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AUTOMORPHISMS OF A LOCALLY AFFINE ROOT SYSTEM OF TYPE A(1)
I−1

JUN MORITA AND YOJI YOSHII

Abstract. We determine the automorphism group of a locally affine root system of type A
(1)
I−1,

which particularly gives the corresponding outer automorphism group. As a corollary, the auto-

morphism group of an affine root system of type A
(1)
n−1 is well understood in a certain general

picture.

1. Introduction

Let us start with the definition of locally extended affine root systems introduced in [MY1] (see
also [Y]).

Definition 1.1. Let V be a vector space over Q with a positive semidefinite bilinear form (·, ·). A
subset R of V is called a locally extended affine root system or a LEARS for short if

(A1) (α, α) 6= 0 for all α ∈ R, and R spans V ;

(A2) 〈α, β〉 ∈ Z for all α, β ∈ R, where 〈α, β〉 =
2(α, β)
(β, β)

;

(A3) σα(β) ∈ R for all α, β ∈ R, where σα(β) = β − 〈β, α〉α;
(A4) R = R1 ∪R2 and (R1, R2) = 0 imply R1 = ∅ or R2 = ∅. (R is irreducible.)
A LEARS R is called reduced if 2α /∈ R for all α ∈ R.

Definition 1.2. LEARS (V,R) and (V ′, R′) are called isomorphic, denoted by R ∼= R′, if there
is a linear isomorphism ϕ : V −→ V ′ such that ϕ(R) = R′ and 〈α, β〉 = 〈ϕ(α), ϕ(β)〉 for all
α, β ∈ R. In particular, we define the automorphism group, called Aut R, of a LEARS R by
AutR = {ϕ | ϕ : R ∼−→ R an isomorphism}. We note that σα ∈ AutR and −1V ∈ AutR. Then,
we define W (R) to be the subgroup, called the Weyl group, of AutR generated by σα for all α ∈ R.
Since ϕ ◦ σα ◦ ϕ−1 = σϕ(α), the Weyl group W (R) is a normal subgroup of AutR, which allows us
to put OutR = AutR/W (R) as the outer automorphism group of R.

Let V 0 := {x ∈ V | (x, y) = 0 for all y ∈ V } be the radical of the form. We call a LEARS
(R, V ) an extended affine root system or an EARS for short, if dimQ V/V

0 < ∞ and 〈R〉 is free.
This coincides with the concept, which was firstly introduced by Saito in 1985 [S]. The notion of
an EARS was also used in a different sense in [AABGP], but Azam showed that there is a natural
correspondence between the two notions in [A]. EARS in Saito’s sense naturally generalize the
Macdonald’s affine root systems in [M].

When the torsion-free abelian group 〈R〉 ∩ V 0 is free, we say that R has nullity. Our LEARS
are a natural generalization of the Saito’s EARS. In fact, Saito’s EARS are the same as our EARS
embedded into the real vector space R⊗QV . Similarly, irreducible affine root systems in the sense of
Macdonald [M] are our EARS of nullity 1. Note that the reduced irreducible affine root systems are
the real roots of affine Kac-Moody Lie algebras. The elliptic root systems defined by Saito [S] are
our EARS of nullity 2. Also, the sets of nonisotropic roots of EARS in [AABGP] are our reduced
EARS of finite rank (see [A]).

We call a LEARS of nullity 1 a locally affine root system, which generalizes irreducible affine root
systems (see [N], [MY2]). Note that LEARS of nullity 0 are so-called locally finite irreducible root
systems, which generalizes finite irreducible root systems (see [NS], [St]).
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For example,
R = {εi − εj | i 6= j ∈ I}

in V is a locally finite root system of AI−1, where I is any index set, {εi | i ∈ I} is an orthonormal
basis of V ] = ⊕i∈IQεi and V = ⊕j∈I\{1}Q(ε1 − εj) ⊂ V ], and where 1 ∈ I is a fixed element. Also,

R = {εi − εj + kδ | i 6= j ∈ I, k ∈ Z}

in Ṽ = V ⊕ Qδ with Ṽ 0 = Qδ is a locally affine root system of type A(1)
I−1. In this paper, we

concentrate to determine the automorphism group of a locally affine root system of type A(1)
I−1. As

a corollary, the automorphism group of an affine root system of type A(1)
n−1 is well understood in a

certain general picture. The result, that is, the structure of the automorphism group of type A(1)
n−1,

was shown as a corollary of the conjugacy theorem of root bases (see e.g. [K, Prop.5.5, Cor.5.10]),
but we show this directly as a special case of type A(1)

I−1 in an elementary way.
A locally extended affine root system is the set of anisotropic roots of a locally affine Lie algebra

with a fixed maximal ad-diagonalizable subalgebra (see [MY2]). Therefore, it is very important to
study those roots to establish the structure theorems as well as the classification theorems of the
corresponding Lie algebras. Especially, to determine the automorphism of our locally affine root
system of type A(1)

I−1 here is very useful to obtain the classification theorems in [MY3]. In this paper,
we will discuss this group as elementary as possible only using some set theoretical approaches. The
most difficult point is that the cardinality of I is infinite. We believe that the automorphism groups
of locally affine root systems for other types will be also important in future research.

Finally, we thank Professor Masaya Tomie for helpful suggestions.

2. Automorphisms of type A
(1)
I−1

Definition 2.1. Let I be any index set. We denote SI the symmetric group of I, S(I) the subgroup
of SI generated by the transpositions, ZI the (|I| times) direct product of Z, and Z(I) the direct
sum of Z. Also, for x = (mi)i∈I ∈ Z(I), we write tr(x) =

∑
i∈Imi, and it is called the trace of x.

Theorem 2.2. Let R = {εi − εj + kδ | i 6= j ∈ I, k ∈ Z} be a locally affine root system of type
A(1)

I−1. Let ϕ be an automorphism of R. Then ϕ(δ) = ξδ, where ξ = ±1, and there exists some
permutation σ ∈ SI such that ϕ(εi − εj) = η(εσ(i) − εσ(j) +mijδ) for some mij ∈ Z, where η = ±1.
Moreover, we have

AutR ∼= {±1V } ×
(
(SI × {±1}η) n ZI−1

) ∼= Z2 ×
(
(Z2 × SI) n ZI−1

)
∼= {±1V } ×

(
(SI × {±1}η) n (ZI/Zι)

) ∼= Z2 ×
(
(Z2 × SI) n (ZI/Zι)

)
,

where ι is the identity vector, i.e., all the coordinates of ι are 1, and the Weyl group of R is

W (R) ∼= S(I) n Z(I)
0 ,

where Z(I)
0 = {x ∈ Z(I) | tr(x) = 0}. In particular, if |I| = n, then

AutR ∼= {±1V } ×
(
(Sn n Zn

0 ) o In

) ∼= Z2 ×
(
(Sn n Zn

0 ) o In

)
,

where Zn
0 = {x ∈ Zn | tr(x) = 0} ∼= Zn−1 and In is the dihedral group of order 2n, and the Weyl

group of R is Sn n Zn
0 .

Proof. First, we show that ϕ(δ) = ±δ. Since δ is in the radical of the positive semi-definite form on
the vector space spanned by R over Q, we know that ϕ(δ) ∈ Qδ. Let ϕ(δ) = `δ for ` ∈ Q. Since
ϕ(εi − εj + δ) = (εr − εs + mδ) + `δ ∈ R for some r 6= s ∈ I and m ∈ Z, we have ` ∈ Z. Note
that ` 6= 0 since ϕ is one to one. So we have 1

`ϕ(δ) = δ. If |`| > 1, then we have ϕ(εi − εj + 1
` δ) =

(εr − εs +mδ) + δ ∈ R. This is a contradiction since εi − εj + 1
` δ /∈ R. Therefore, we get |`| = 1,

and so ϕ(δ) = ±δ.
Let 1 ∈ I be fixed. Let ϕ(ε1−εi) = εx−εy +mδ and ϕ(ε1−εj) = εs−εt +nδ for some x, y, s, t ∈ I

and m,n ∈ Z. Since (ε1 − εj)− (ε1 − εi) = εi − εj ∈ R, we have (εs − εt)− (εx − εy) + (n−m)δ ∈ R.
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Hence s = x or t = y. Suppose that s = x, and so we have ϕ(ε1 − εi) = εx − εy + mδ and
ϕ(ε1 − εj) = εx − εt + nδ. Note that if y = t, then ϕ(εi − εj) = (n −m)δ, which is a cotradiction.
Hence, y 6= t. If |I| ≥ 4, then for any k ∈ I \ {1, i, j}, by the same argument above, we have
ϕ(ε1 − εk) = εx − εz + `δ or εu − εy + `δ for some z, u ∈ I and ` ∈ Z, comparing with ϕ(ε1 − εi) =
εx − εy + mδ, and ϕ(ε1 − εk) = εx − εz + `δ or εv − εt + `δ for some v ∈ I, comparing with
ϕ(ε1 − εj) = εx − εt + nδ. Thus, if ϕ(ε1 − εk) 6= εx − εz + `δ, then εu − εy + `δ = εv − εt + rδ. This
forces y = t, which is a contradiction. Hence, we have ϕ(ε1 − εk) = εx − εz + `δ. Thus we can write
ϕ(ε1−εi) = εx−εσ(i)+miδ for some mi ∈ Z, where σ is a map from I\{1} to I\{x}. If σ(i) = σ(j),
then ϕ(εi − εj) = (mj −mi)δ, which is a contradiction. Hence σ is injective. For any s ∈ I \ {x},
there exist some p, q ∈ I and m ∈ Z such that ϕ(εp−εq +mδ) = εx−εs since ϕ is surjective. If q = 1,
then ϕ(εp − ε1 +mδ) = −εx + εσ(p), which forces x = s. But then ϕ(εp − εq +mδ) = εs − εs = 0,
which is a contradiction. Thus we assume that q 6= 1. Note that εp − εq = (εp − ε1) + (ε1 − εq),
and so if p 6= 1, then εx − ε` = ϕ(εp − εq + mδ) = (εσ(p) − εx) + (εx − εσ(q)) = εσ(p) − εσ(q).
Hence, we have x = σ(p), which contradicts the definition of σ. Therefore, p has to be 1, and
then ` = σ(q). Thus we have shown the surjectivity of σ, and so σ is a bijection from I \ {1} onto
I \ {x}. So, if we define σ(1) = x, then σ is a permutation on I. Then, for any i 6= j ∈ I, we have
ϕ(εi − εj) = ϕ(εi − ε1) + ϕ(ε1 − εj) = εσ(i) − εσ(j) + (mj −mi)δ. Let us define

m1 = 0 and mij := mj −mi.

Then we can write
ϕ(εi − εj) = εσ(i) − εσ(j) +mijδ,

even though i = 1 or j = 1. So m1i = mi for all i ∈ I \ {1}.
If t = y, then −ϕ(ε1 − εi) = εy − εx −mδ and −ϕ(ε1 − εj) = εy − εs − nδ for x 6= s. Thus, by

the same argument above, we get −ϕ(ε1 − εi) = εy − εσ(i) + miδ for some mi ∈ Z, where σ is a
permutation on I with σ(1) = y, and get −ϕ(εi − εj) = εσ(i) − εσ(j) + (mj −mi)δ, i.e.,

ϕ(εi − εj) = −(εσ(i) − εσ(j) +mijδ)

for some σ ∈ SI and all i 6= j ∈ I. Thus the first assertion is shown.

We have shown that, for ϕ ∈ AutR, there exists

(η, σ, ξ, (mi)i∈I\{1}) = (η, σ, ξ, (m1i)i∈I\{1}) ∈
(
{±1}, SI, {±1},ZI−1

)
such that

ϕ :

{
ε1 − εk 7→ η(εσ(1) − εσ(k) +m1kδ)
δ 7→ ξδ .

On the other hand, we notice that a quadruple of these η, σ, ξ and (mi) determines an auto-
morphism of R conversely. Let ϕ = (η, σ, ξ, (m1i)i∈I\{1}) and φ′ = (η′, σ′, ξ′, (m′

1i)i∈I\{1}) ∈(
{±1}, SI, {±1},ZI−1

)
. Then we have

ϕ ◦ ψ :


ε1 − εk 7→ η′(εσ′(1) − εσ′(k) +m′

1kδ) 7→ ηη′(εσσ′(1) − εσσ′(k) +mσ′(1)σ′(k)δ) + ξη′m′
1kδ

= ηη′
(
εσσ′(1) − εσσ′(k) + (mσ′(1)σ′(k) + ξηm′

1k)δ
)

δ 7→ ξ′δ 7→ ξξ′δ,

and so
ϕ ◦ ψ =

(
ηη′, σσ′, ξξ′, (mσ′(1)σ′(i) + ξηm′

1i)i∈I\{1})
)
. (1)

Thus through this composite, we have the group epimorphism Ψ from the group

({±1}η × SI × {±1}ξ) n ZI−1

onto Aut R. If ϕ ∈ kerΨ, then ϕ(ε1 − εk) = η(εσ(1) − εσ(k) + m1kδ) = ε1 − εk for all k and
ϕ(δ) = ξδ = δ, which implies that η = 1, σ = 1, mk = 0 and ξ = 1. Therefore, we obtain that kerΨ
is trivial, which implies

AutR ∼= ({±1}η × SI × {±1}ξ) n ZI−1.

In particular, we obtain the following four subgroups of AutR:

{±1}η = {(±1, id, 1,0)},
SI = {(1, σ, 1,0) | σ ∈ SI},

{±1}ξ = {(1, id,±1,0)},
ZI−1 = {(1, id, 1, (mi)i∈I−1) | mi ∈ Z}.
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Here, we determine the center Z of Aut R. Let ϕ = (η, σ, ξ, (mi)i∈I−1) be a central element of
AutR. Then, we obtain:

ϕ is central
⇔ ϕ ◦ ϕ′ = ϕ′ ◦ ϕ, ∀ϕ′ = (η′, σ′, ξ′, (m′

i)i∈I−1)
⇔ ηη′ = η′η, σσ′ = σ′σ, ξξ′ = ξ′ξ, mσ′(1),σ′(i) + ξηm′

1i = m′
σ(1),σ(i) + ξ′η′m1i, ∀ϕ′

⇔ σσ′ = σ′σ, mσ′(1),σ′(i) + ξηm′
1i = m′

σ(1),σ(i) + ξ′η′m1i, ∀ϕ′

⇔ σ = id, mσ′(1),σ′(i) + ξηm′
1i = m′

1i + ξ′η′m1i, ∀ϕ′

⇔ σ = id, ξη = 1, mσ′(1),σ′(i) = ξ′η′m1i, ∀ϕ′

⇔ σ = id, ξη = 1, m1i = 0
⇔ ϕ = (1, id, 1,0) or (−1, id,−1,0).

Let ν = (1, 1,−1,0) for ξ = −1 and π = (−1, 1, 1,0) for η = −1. Then

−1V = νπ = (−1, id,−1,0)

is the automorphism of the multiplication by −1, which is in the center Z of AutR. Thus we get

AutR ∼= {±1V } ×
(
(SI × {±1}η) n ZI−1

) ∼= Z2 ×
(
(SI × Z2) n ZI−1

)
.

From now on, we want to determine W (R) and OutR. To do so, we need to have some identifi-
cation. To show another isomorphism, we identify ZI−1 with ZI/Zι by the group isomorphisim

f : (x2, x3, . . .) 7→ (0, x2, x3 . . .) + Zι = (0, x2, x3 . . .).

Thus, for ϕ = (η, σ, ξ, (mi)i∈I\{1}), we can write

ϕ = (η, σ, ξ, (mi)i∈I) ∈ ({±1}η × SI × {±1}ξ) n (ZI/Zι),

and in (1), we have (mσ′(1)σ′(i) + ξηm′
1i)i∈I\{1} = (mσ′(i) −mσ′(1) + ξηm′

i)i∈I\{1}. Hence, we get

f
(
(mσ′(1)σ′(i) + ξηm′

1i)i∈I\{1}
)

= (mσ′(i) −mσ′(1) + ξηm′
i)i∈I

= (mσ′(i) + ξηm′
i)i∈I

since
(xi)i∈I = (xi + x)i∈I for any x ∈ Z

and the coordinate of 1 ∈ I in the last expression, i.e., mσ′(1) + ξηm′
1, is equal to mσ′(1) (since

m′
1 = 0 by definition). Therefore, we obtain

AutR ∼= ({±1}η × SI × {±1}ξ) n (ZI/Zι),

and for ϕ = (η, σ, ξ, (mi)i∈I) and ψ = (η′, σ′, ξ′, (m′
i)i∈I),∈ AutR,

ϕ ◦ ψ =
(
ηη′, σσ′, ξξ′, (mσ′(i) + ξηm′

i)i∈I

)
. (2)

Also, by the same reason above (using −1V = νπ), we get

AutR ∼= {±1V} ×
(
(SI × {±1}η) n (ZI/Zι)

) ∼= Z2 ×
(
(SI × Z2) n (ZI/Zι)

)
.

The Weyl group W (R) is generated by σε1−εj+rδ (since {ε1 − εj | j ∈ J \ {1}} is a reflectable
basis of the locally finite root system AI−1), and we observe that σε1−εj+rδ(δ) = δ and

σε1−εj+rδ(ε1 − εi) = σε1−εj (ε1 − εi) − r〈ε1 − εi, ε1 − εj〉δ.
So we have

σε1−εj+rδ = (1, (1, j), 1, (mi)i∈I) = (1, (1, j), 1, f((m1i)i∈I\{1})),
where m1j = −2r and m1i = −r for i 6= j, and f is defined above. Thus,

f((−r, . . . ,−r,−2r,−r, . . .)) = (0,−r, . . . ,−r,−2r,−r, . . .) = (r, 0, . . . , 0,−r, 0, . . .),
where the last representative has the trivial trace. (We simply put the first coordinate to be the
coordinate of 1 ∈ I for covenience.) Thus, the Weyl group W (R) of R is isomorphic to S(I) n Z(I)

0

since (Z(I)
0 + Zι)/Zι ∼= Z(I)

0 . Hence, we obtain

OutR ∼= {±1V } ×
((
SI/S(I) × Z2

)
n

(
ZI/(Z(I)

0 + Zι)
))
.

Next we suppose |I| = n. Then we have SI = S(I) = Sn and OutR ∼= Z2 n
(
Zn/(Zn

0 + Zι)
)
. In

fact, we obtain:
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Zn/(Zn
0 + Zι) ∼= Cn = 〈s〉 (a cyclic group) via x + Zn

0 + Zι 7→ str(x) and (3)

Z2 n Cn
∼= In = 〈s, t〉 (a dihedral group) via θ : (η,x + Zn

0 + Zι) 7→ str(x)tε(η,−1), (4)

where ε(i, j) means 1 (resp. 0) if i = j (resp. i 6= j), and s and t are generators satisfying sn = t2 = 1
and tst = s−1. In fact, the map defined in (3) is clearly a well-defined epimorphism. To show one
to one, if tr(x) = nk for some k ∈ Z, then

x̄ = x + (0, . . . , 0,−tr(x)) + (0, . . . , 0, tr(x))

= (0, . . . , 0, tr(x))

= (k, . . . , k) − (k, . . . , k,−nk + k)

= 0̄ mod Zn
0 + Zι,

and hence one to one. The map θ in (4) is clearly well-defined and surjective. That θ is a homo-
morphism follows from

θ((η, x̄)(η′, x̄′)) = θ((ηη′,x + ηx′))

= str(x+ηx′)tε(ηη′,−1)

=

{
str(x)str(x

′)tε(η
′,−1) if η = 1

str(x)s−tr(x′)ttε(−η′,−1) = str(x)tstr(x
′)tε(η

′,−1) if η = −1

= θ((η, x̄))θ((η′, x̄′))

for (η, x̄), (η′, x̄′) ∈ Z2 n
(
Zn/(Zn

0 + Zι)
)
. If θ((η, x̄)) = str(x)tε(η,−1) = 1, then tr(x) = nk for some

k ∈ Z and η = 1. Thus x̄ = 0̄ as above, and so θ is an isomorphism.

Here we notice that the following exact sequence splits.

0 −→ Sn n Zn
0 ↪−−→ (Sn × {±1}η) n (Zn/Zι) −→ In −→ 0

In fact, let ψ : In −→ (Sn × {±1}η) n (Zn/Zι) by

s 7→ S =
(
1, v, 1, (0, . . . , 0, 1)

)
t 7→ T =

(
− 1, w, 1, 0̄

)
,

where

v = (1, 2, . . . , n) and

w = (1, n)(2, n− 1) · · · (p− 1, p+ 2)(p, p+ 1) if n = 2p or

w = (1, n)(2, n− 1) · · · (p− 1, p+ 3)(p, p+ 2) if n = 2p+ 1

Then, we can find
Sn = T 2 =

(
1, id, 1, 0̄

)
and TST = S−1,

which is confirmed by the following direct calculation.

Sn = Sn−2 ◦
(
1, v, 1, (0, . . . , 0, 0, 1)

)
◦

(
1, v, 1, (0, . . . , 0, 1)

)
= Sn−2 ◦

(
(1, v2, 1, (0, 0, . . . , 0, 1, 1)

)
= · · · · · · · · ·
= S ◦

(
(1, vn−1, 1, (0, 1, . . . , 1, 1, 1)

)
=

(
(1, id, 1, 0̄

)
,

T 2 =
(
(1, w2, 1, 0̄

)
=

(
(1, id, 1, 0̄

)
,

TST =
(
− 1, w, 1, 0̄

)
◦

((
1, v, 1, (0, . . . , 0, 1)

)
◦

(
− 1, w, 1, 0̄

))
=

(
− 1, w, 1, 0̄

)
◦

(
− 1, vw, 1, (0, . . . , 0, 1)

)
=

(
1, wvw, 1, (0, 1, . . . , 1)

)
= S−1

Therefore, we see that AutR ∼= {±1V } n
(
(Sn n Zn

0 ) o In
) ∼= Z2 n

(
(Sn n Zn

0 ) o In
)
. Thus we have

shown all the statements. �
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Example 2.3. The following are concrete examples of so-called diagram automorphisms relative
to the Dynkin diagram of type A(1)

4 or A(1)
5 .

(1) Let ϕ be the automorphism of A(1)
4 defined by ϕ(δ) = δ and

ε1 − ε2 7→ ε2 − ε3, ε2 − ε3 7→ ε3 − ε4, ε3 − ε4 7→ ε4 − ε5 and ε4 − ε5 7→ ε5 − ε1 + δ.

Then, we have ε1 − ε3 7→ ε2 − ε4, ε1 − ε4 7→ ε2 − ε5 and ε1 − ε5 7→ ε2 − ε1 + δ, and hence,

ϕ = S = (1, v, 1, (0, 0, 0, 0, 1)), where v = (1, 2, 3, 4, 5).

Let ϕ′ be the automorphism of A(1)
4 defined by ϕ′(δ) = δ and

ε1 − ε2 ↔ ε4 − ε5, ε2 − ε3 ↔ ε3 − ε4, and ε5 − ε1 + δ 7→ ε5 − ε1 + δ.

Then, we have ε1 − ε3 7→ ε3 − ε5, ε1 − ε4 7→ ε2 − ε5 and ε1 − ε5 7→ ε1 − ε5, and hence,

ϕ′ = T = (−1, w, 1, 0̄), where w = (1, 5)(2, 4).

(2) Similarly, let ϕ be the automorphism of A(1)
5 defined by ϕ(δ) = δ and

εi − εi+1 7→ εi+1 − εi+2 (i = 1, 2, 3, 4) and ε5 − ε6 7→ ε6 − ε1 + δ.

Then, we get
ϕ = S = (1, w, 1, (0, 0, 0, 0, 0, 1)), where v = (1, 2, 3, 4, 5, 6).

Let ϕ′ be the automorphism of A(1)
5 defined by ϕ′(δ) = δ and

ε1 − ε2 ↔ ε5 − ε6, ε2 − ε3 ↔ ε4 − ε5, ε3 − ε4 7→ ε3 − ε4, and ε6 − ε1 + δ 7→ ε6 − ε1 + δ.

Then, we have ε1 − ε3 7→ ε4 − ε6, ε1 − ε4 7→ ε3 − ε6, ε1 − ε5 7→ ε2 − ε6 and ε1 − ε6 7→ ε1 − ε6, and
hence,

ϕ′ = T = (−1, w, 1, 0̄), where w = (1, 6)(2, 5)(3, 4).

(3) In case of type A(1)
1 , we see T = 1V and, so we need to say I2 = 〈S〉 = Z2.

(4) In the case when I = Z, which is a countable set, we let R be of type AI−1 or of type A(1)
I−1.

Then, there are at least two typical outer automorphisms. That is, we have

V = ⊕i∈Z\{1}Q(ε1 − εi) = ⊕i∈ZQ(εi − εi+1) ⊂ V̂ = V ⊕ Qδ,
ϕ : εi−1 − εi 7→ εi − εi+1,
ϕ′ : εi − εi+1 7→ ε−i − ε−i+1 or εi − εi+1 7→ ε−i−1 − ε−i.

Then, the subgroup generated by ϕ and ϕ′ is isomorphic to an infinite dihedral group I∞.
(5) We suppose the same situation as in (4). Let us take and fix an integer p ≥ 2. For 0 ≤ i ≤ p−1,

we define
vi = (. . . , i− 3p, i− 2p, i− p, i, i+ p, i+ 2p, i+ 3p, . . .)
wi = (i− p, i+ p)(i− 2p, i+ 2p)(i− 3p, i+ 3p) · · · .

Then, the subgroup H of AutR generated by vi and wi for all i = 0, 1, . . . , p− 1 is isomorphic to

Ip
∞ = I∞ × · · · × I∞︸ ︷︷ ︸

p

= 〈v0, w0〉 × · · · × 〈vp−1, wp−1〉.

(6) Also in the same situation as in (4), it is true that every finite group G can be found in AutR
and in OutR at the same time as subgroups.

(7) Let R be an affine root system of type A(1)
1 . We take ϕ = (1, id, 1, (1)), satisfying α1 7→ α1 +δ

and δ 7→ δ, and we take ϕ′ = (1, (1, 2), 1, (−2)), satisfying α1 7→ −α1 − 2δ and δ 7→ δ. Then, ϕ
and ϕ′ generate an infinite dihedral subgroup of AutR. Furthermore, we take ϕ′′ = (1, id,−1, 0̄),
satisfying α1 7→ α1 and δ 7→ −δ. Then, ϕ and ϕ′′ also generate an infinite dihedral subgroup of
AutR.

Remark 2.4. (1) One can determine the automorphisms of a locally finite root sysytem of type
AI−1 by the same way as in the proof of Theorem 2.2. Namely, let ϕ be an automorphism of the
root system R = {εi − εj | i 6= j ∈ I}. Then there exists some permutation σ ∈ SI such that
ϕ(εi − εj) = εσ(i) − εσ(j) for all i 6= j ∈ I or such that εσ(j) − εσ(i) for all i 6= j ∈ I. Hence,
AutR ∼= SI × {±1}, and the Weyl group of R is S(I). These results are known in [LN].

(2) Let R be a locally affine root system in V̂ as before. Put V̄ = V̂ /Qδ, and ω : V̂ → V̄ be
a canonical linear map. Then, R̄ = ω(R) is a locally finite root system in V̄ . The map ω induces
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a group homomorphism, again called ω, of AutR to Aut R̄. It is easily confirmed that this group
homomorphism ω is surjective. Set Aut0R = Kerω. Therefore, we obtain the exact sequence

1 −→ Aut0R −→ AutR −→ Aut R̄ −→ 1.

We notice that this exact sequence is split.
(3) In the same situation as in Remark (1), we also obtain the following exact sequence:

1 −→W0(R) −→W (R) −→W (R̄) −→ 1,

where W0(R) = W (R) ∩ Aut0R. Therefore, we obtain the following diagram of exact sequences.

1 1 1

↓ ↓ ↓

1 → W0(R) → W (R) → W (R̄) → 1

↓ ↓ ↓

1 → Aut0R → AutR → Aut R̄ → 1

↓ ↓ ↓

1 → Out0R → OutR → Out R̄ → 1

↓ ↓ ↓

1 1 1

Here, Out0R = (Aut0R)/W0(R) ∼= (Aut0R)W (R)/W (R). Then, we have

W (R) = W (R̄) nW0(R), AutR = (Aut R̄) n (Aut0R) and OutR = (Out R̄) n (Out0R).
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