpn implies pnG ⊂ H. So there is a natural epimorphism π from G/pnG onto G/H.
But the order of both groups is pn, and hence π is an isomorphism and pnG = H.

For (3), we have G = G + S = 2G + S ⊂ S, and hence G = S.
For (4), applying (2) for p = 2, we have G = 2G⊔(2G+s) for any s ∈ G\2G. Thus we are

done. (We note that since s ∈ 〈2G+s〉, we have 2G ⊂ 〈2G+s〉, and hence 〈2G+s〉 = G.) ¤

We will use the special cases of Lemma 12(2) later, namely p = 2 or p = 3 for n = 1.
Note that this is a special property of subgroups of Q. For example, if G = 〈

√
2,
√

3〉 ⊂ R,
then G/2G ∼= Z2 × Z2.

Corollary 13. Let R be a LEARS of null dimension 1 in V = V ′ ⊕ V 0, ∆ a locally finite
irreducible root system in V ′, and G a subgroup in V 0 = Q, as described above.

(1a) For the case where 1
2 /∈ G:

If ∆ = AI, DI, E6, E7 or E8 then R = ∆ + G.
If ∆ = BI, CI or F4, then R = ∆ + G or R = (∆sh + G) ⊔ (∆lg + 2G).
If ∆ = G2, then R = ∆ + G or R = (∆sh + G) ⊔ (∆lg + 3G).
If ∆ = BCI for |I| > 1, then

R = ∆ + G,

R = ((∆sh ⊔ ∆lg) + G) ⊔ (∆ex + 2G),

R = (∆sh + G) ⊔ ((∆lg ⊔ ∆ex) + 2G),

R = (∆sh + G) ⊔ (∆lg + 2G) ⊔ (∆ex + 4G) or

R = ((∆sh ⊔ ∆lg) + G) ⊔ (∆ex + 2G + s) for any s ∈ G \ 2G,

and moreover, if R is reduced, then only the last case happens.
If ∆ = BC1, then

R = ∆ + G,

R = (∆sh + G) ⊔ (∆ex + 2G),

R = (∆sh + G) ⊔ (∆ex + 4G) or

R = (∆sh + G) ⊔ (∆ex + 2G + s) for any s ∈ G \ 2G,

and moreover, if R is reduced, then only the last case happens.
(1b) If G is divisible by 2, then R = ∆ + G in any type of ∆.
(2) If R is a LARS, then R has the same description as in (1a) by changing G into Zs,

where s ∈ G so that G = Zs.
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Proof. First of all, note that all the LEARS in the list above are not isomorphic by Remark
11. Also, by Lemma 12, we always have G = S and L is a group since S is a full pointed
reflection space of G ⊂ Q and L is a full pointed reflection space of 〈L〉 ⊂ Q, and hence
2G ⊂ L (or 3G ⊂ L for type G2) by Theorem 7. But then by Lemma 12, L = 2G or G
(L = 3G or G for type G2). So we are done except for the type BCI.

Now for |I| > 1, if L = G, then 2G + E ⊂ E, and so E is a union of cosets of G by 2G.
Hence, E = 2G, G or 2G + s for any s ∈ G \ 2G.

If L = 2G, then E ⊂ 2G. So we have 4G+E ⊂ E ⊂ 2G, and hence E is a union of cosets
of 2G by 4G. Hence, E = 4G, 2G or 4G + g for any g ∈ 2G \ 4G, and 4G + g = 4G + 2s for
any s ∈ G \ 2G. But 4G+2s is excluded since (G, 2G, 4G) and (G, 2G, 4G +2s) are similar.
Also, E = 2G + s is the only reduced one since others do not satisfy E ∩ 2S = ∅.

For the type BC1, we only have 4G + E ⊂ E, and so E is a union of cosets of G by 4G.
By Lemma 12, we have G = 4G⊔ (4G + s)⊔ (4G + 2s)⊔ (4G + 3s) for any s ∈ G \ 2G. Note
that 4G+s ⊂ E ⇔ 4G+3s ⊂ E since 2E +E ⊂ E. Also, 4G, 4G+s ⊂ E ⇒ E = G. Hence,
E = 4G, 4G + s, 4G + 2s, 4G ⊔ (4G + 2s) = 2G or G. But if E = 4G + s, then 0 /∈ E and
〈E〉 = G, and so E = 2G + s. As above, 4G + 2s is excluded since (G, 4G) and (G, 4G + 2s)
are similar, and E = 2G + s is the only reduced one since others do not satisfy E ∩ 2S = ∅.

(1b): We have S = G by Lemma 12(3). Moreover, by Theorem 7, we have L ⊃ 2S + L =
2G + L = G + L = G and E ⊃ 2L + E = 2G + E = G + E = G, and hence G = S = L = E
(if L or E is empty). This shows (1b).

For (2), we have 〈R〉∩V 0 = 〈S〉 has rank 1, and so there exists s ∈ S so that S = Zs = G
(see Lemma 12(1)). ¤

Remark 14. (1) Nonreduced EARS of nullity 1, 2 and 3 were already classified in [AKY].

(2) Note that a free abelian group is not divisible by any p. An example of a subgroup
of Q not divisible by p, which is not free, is the localization Z(p) of Z by the prime ideal
(p) = pZ. Also, Z[1q ] = 〈 1

qn | n ∈ N〉 for any prime q different from p is another example of
a subgroup of Q not divisible by p, which is not free. Note that Z[ 1q ] ⊂ Z(p) and that Z(p)

and Z[1q ] are not just subgroups but subrings of Q. There are some examples which are not
subrings. For example, Z(p) + 〈 1

pn 〉 is neither divisible by p nor a subring of Q (nor free).
Note that Z(p) ⊂ Z(p) + 〈 1

p 〉 ⊂ Z(p) + 〈 1
p2 〉 ⊂ · · · . Also, 〈 1

p1
, 1

p2
, . . . 〉 for any infinite series

of distinct primes p1, p2, . . . is an example of a subgroup of Q not divisible by p and not a
subring of Q (and not free, even if one of the pi’s is equal to p). Note that the torsion-free
abelian groups of rank 1 were classified (but not for rank > 1).

We note that there are 14 reduced irreducible affine root systems, i.e., A(1)
ℓ , B(1)

ℓ , B(2)
ℓ ,

C(1)
ℓ , C(2)

ℓ , D(1)
ℓ , BC(2)

ℓ , E(1)
6 , E(1)

7 , E(1)
8 , F(1)

4 , F(2)
4 , G(1)

2 and G(3)
2 , by Moody’s Label, and

correspondingly there are 14 affine Lie algebras. It is worth mentioning that there are 14
reduced LARS from Corollary 13, and they are obtained by just changing ℓ of the first 7
above into an infinite index set I. For the convenience of the reader, we summarize this
remark with the above label, denoting the specific type instead of ∆ and identifying Zs with
Z in Corollary 13:
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Corollary 15. There are only seven reduced LARS of infinite rank. Namely,

A(1)
I = AI + Z,

B(1)
I = BI + Z,

C(1)
I = CI + Z,

D(1)
I = DI + Z,

B(2)
I =

(
(BI)sh + Z

)
⊔

(
(BI)lg + 2Z

)
,

C(2)
I =

(
(CI)sh + Z

)
⊔

(
(CI)lg + 2Z

)
and

BC(2)
I =

((
(BCI)sh ⊔ (BCI)lg

)
+ Z

)
⊔

(
(BCI)ex + 2Z + 1

)
.

Locally (G, τ)-loop algebras

We give examples of Lie algebras whose root systems are LEARS of null dimension 1. All
algebras and tensors are over a field F of characteristic 0. Let I be any index set. The locally
finite split simple Lie algebra of type XI (introduced in [NS]) is defined as a subalgebra of
the matrix algebra glI(F ), gl2I+1(F ) or gl2I(F ) consisting of matrices having only a finite
number of nonzero entries: (There is a more general construction in [N].)

Type AI; slI(F ) = {x ∈ glI(F ) | tr(x) = 0};
Type BI; o2I+1(F ) = {x ∈ gl2I+1(F ) | sx = −xts};
Type CI; sp2I(F ) = {x ∈ gl2I(F ) | s−x = −xts−};
Type DI; o2I(F ) = {x ∈ gl2I(F ) | s+x = −xts+};

where xt is the transpose of x,

s =

 0 II 0
II 0 0
0 0 1

 , s− =
(

0 II

−II 0

)
or s+ =

(
0 II

II 0

)
,

and II is the identity matrix of size I. (Each Lie algebra of type XI has the locally finite
irreducible root system of type XI [NS].)

Let G = (G, +, 0) be an abelian group. Let

F τ [G] = F τ [G, t] =
⊕
g∈G

Ftg

be a twisted commutative group algebra of G with symmetric twisting τ : G × G −→ F×,
i.e.,

τ(g, h) = τ(h, g) and τ(g + h, k)τ(g, h) = τ(g, h + k)τ(h, k)

so that
tgth = τ(g, h)tg+h

for all g, h, k ∈ G. We call the following four Lie algebras locally untwisted (G, τ)-loop
algebras, and untwisted (G, τ)-loop algebras if I is finite.

Type A(1)
I ; slI(F ) ⊗ F τ [G];

Type B(1)
I ; o2I+1(F ) ⊗ F τ [G];
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Type C(1)
I ; sp2I(F ) ⊗ F τ [G];

Type D(1)
I ; o2I(F ) ⊗ F τ [G].

Also, for each finite-dimensional split simple Lie algebra g over F of type E6, E7, E8, F4

or G2, we call the Lie algebra g ⊗ F τ [G] an untwisted (G, τ)-loop algebra of type E(1)
6 , E(1)

7 ,
E(1)

8 , F(1)
4 or G(1)

2 .
If there exists a subgroup G′ so that G/G′ ∼= Z2, then G = G′ ⊔ (G′ + g1) for any

g1 ∈ G \ G′, and so F τ [G] = F τ [G′] ⊕ tg1F τ [G′]. (For example, take any subgroup G of Q
which is not divisible by 2, and G′ := 2G, by Lemma 12(2).) In this case we call the following
three Lie algebras locally twisted (G, τ)-loop algebras, and twisted (G, τ)-loop algebras if I is
finite. (There is a way to construct by Kac, using an automorphism of a Lie algebra in [K,
Ch.8]. But we chose the following way by [BZ] and [ABG] since this construction can be
generalized to nonassociative coordinates and is simpler.)

(1) Type B(2)
I ; (o2I+1(F ) ⊗ F τ [G′]) ⊕ (V ⊗ tg1F τ [G′]),

where V = F (2I+1) is the natural o2I+1(F )-module;
(2) Type C(2)

I ; (sp2I(F ) ⊗ F τ [G′]) ⊕ (s− ⊗ tg1F τ [G′]),
where s− = {x ∈ sl2I(F ) | s−x = xts−};

(3) Type BCI; (o2I+1(F ) ⊗ F τ [G′]) ⊕ (s ⊗ tg1F τ [G′]),
where s = {x ∈ sl2I+1(F ) | sx = xts}.

Note that sl2I(F ) = sp2I(F ) ⊕ s− and sl2I+1(F ) = o2I+1(F ) ⊕ s.
The Lie bracket of each untwisted type is natural, i.e., [x⊗tg, y⊗th] = [x, y]⊗τ(g, h)tg+h.

The Lie bracket of type C(2)
I or BCI is also natural since

[sp2I(F ), s−] ⊂ s−, [s−, s−] ⊂ sp2I(F ),

[o2I+1(F ), s] ⊂ s and [s, s] ⊂ o2I+1(F ).

Note that C(2)
I is a subalgebra of sl2I(F ) ⊗ F τ [G], and BCI is a subalgebra of sl2I+1(F ) ⊗

F τ [G].
For B(2)

I , we have o2I+1(F )V ⊂ V , and so we define the bracket of o2I+1(F ) and V by
the natural action, i.e., [x, v] = xv = −[v, x] for x ∈ o2I+1(F ) and v ∈ V . However, there is
no bracket on V . So we define a bracket on V so that [V, V ] ⊂ o2I+1(F ) as follows. First,
let (·, ·) be the bilinear form on V determined by s. Then there is a natural identification

o2I+1(F ) = DV,V := spanF {Dv,v′ | v, v′ ∈ V },

where Dv,v′ ∈ End(V ) is defined by Dv,v′(v′′) = (v′, v′′)v − (v, v′′)v′ for v′′ ∈ V . Thus we
define [v, v′] := Dv,v′ . Note that [v′, v] = −[v, v′]. It is easy to check that the bracket

[x ⊗ tg + v ⊗ tg
′+g1 , x′ ⊗ th + v′ ⊗ th

′+g1 ]

=[x, x′] ⊗ τ(g, h)tg+h + Dv,v′ ⊗ τ(g′ + g1, h
′ + g1)tg

′+h′+2g1

+ xv′ ⊗ τ(g, h′ + g1)tg+h′+g1 − x′v ⊗ τ(g′ + g1, h)tg
′+h+g1

defines a Lie bracket for g, g′, h, h′ ∈ G′, x, x′ ∈ o2I+1(F ), v, v′ ∈ V .
Also, we define two more twisted (G, τ)-loop algebras. (We use the way by Kac [K, Ch.8]

for F(2)
4 in order to avoid introducing a 27-dimensional exceptional Jordan algebra. But

for G(3)
2 , we again use the way in [BZ] since we do not need to assume the existence of a

primitive cubic root of unity in our base field F .)
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(4) Type F(2)
4 : Assume that F τ [G] = F τ [G, t] = F τ [G′]⊕tg1F τ [G′] with g1 ∈ G\G′ again.

Let g be the finite-dimensional split simple Lie algebra of type E6, and σ be the automor-
phism of g of order 2 determined by the diagram automorphism. Define the automorphism
σ̃ of E(1)

6 = g ⊗ F τ [G] by σ̃(x ⊗ tg1) = −σ(x) ⊗ tg1 . The subalgebra L(F(2)
4 , F τ [G]) of E(1)

6

fixed by σ̃ is called a twisted (G, τ)-loop algebra of type F(2)
4 . We note that the subalgebra

g′ of g fixed by σ has type F4, say g′ =
⊕

µ∈F4∪{0} g′µ. Let s be the (−1)-eigenspace. Then
s is an irreducible highest weight g′-module whose highest weight is the highest short root
in F4. Thus L(F(2)

4 , F τ [G, t]) =
⊕

µ∈F4∪{0} (g′µ ⊗ F τ [G′]) ⊕
⊕

µ∈(F4)sh
(sµ ⊗ tg1F τ [G′]).

(5) Type G(3)
2 : Assume this time that there exists a subgroup G′ so that G/G′ ∼= Z3.

Then G = G′ ⊔ (G′ + g1) ⊔ (G′ + 2g1) for any g1 ∈ G \ G′, and so

F τ [G] = F τ [G′] ⊕ tg1F τ [G′] ⊕ t2g1F τ [G′].

(For example, take any subgroup G of Q which is not divisible by 3, and G′ := 3G, by Lemma
12(2).) As in [ABGP] (or in [BZ]), let O be a split octonion algebra over F , and t : O −→ F
the normalized trace on O, in which O = F1 ⊕ O0, where O0 = {x ∈ O | t(x) = 0}.
Moreover, if x, y ∈ O, we have xy = t(xy)1 + x ∗ y for some unique x ∗ y ∈ O0. One can
check that x ∗ y = −y ∗ x for x, y ∈ O0. Next, let

DO,O := spanF {Dx,y | x, y ∈ O},

where Dx,y = 1
4 (L[x,y] − R[x,y] − 3[Lx, Ry]). (Here Lx and Rx denote the left and right

multiplication operators by x in O.) Then DO,O is the Lie algebra of all derivations of O
and DO,O is a split simple Lie algebra of type G2 over F . Let

L(G(3)
2 , F τ [G, t]) = (DO,O ⊗ F τ [G′]) ⊕ (O0 ⊗ tg1F τ [G′]) ⊕ (O0 ⊗ t2g1F τ [G′]).

One can check that the bracket

[D ⊗ tg + x ⊗ tg
′+g1 + x′ ⊗ tg

′′+2g1 , D′ ⊗ th + y ⊗ th
′+g1 + y′ ⊗ th

′′+2g1 ]

= [D,D′] ⊗ τ(g, h)tg+h + Dy ⊗ τ(g, h′ + g1)tg+h′+g1 + Dy′ ⊗ τ(g, h′′ + 2g1)tg+h′′+2g1

− D′x ⊗ τ(g′ + g1, h)tg+h+g1 + (x ∗ y) ⊗ τ(g′ + g1, h
′ + g1)tg

′+h′+2g1

+ Dx,y′ ⊗ τ(g′ + g1, h
′′ + 2g1)tg

′+h′′+3g1 − D′x′ ⊗ τ(g′′ + 2g1, h)tg
′′+h+2g1

+ Dx′,y ⊗ τ(g′′ + 2g1, h
′ + g1)tg

′′+h′+3g1 + (x′ ∗ y′) ⊗ τ(g′′ + 2g1, h
′′ + 2g1)tg

′′+h′′+4g1

defines a Lie bracket for D,D′ ∈ DO,O, x, x′, y, y′ ∈ O0 and g, g′, g′′, h, h′, h′′ ∈ G′. In fact,
if we define an F -linear map tr on F τ [G, t] by

tr(tg) =
{

tg if g ∈ G′

0 otherwise

(so tr is an F τ [G′]-linear map on the algebra F τ [G, t] over F τ [G′]), then one can check that
any x ∈ F τ [G, t] satisfies the identity

x3 − 3 tr(x)x2 +
(

9
2

tr(x)2 − 3
2

tr(x2)
)

x − tr(x3) +
9
2

tr(x2) tr(x) − 9
2

tr(x)3 = 0.
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This guarantees that the bracket is a Lie bracket by the recognition theorem [BZ, Thm
3.4.7]. We call the Lie algebra L(G(3)

2 , F τ [G, t]) a twisted (G, τ)-loop algebra of type G(3)
2 .

We note that if F contains a primitive cubic root of unity, a twisted (G, τ)-loop algebra of
type G(3)

2 can be constructed similarly to the case of type F(2)
4 . But our L(G(3)

2 , F τ [G, t])
exists over any F .

We often omit the term ‘untwisted’ or ‘twisted’ and simply say a (locally) (G, τ)-loop
algebra. When G ∼= Z, we have F τ [Z] ∼= F [Z] = F [t±1]. So it is natural to call the (locally)
(Z, τ)-loop algebras above just (locally) loop algebras, and of course the loop algebras are
the well-known algebras in Kac-Moody theory. Also, if τ ≡ 1, i.e., F τ [G] = F [G] is a group
algebra, then a (locally) (G, 1)-loop algebra is simply called a (locally) G-loop algebra.

If G is a subgroup of Q, then G is a directed union of cyclic groups of infinite order,
and so any locally (G, τ)-loop algebra is a directed union of loop algebras. Also, if F is
algebraically closed, then F τ [G] = F [G] by a suitable base change. (G can be any abelian
group for this statement, see [P, Lem.2.9] in detail.)

Now, let G be a subgroup of Q. For any two elements x⊗tg and y⊗th in any locally (G, τ)-
loop algebra L, define the new bracket on a 1-dimensional central extension L̃ := L ⊕ Fc
by

[x ⊗ tg, y ⊗ th] := [x, y] ⊗ τ(g, h)tg+h + (x, y)τ(g, h)δg+h,0gc

(note g ∈ G ⊂ Q ⊂ F ), where (x, y) is the trace form or the Killing form depending on the
type of L, or for type B(2)

I , the direct sum of the trace form and the bilinear form on V

determined by the symmetric matrix s above, or for type G(3)
2 , the direct sum of the trace

form on DO,O and the trace form t on O0 above. Indeed, this gives a central extension since
L̃ is locally an affine Lie algebra, i.e., a 1-dimensional central extension of a loop algebra,
and L is a directed union of loop algebras. One can also show that L̃ is a universal central
extension of L [MY2]. Let

L̂ = L̃ ⊕ Fd,

where d is the degree derivation, i.e.,

[d, x ⊗ tg] = gx ⊗ tg and [d, c] = 0.

Let
H = h ⊕ Fc ⊕ Fd,

where h is the subalgebra of L consisting of diagonal matrices of degree 0 when I is infinite or
the Cartan subalgebra of each finite-dimensional split simple Lie algebra g when I is finite.
Then H is a Cartan subalgebra of L̂, and one can check that the set of anisotropic roots
relative to (L̂,H) is a LEARS of null dimension 1. We also note that L̂ is an example of
locally extended affine Lie algebra of null dimension 1 in the sense of [MY1]. In particular,
if G = Z and I is infinite, then the root system of each L̂ is one of seven reduced LARS
listed in Corollary 15, which is very close to an affine Kac-Moody Lie algebra, and we call
it a locally affine Lie algebra. In [MY2] we classify locally affine Lie algebras.
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