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Abstract. The octonion torus (or Cayley torus) appears as a coordinate algebra of

extended affine Lie algebras of type A2 and F4. A generalized version of the octonion
torus, called division Zn-graded alternative algebras, is classified in this paper. Using

the result, we can complete the classification of division (A2, Zn)-graded Lie algebras,

up to central extensions, which are a generalization of the cores of extended affine Lie

algebras of type A2.

Introduction

In this paper we classify division Zn-graded alternative algebras. It turns out
that they are strongly prime, and so one can apply Slater’s Theorem classifying
prime alternative algebras [14]. Namely, a strongly prime alternative algebra is either
associative or an octonion ring, i.e., its central closure is an octonion algebra. In [13]
division Zn-graded associative algebras were classified. Therefore, our purpose here
is to classify division Zn-graded octonion rings.

Let us present four such octonion rings O1, O2, O3 and O4. Let F be a field of
characteristic 6= 2 and K any field extension of F . We define

Oi = (K[t±1
1 , . . . , t±1

n ], µ1, µ2, µ3),

i.e., the octonion algebra over K[t±1
1 , . . . , t±1

n ] obtained by the Cayley-Dickson process
with the structure constants µ1, µ2 and µ3, for

[i = 1]: 0 6= µ1, µ2, µ3 ∈ K such that (K,µ1, µ2, µ3) is an octonion division algebra,
[i = 2]: 0 6= µ1, µ2 ∈ K and µ3 = t1 such that (K,µ1, µ2) is a quaternion division

algebra,
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[i = 3]: 0 6= µ1 ∈ K, µ2 = t1 and µ3 = t2 such that (K, µ1) is a field,
[i = 4]: µ1 = t1, µ2 = t2 and µ3 = t3.

Note that O4 is the Cayley torus over K, which is a coordinate algebra of extended
affine Lie algebras of A2 and F4 (see [4] and [1]). Our main result is the following:

Theorem. A division Zn-graded octonion ring is isomorphic to exactly one of the
four octonion rings O1, O2, O3 and O4.

As a corollary, we obtain the classification of alternative tori over any field, which
generalizes a result in [4]. Namely, an alternative torus is isomorphic to a quantum
torus Fq or the Cayley torus Ot = (F [t±1

1 , . . . , t±1
n ], t1, t2, t3). Moreover, with a result

in [13], a division Zn-graded alternative algebra is isomorphic to a division Zn-graded
associative algebra Dϕ,q (a natural generalization of a quantum torus Fq) or the
octonion rings O1, O2, O3 and O4, which completes the classification. Finally, one
can also classify division (A2, Zn)-graded Lie algebras, a generalized concept of the
core of an extended affine Lie algebra of type A2, introduced in [13].

The organization of the paper is as follows. In §1 we review alternative algebras.
In §2 we summarize some basic properties of graded algebras. In §3 we review the
Cayley-Dickson process over a ring. In §4 quantum tori of degree 2 are classified.
In §5 we show that the four octonion rings O1, O2, O3 and O4 described above are
in fact non-isomorphic division Zn-graded alternative algebras, and prove that these
four exhaust the division Zn-graded alternative but not associative algebras. Finally,
the classification of division (A2, Zn)-graded Lie algebras is stated in §6.

This is part of my Ph.D thesis, written at the University of Ottawa. I would like to
thank my supervisor, Professor Erhard Neher, for his encouragement and suggestions.

§1 Review of alternative algebras

Throughout let F be a field and all algebras in this section are assumed to be
unital, and alternative, i.e., they satisfy the identities (x, x, y) = 0 = (x, y, y), where
the associator (x, y, z) = (xy)z − x(yz). It is easy to check the following identity
(x, y, x) = 0, called the flexible law. Thus we denote xyx := (xy)x = x(yx).

We recall some basic notions.

Definition 1.1. (1) Let A be an algebra and 0 6= x ∈ A. Then x is called a zero-
divisor if xy = 0 or yx = 0 for some 0 6= y ∈ A .

(2) A is called

(i) a domain if there is no zero-divisor in A,
(ii) nondegenerate if xAx = 0 implies x = 0 for all x ∈ A where xAx = {xax | a ∈

A},
(iii) prime if IK = (0) implies I = (0) or K = (0) for all ideals I,K of A where

IK = {
∑

x,y xy | x ∈ I, y ∈ K},
(iv) strongly prime if A is nondegenerate and prime.
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The nondegeneracy and primeness generalize the notion of a domain. Namely,

Lemma 1.2. A domain is strongly prime.

Proof. Straightforward. ¤
For an algebra A, the centre Z(A) of A is defined as

Z(A) = {z ∈ A | [z, x] = (z, x, y) = 0 for all x, y ∈ A},
where the commutator [x, y] = xy − yx. The centre is always a commutative associa-
tive subalgebra, and any algebra can be considered as an algebra over the centre.

Definition 1.3. For an algebra A with the property that the centre Z = Z(A) is an
integral domain (e.g. a prime algebra), we define A over Z as A = Z ⊗Z A where Z
is the field of fractions of Z, and call A the central closure of A.

§2 Division G-graded alternative algebras

Throughout this section let G be a group, and algebras are assumed to be unital and
alternative over a field F . An algebra A = ⊕g∈G Ag is called G-graded if AgAh ⊂ Agh

for all g, h ∈ G. We will refer to Ag as a homogeneous space and an element of Ag

as a homogeneous element of degree g. A graded algebra is called strongly graded if
AhAg = Ahg for all h, g ∈ G and division graded if any nonzero element of every
homogeneous space is invertible.

For a G-graded algebra A = ⊕g∈G Ag, we note that A = ⊕g∈〈supp A〉 Ag, where
supp A := {g ∈ G | Ag 6= (0)} and 〈suppA〉 is the subgroup of G generated by supp A.
From now on,

we always assume that 〈supp A〉 = G.

Thus, if A is division graded, then this assumption is equivalent to saying that
supp A = G, or every homogeneous space is nonzero.

The following is straightforward to check.

Lemma 2.1. If G is a totally ordered group, then a division G-graded algebra is a
domain.

In general, a subalgebra H of a graded algebra A = ⊕g∈G Ag is called homogeneous
if H = ⊕g∈G (H ∩Ag). If G is abelian, the centre Z is homogeneous. Moreover, if A
is division graded, then Γ := {g ∈ G | Z ∩ Ag 6= (0)} is a subgroup of G and Z is a
division Γ-graded commutative associative algebra. We call this Γ the central grading
group of A.

Lemma 2.2. Let Z = ⊕g∈G Zg be a division G-graded commutative associative
algebra over F . Let D be a division algebra over the field K := Ze (e is the identity
element of G). Then Z ⊗K D = ⊕g∈G (Zg ⊗K D) is a division G-graded algebra over
K.

Proof. Straightforward. ¤
A division G-graded algebra is a graded Z-module of type G, and so one can show

the following (see Theorem 3 and Corollary 2, p.29-30 in [2]):
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Lemma 2.3. Let A = ⊕g∈G Ag be a division G-graded algebra over F for an abelian
group G. Let Z be the centre of A and Γ the central grading group of A, and so
Z = ⊕h∈Γ Zh for Zh = Z ∩ Ah. Let K := Ze which is a field. Then:

(i) Ahg = zAg = ZhAg for all h ∈ Γ, g ∈ G and any 0 6= z ∈ Zh.

(ii) For g ∈ G/Γ, we have ZAg = ⊕g′∈g Ag′ and in particular, if g = g′, then
ZAg = ZAg′ .

(iii) Let Ag := ZAg. Then A = ⊕g∈G/Γ Ag, and A is a G/Γ-graded algebra.
(iv) For g ∈ G, Ag is a free Z-module, and any K-basis of the K-vector space Ag

becomes a Z-basis of Ag, and so rankZ Ag = dimK Ag′ for all g ∈ G/Γ and g′ ∈ g.

Let G be a totally ordered abelian group. Then a division G-graded algebra
is prime by 2.1, and so the central closure A makes sense (see 1.3). Also, we identify
A with a subalgebra of A via a 7→ 1 ⊗ a. Thus we have a similar lemma.

Lemma 2.4. In the notation of 2.3, let A = Z ⊗Z A be the central closure and
Ag := Z ⊗Z Ag for g ∈ G/Γ. Then:

(i) A = ⊕g∈G/Γ Ag, and A is a G/Γ-graded algebra.

(ii) Any K-basis of Ag becomes a Z-basis of Ag, and hence dimZ Ag = dimK Ag′

for all g ∈ G/Γ and g′ ∈ g. Also, there exists a Z-basis of A which is a Z-basis of A.

We now define a special type of G-graded algebras for any group G.

Definition 2.5. A division G-graded algebra T = ⊕g∈G Tg is called an alternative
G-torus over F if dimF Tg = 1 for all g ∈ G. Moreover, if T is associative, it is called
an associative G-torus.

Strongly-graded does not imply division-graded (see [8], Exercise 3, p.18). How-
ever, we have:

Lemma 2.6. A G-graded algebra T = ⊕g∈G Tg is an alternative G-torus if and only
if T is strongly graded and dimF Tg = 1 for all g ∈ G.

Proof. We only need to show the if part. Let 0 6= x ∈ Tg. Then we have F1 = Te =
TgTg−1 = FxTg−1 . So there exists a nonzero element u ∈ Tg−1 such that xu = 1.
Since ux ∈ Te = F1, we have ux = c1 for some c ∈ F . Then, by the flexible law,
we get x = (xu)x = x(ux) = cx. Hence c = 1, i.e., xu = ux = 1. Therefore x is
invertible. ¤

By 2.4, the central closure of an alternative G-torus is an alternative G/Γ-torus
for Γ the central grading group if G is a totally ordered abelian group.

Definition 2.7. An alternative (resp. associative) Zn-torus is called an alternative
(resp. associative) n-torus over F or simply an alternative (resp. associative) torus
when this abbreviation does not create confusion.

We recall quantum tori (see for example [7] or [3]). An n×n matrix q = (qij) over

F such that qii = 1 and qji = q−1
ij is called a quantum matrix. The quantum torus

Fq = Fq [t±1
1 , . . . , t±1

n ] determined by a quantum matrix q is defined as the associative
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algebra over F with 2n generators t±1
1 , . . . , t±1

n , and relations tit
−1
i = t−1

i ti = 1 and
tjti = qijtitj for all 1 ≤ i, j ≤ n. Note that Fq is commutative if and only if q = 1
where 1 is the matrix whose entries are all 1. In this case, the quantum torus F1

becomes the algebra of Laurent polynomials F [t±1
1 , . . . , t±1

n ]. One can give a Zn-

grading of the quantum torus Fq = Fq[t±1
1 , . . . , t±1

n ] in an obvious way: For any basis
{σ1, . . . ,σn} of Zn, we define the degree of

tα := tα1
1 · · · tαn

n for α = α1σ1 + · · · + αnσn ∈ Zn as α.

Then Fq = ⊕α∈Zn F tα becomes a Zn-graded algebra, and it is an associative torus.
We call this grading the toral Zn-grading of Fq determined by 〈σ1, . . . ,σn〉. Some-
times it is referred to as a 〈σ1, . . . ,σn〉-grading. We always assume some toral Zn-
grading of Fq. Conversely, any associative torus is graded isomorphic to some Fq

with some toral grading (see Lemma 1.8 in [4]).
By Artin’s Theorem, the subalgebra of an algebra generated by two elements is

associative ([14], p.36). Hence an alternative 1-torus is isomorphic to F [t, t−1].

§3 Cayley-Dickson process over a ring

We review the Cayley-Dickson process over a ring ([6], p.103). In this section,
our algebras are arbitrary non-associative unital algebras, not necessarily alternative,
over a ring of scalars Φ (a commutative associative unital ring). Moreover, for an
algebra B over Φ, we assume that B is faithful, i.e., for all α ∈ Φ, αB = 0 =⇒ α = 0.
Since B has a unit, B is faithful if and only if, for all α ∈ Φ, α1 = 0 =⇒ α = 0. Let
∗ be a scalar involution over Φ, i.e., an anti-automorphism of period 2 with bb∗ ∈ Φ1
(hence by linearization, b + b∗ ∈ Φ1) for all b ∈ B, and let µ ∈ Φ be a cancellable
scalar, i.e., µb = 0 for some b ∈ B =⇒ b = 0. Then one can construct a new algebra
B ⊕ B with its product (a, b)(c, d) = (ac + µdb∗, a∗d + cb) for a, b, c, d ∈ B. Letting
v = (0, 1) we can write this algebra as B ⊕ vB,

(3.1) (a + vb)(c + vd) = (ac + µdb∗) + v(a∗d + cb).

We say that this new algebra B ⊕ vB is obtained from B = (B, ∗) by the Cayley-
Dickson process with structure constant µ, and denote it by (B, µ). We define a new
map ∗ on C := (B, µ) by

(3.2) (a + vb)∗ = a∗ − vb.

This new ∗ is also a scalar involution of C. Hence, for a cancellable scalar ν, one can
obtain another new algebra (C, ν) from C = (C, ∗) by the Cayley-Dickson process
with structure constant ν. We write this (C, ν) as (B,µ, ν) instead of ((B,µ), ν)).

Remark 3.3. (1) Since µ is cancellable, we have vb = 0 =⇒ b = 0.
(2) If µ is invertible, then µ is cancellable, and v = (0, 1) is invertible in the sense

that there exists an element u ∈ C such that uv = vu = 1.

We will use the following lemma from [6], Theorem 6.8, p.105:
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Lemma 3.5. For the algebra (B,µ), we have
(i) (B, µ) is commutative ⇐⇒ B is commutative with trivial involution.
(ii) (B,µ) is associative ⇐⇒ B is commutative and associative.
(iii) (B,µ) is alternative ⇐⇒ B is associative.

When Φ is a field of characteristic 6= 2 and we start the Cayley-Dickson process
from Φ = (Φ, id) where id is the trivial scalar involution, i.e., the identity map, we
call Φ, (Φ, µ1), (Φ, µ1, µ2) and (Φ, µ1, µ2, µ3), where µ1, µ2 and µ3 are any nonzero
elements in Φ, composition algebras over Φ. When Φ is a field of characteristic = 2, we
define a separable quadratic algebra Φµ for µ ∈ Φ by Φµ := Φ[X]/(X2−X−µ). Then,
Φµ has a scalar involution ∗ over Φ. Note that (Φ, µ) does not have a scalar involution.
For convenience, we denote (Φ, µ) for Φµ, and call Φµ1 = (Φ, µ1), (Φ, µ1, µ2) and
(Φ, µ1, µ2, µ3), where µ1, µ2, µ3 ∈ Φ and µ2, µ3 6= 0, composition algebras (see [10]).
Also, (Φ, µ1, µ2) is called a quaternion algebra and (Φ, µ1, µ2, µ3) an octonion algebra.

For an algebra B = (B, ∗) with scalar involution ∗ and x ∈ B, we define the
norm n(a) of a as the unique scalar aa∗ = n(a)1. Also, for a, b ∈ B, we define
n(a, b) := n(a + b) − n(a) − n(b) and so n(a, b)1 = ab∗ + ba∗. Note that n(·, ·) is
a symmetric bilinear form on B. In the same way, we have the norm n and the
symmetric bilinear form n(·, ·) on the algebra (B,µ) obtained by the Cayley-Dickson
process. For C = (B,µ) = B⊕vB and a, b ∈ B, we have n(a, vb) = a(vb)∗ +(vb)a∗ =
−a(vb) + (vb)a∗ = −v(a∗b) + v(a∗b) = 0, and so

(3.6) n(B, vB) = 0 or equivalently vB ⊂ B⊥,

where B⊥ is the orthogonal submodule relative to n(·, ·).
We recall that an algebra B, in general, has degree 2 if there exist a linear form tr

called trace and a quadratic form n called norm such that for all a ∈ B

a2 − tr(a)a + n(a)1 = 0, tr(1) = 2, n(1) = 1.

In particular, if Φ is a field, then the trace tr and norm n are unique ([6], p.90). If
an algebra B over Φ has a scalar involution ∗, then one can easily check that B has
degree 2, that a + a∗ = tr(a)1 for a ∈ B and that the two norms from ∗ and the
degree 2-algebra coincide. In particular, if Φ is a field, then a scalar involution is
unique. We state this as a lemma:

Lemma 3.7. Let B be an algebra with scalar involution ∗ over a field. Then, B has
degree 2, and ∗ is the only scalar involution. We have a∗ = tr(a)1 − a for all a ∈ B,
where tr is the trace of the degree 2-algebra B.

We will use the following known lemma later (see [14], p.32).

Lemma 3.8. Let C = (C, ∗) be a division composition algebra over a field Φ. Let B
be a subalgebra of C such that dimΦ B = 1

2 dimΦ C. Then, B is a division composition
algebra with scalar involution ∗ = ∗ |B over Φ and C = (B,µ) for some 0 6= µ ∈ Φ,
except when ch.Φ = 2 and dimΦ C = 2.
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§4 Quantum tori of degree 2

We will classify quantum tori (=associative tori) of degree 2 in 4.3. First we
show some properties for a certain G-graded alternative algebra which has a scalar
involution. Essentially they are shown in [4], Lemma 1.24 for the case of alternative
tori, but for the convenience of the reader, we show this.

Lemma 4.1. Let A =
∑

g∈G Ag be a G-graded alternative algebra over a field L
which has a scalar involution ∗. Assume that the nonzero homogeneous elements are
not nilpotents. Then we have the following:

(i) For any x ∈ Ag, g 6= e, we have tr(x) = 0, x2 = −n(x)1, x∗ = −x and ∗ is
graded, i.e., A∗

g = Ag for all g ∈ G.

(ii) The exponent of G is 2 or G is trivial, i.e., G = {e}.
In particular, if G = Zn/Γ for some subgroup Γ of Zn, there exists a basis

{ε1, . . . , εn} of Zn and m ≥ 0 such that

Γ = 2Zε1 + · · · + 2Zεm + Zεm+1 + · · · + Zεn.

(iii) All homogeneous spaces are orthogonal to each other relative to the norm.

Proof. For (i) and (ii), let 0 6= x ∈ Ag . Then x2 6= 0 by our assumption. Since A
has degree 2, we have x2 + n(x)1 = tr(x)x ∈ Ag. If tr(x) 6= 0, then g2 = g since
x2 6= 0. Hence g = e, which contradicts our assumption. So we get tr(x) = 0.
Then x2 = −n(x)1. Moreover, 0 6= x2 ∈ Ag2 ∩ L1 ⊂ Ag2 ∩ Ae, and hence g2 = e.
The second statement of (ii) follows from Fundamental Theorem of finitely generated
abelian groups. By 3.7, we get x∗ = tr(x)1 − x = −x. For y ∈ Ae, we have
y∗ = tr(y)1 − y ∈ Ae, and so ∗ is graded.

For (iii), let y ∈ Ah where g 6= h ∈ G. Then we have xy∗ ∈ Agh since ∗ is graded.
If gh = e, then g = h since the exponent of G is 2. Thus gh 6= e and by (i), one gets
tr(xy∗) = 0. Hence, n(x, y)1 = xy∗ + yx∗ = tr(xy∗) = 0. ¤

Example 4.2. Let ch. F 6= 2 and let Fh = Fh[t±1
1 , . . . , t±1

n ] be the quantum torus
determined by h = (hij) where the h12 = h21 = −1 and the other entries are all 1,

and Z the centre of Fh. One finds that Z = F [t±2
1 , t±2

2 , t±1
3 , . . . , t±1

n ], the algebra of
Laurent polynomials in the variables t21, t

2
2, t3, . . . , tn. So for a 〈σ1, . . . , σn〉-grading

of Fh, the central grading group of Fh is 2Zσ1 + 2Zσ2 + Zσ3 + · · · + Zσn, and the
central closure Fh is a (Z2×Z2)-torus over Z, where Z2 = Z/2Z. Thus the dimension
of Fh over Z is 4. Since F h has no zero divisors by 2.1 and is finite dimensional, it is
a division algebra. Hence Fh is a quaternion division algebra and has degree 2 over
Z. Clearly, Fh = (Z, t21, t

2
2) generated by t1, t2, and ∗ : t1 7→ −t1, t2 7→ −t2 defines a

scalar involution of Fh. Since (Fh)∗ = Fh and Fh ∩ Z = Z , the restricted involution
∗ := ∗|Fh is scalar over Z. Thus Fh has degree 2 over Z and (Fh, ∗) = (Z, t21, t

2
2) is a

quaternion algebra over Z. We call this Fh a quaternion torus.
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Proposition 4.3. Let T be a noncommutative associative torus over F and Γ the
central grading group of T . Then the following are equivalent:

(i) ch. F 6= 2 and T is graded isomorphic to the quaternion torus for some toral
grading,

(ii) T has degree 2 over Z,
(iii) T has degree 2 over Z,
(iv) Γ = 2Zσ1 + 2Zσ2 + Zσ3 + · · · + Zσn for some toral {σ1, . . . ,σn}-grading,
(v) T has a scalar involution over Z,
(vi) T has a scalar involution over Z.

Proof. We already showed (i) ⇒ (ii) in 4.2. (ii) ⇒ (iii) is true in general. For (iii) ⇒
(iv), we have dimZ T = 2m by 4.1(ii). But T is a finite dimensional central associative

division algebra over Z , and so m = 2. (iv) ⇒ (i) can be shown in the same way as
Proposition 6.12 in [12] (noncommutativity of T forces ch. F 6= 2). Thus we get (i)
⇔ (ii) ⇔ (iii) ⇔ (iv).

We already showed (i) ⇒ (v) in 4.2. (v) ⇒ (vi) is true in general. Since (vi) ⇒
(iii), we obtain (i) ⇔ (v) ⇔ (vi). ¤

§5 Division Zn-graded alternative algebras

In this section all algebras are unital over a field F . An alternative algebra A is
called an octonion ring if the central closure A is an octonion algebra over the field
Z ([14], p.193). We first state Slater’s Theorem ([14], Theorem 9, p.194]):

Theorem 5.1. A strongly prime alternative algebra over F is either an associative
algebra or an octonion ring.

Thus:

Theorem 5.2. A division G-graded alternative algebra A over F for a totally ordered
group G is either a division G-graded associative domain or an octonion ring which
embeds into an octonion division algebra over Z.

Proof. By 2.1, A is a domain. Hence by 5.1, it is either a division G-graded associative
domain or an octonion ring. Finally, A is a domain, and hence A is a division algebra
(see [14], Lemma 9, p.43). ¤

Now, we specify G = Zn, and classify division Zn-graded alternative algebras.
Since Zn is a totally ordered abelian group, we can apply 5.2. We classify division
Zn-graded alternative algebras over F which are not associative. By 5.2, any such
algebra is an octonion ring which embeds into an octonion division algebra. We first
construct four examples of such octonion rings. For this purpose, we prove a lemma
and its corollary.

Lemma 5.3. Let {ε1, . . . , εn} be a basis of a free abelian group Λ of rank n and

Γi := Zε1 + · · · + Zεi−1 + 2Zεi + Zεi+1 + · · · + Zεn.
8



Let A = ⊕α∈Γi Aα be a division Γi-graded associative algebra over a field K and R
a subalgebra contained in the centre of A. Suppose

(i) A has a scalar involution ∗ over R which is graded: A∗
α = Aα for all α ∈ Γi,

(ii) there exists z ∈ A2εi ∩ R such that z is invertible in R.

Then the algebra (A, z) obtained by the Cayley-Dickson process over R has a unique
Λ-grading such that every homogeneous space of degree α ∈ Γi in (A, z) is equal to
Aα and v = (0, 1) ∈ (A, z) has degree εi. Moreover, by the Λ-grading, (A, z) becomes
a division Λ-graded alternative algebra over K and the scalar involution ∗ of (A, z)
is again graded.

Proof. We have

(A, z) = A ⊕ vA = (
⊕

α∈Γi

Aα) ⊕ v(
⊕

α∈Γi

Aα).

We first claim v(⊕α∈Γi Aα) = ⊕α∈Γi vAα. We have v(⊕α∈Γi Aα) =
∑

α∈Γi
vAα

and so we only need to show the sum in the right-hand side is direct. By 3.3(1),∑
α∈Γi

vxα = v(
∑

α∈Γi
xα) = 0 for xα ∈ Aα implies

∑
α∈Γi

xα = 0. So we get
xα = 0 for all α ∈ Γi and our claim is settled. For α ∈ Λ, define

A′
α :=

{
Aα, if α ∈ Γi

vAα−εi , otherwise.

Then we get

(A, z) = (
⊕

α∈Γi

Aα) ⊕ (
⊕

α∈Γi

vAα) =
⊕

α∈Λ

A′
α,

the direct sum of F -vector spaces. By the multiplication of (A, z), we have

A′
αA′

β =





AαAβ = Aα+β = A′
α+β, if α,β ∈ Γi

Aα(vAβ−εi) ⊂ v(A∗
αAβ−εi) = vAα+β−εi = A′

α+β, if α ∈ Γi,β /∈ Γi

(vAβ)Aα−εi ⊂ v(AβAα−εi) = vAβ+α−εi = A′
α+β, if α /∈ Γi,β ∈ Γi

(vAα−εi)(vAβ−εi) ⊂ zA∗
β−εi

Aα−εi = A′
α+β, if α /∈ Γi,β /∈ Γi

since ∗ is graded and z ∈ A2εi . Hence (A, z) = ⊕α∈Λ A′
α is a Λ-graded algebra over

F . Since {ε1, . . . , εn} is a basis of Λ, the uniqueness of Λ-grading is clear. Also
by 3.5, (A, z) is an alternative algebra. Moreover, we know that 0 6= x ∈ Aα is
invertible. Since z is invertible, v is invertible in the alternative algebra (A, z) (see
Remark 3.3(2)). Hence, vx is invertible (see [14], Lemma 9, p.205). Consequently,
(A, z) is a division Λ-graded alternative algebra over F . Finally, by (3.2), it is clear
that ∗ on (A, z) is graded. ¤
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Corollary 5.4. Let {ε1, . . . , εn} be a basis of Zn and

Γ(m) := 2Zε1 + · · · + 2Zεm + Zεm+1 + · · · + Zεn for m = 1, 2, 3.

Let A = ⊕α∈Γ(m) Aα be a division Γ(m)-graded associative algebra over a field K and
R a subalgebra contained in the centre of A. Suppose

(i) A has a scalar involution ∗ over R which is graded,
(ii) there exist zi ∈ A2εi ∩R for all 1 ≤ i ≤ m such that each zi is invertible in R,
(iii) A is commutative if m = 2, and A is commutative and ∗ is trivial if m = 3.
Then the algebra (A, z1, . . . , zm) obtained by the Cayley-Dickson process over R

has a unique Zn-grading such that every homogeneous space of degree α ∈ Γ(m) in
(A, z1, . . . , zm) is equal to Aα and each vi = (0, 1) ∈

(
(A, z1, . . . , zi−1), zi

)
has degree

εi. Also by the Zn-grading, (A, z1, . . . , zm) becomes a division Zn-graded alternative
algebra over K

Moreover, assume that
(iv) A is not commutative if m = 1, ∗ is not trivial if m = 2 and ch.K 6= 2 if

m = 3.
Then (A, z1, . . . , zm) is not associative.

Proof. For m = 1, we take Λ = Zn in 5.3, and so Γ(1) = Γ1. Then we take z = z1

in 5.3 and get the required division Zn-graded alternative algebra (A, z1) over K .
Moreover, (iv) and 3.5 implies that (A, z1) is not associative.

To show the cases m = 2 and m = 3, we define the following: for j = 1, 2, let

Γ
(m)
j := Zε1 + · · · + Zεj + 2Zεj+1 + · · ·+ 2Zεm + Zεm+1 + · · · + Zεn.

For m = 2, we take Λ = Γ
(2)
1 , Γi = Γ(2) and z = z1 in 5.3. Then, by (iii), we

get the division Γ
(2)
1 -graded associative algebra (A, z1) which has the graded scalar

involution ∗ over R. Note that R is contained in the centre of (A, z1) and that
z2 ∈ A2ε2 ∩ R = (A, z1)2ε2 ∩ R is invertible in R. Thus one can apply 5.3 again for

Λ = Zn, Γi = Γ
(2)
1 and z = z2, and get the required division Zn-graded alternative

algebra (A, z1, z2) over K. Moreover, (iv) implies that (A, z1) is not commutative and
that (A, z1, z2) is not associative.

For m = 3, by the same way as the case m = 2, one can apply 5.3 three times.
Namely,

1. take Λ = Γ
(3)
1 , Γi = Γ(3) and z = z1 and get the division Γ

(3)
1 -graded commuta-

tive associative algebra (A, z1),

2. take Λ = Γ
(3)
2 , Γi = Γ

(3)
1 and z = z2 and get the division Γ

(3)
2 -graded associative

algebra (A, z1, z2),

3. take Λ = Zn, Γi = Γ
(3)
2 and z = z3 and get the required division Zn-graded

alternative algebra (A, z1, z2, z3) over K.
Moreover, (iv) implies that (A, z1) has the non-trivial graded scalar involution,

that (A, z1, z2) is not commutative and that (A, z1, z2, z3) is not associative. ¤
We are now ready to construct four octonion rings.
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Construction 5.5. Let K be a field extension of F and let {ε1, . . . , εn} be a basis
of Zn.

(1) Let O be an octonion division algebra over K and

K[z±1
1 , . . . , z±1

n ] =
⊕

α∈Zn

Kzα

the algebra of Laurent polynomials over K where zα = zα1
1 · · · zαn

n for α = α1ε1 +
· · ·+ αnεn ∈ Zn. Then, by 2.2,

O1 := O ⊗K K[z±1
1 , . . . , z±1

n ] =
⊕

α∈Zn

(O ⊗K Kzα)

is a division Zn-graded alternative algebra over K, and hence over F . It is clearly
alternative but not associative.

(2) Let H be a quaternion division algebra over K with scalar involution ∗. Let

Γ(1) : = 2Zε1 + Zε2 + · · ·+ Zεn

R : = K[z±1
1 , . . . , z±1

n ] =
⊕

α∈Γ(1)

Kzα

where zα = zα1
1 · · · zαn

n for α = 2α1ε1 + α2ε2 + · · · + αnεn ∈ Γ(1). Then, by 2.2,

H1 := H ⊗K R =
⊕

α∈Γ(1)

(H ⊗K Kzα)

is a division Γ(1)-graded associative algebra over F and it is clearly associative but
not commutative. One can check that H1 has the scalar involution ∗ over R defined
by (x ⊗ z)∗ = x∗ ⊗ z for x ∈ H, z ∈ R, and so ∗ is clearly graded on H1. Let Z(H1)
be the centre of H1. Then, R ⊂ Z(H1) (in fact they are equal), z1 ∈ R has degree
2ε1 in H1 and z1 is invertible in R. Thus we can apply 5.4. Namely, the algebra

O2 := (H1, z1)

obtained by the Cayley-Dickson process over R is a division Zn-graded alternative
algebra over K, which is not associative. For x ∈ H and α = α1ε1 + · · ·+αnεn ∈ Zn,
we put in O2 = (H1, z1)

xtα :=

{
(x ⊗ zα, 0) if α1 ≡ 0 mod 2

(0, x ⊗ zα−ε1) if α1 ≡ 1 mod 2.

Note that tε1 = (0, 1) and t2ε1
= z1. One can write O2 = ⊕α∈Zn Htα.
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(3) Assume that n ≥ 2. Let E be a separable quadratic field extension of K. Hence
the nontrivial Galois automorphism over K is a scalar involution denoted by ∗. Let

Γ(2) : = 2Zε1 + 2Zε2 + Zε3 + · · ·+ Zεn

R : = K[z±1
1 , . . . , z±1

n ] =
⊕

α∈Γ(2)

Kzα

where zα = zα1
1 · · · zαn

n for α = 2α1ε1 + 2α2ε2 + α3ε3 + · · · + αnεn ∈ Γ(2). Then,

E1 := E ⊗K R =
⊕

α∈Γ(2)

(E ⊗K Kzα)

is a division Γ(2)-graded commutative associative algebra over K, and it has the
graded scalar involution ∗ over R by the same argument used in (2). We have R ⊂
Z(E1) = E1, Also, z1 and z2 satisfy the condition in 5.4. Thus we get a division
Zn-graded alternative algebra

O3 := (E1, z1, z2)

over K, which is not associative. For x ∈ E and α = α1ε1 + α2ε2 + · · ·+ αnεn ∈ Zn,
we put in O3 = (E1, z1, z2),

tα :=





(
(zα, 0), (0, 0)

)
if α1 ≡ α2 ≡ 0 mod 2

(
(0, zα−ε1), (0, 0)

)
if α1 ≡ 1 and α2 ≡ 0 mod 2

(
(0, 0), (zα−ε2 , 0)

)
if α1 ≡ 0 and α2 ≡ 1 mod 2

(
(0, 0), (0, zα−ε1−ε2)

)
if α1 ≡ 1 and α2 ≡ 1 mod 2.

Note that tε1 =
(
(0, 1), (0, 0)

)
, tε2 =

(
(0, 0), (1, 0)

)
, t2ε1

= z1 and t2ε2
= z2. One can

write O3 = ⊕α∈Zn Etα.
(4) Assume that n ≥ 3 and that ch. F 6= 2. We can apply 5.4 for

Γ(3) : = 2Zε1 + 2Zε2 + 2Zε3 + Zε4 + · · ·+ Zεn

A = R : = K[z±1
1 , . . . , z±1

n ] =
⊕

α∈Γ(3)

Kzα

where zα = zα1
1 · · · zαn

n for α = 2α1ε1 + 2α2ε2 + 2α3ε3 + α4ε4 + · · · + αnεn ∈ Γ(3).
In fact, A has the trivial scalar involution, i.e., the identity map, and z1, z2, z3 satisfy
the condition in 5.4. Thus we get a division Zn-graded alternative algebra

O4 := (R, z1, z2, z3)

over K, which is not associative. It is clear that every homogeneous space is 1-
dimensional over K, and so O4 is an alternative torus over K. It is called the octonion
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torus or the Cayley torus over K. This torus was first discovered in [4]. We present
a slightly different description of the octonion torus. Consider the algebra

(K[z±1
1 , . . . , z±1

n ], z1, z2),

which is associative (so a quantum torus over K). One can easily check that this
algebra is graded isomorphic to a quaternion torus Kh = Kh[u±1

1 , . . . , u±1
n ] as defined

in 4.2, via

(
(0, 1), (0, 0)

)
↔ u1,

(
(0, 0), (1, 0)

)
↔ u2, z3 ↔ u3, . . . , zn ↔ un.

We identify them. So the octonion torus over K is

O4 = (Kh, u3)

and the Zn-grading comes from the following G-grading of Kh (see 5.3):

G = Zε1 + Zε2 + 2Zε3 + Zε4 + · · · + Zεn,

Kh =
⊕

α∈G

Kuα

where uα = uα1
1 uα2

2 uα3
3 · · ·uαn

n for α = α1ε1 +α2ε2 +2α3ε3 +α4ε4 + · · ·+αnεn. For
α = α1ε1 + · · · + αnεn ∈ Zn, we put in O4 = (Kh, u3)

tα :=

{
(uα, 0), if α3 ≡ 0 mod 2

(0, uα−ε3), if α3 ≡ 1 mod 2.

Then we have O4 = ⊕α∈Zn Ktα as K-spaces. Note that tε3 = (0, 1) and t2ε3
= u3.

Note that the centre of O4 is

K[u±2
1 , u±2

2 , u±1
3 , . . . , u±1

n ] = K[z±1
1 , . . . , z±1

n ].

Also, the structure constants of O4 relative to {tα}α∈Zn are 1 or −1.

All the gradings of O1, O2, O3 and O4 determined by a basis 〈ε1, . . . , εn〉 of Zn

described in 5.5 are called toral gradings.
Notice that O1, H1 and E1 in 5.5 are also the algebras obtained by the Cayley-

Dickson process over K[z±1
1 , . . . , z±1

n ]. More generally, we have the following:

Lemma 5.6. Let R be a commutative associative algebra over a field K and µ1, . . . , µl ∈
K. Then,

(K, µ1, . . . , µl) ⊗K R ∼= (R,µ1, . . . , µl) as R-algebras.

Proof. Straightforward. ¤

Now we prove our main result:
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Theorem 5.7. A division Zn-graded alternative algebra A = ⊕α∈Zn Aα over F
which is not associative is graded isomorphic over K = Z0 to one of the four octonion
rings O1, O2, O3 and O4 for some toral gradings. In other words, when ch. F 6= 2,
A is isomorphic over K to (K[z±1

1 , . . . , z±1
n ], µ1, µ2, µ3) where

(1) 0 6= µ1, µ2, µ3 ∈ K such that (K,µ1, µ2, µ3) is an octonion division algebra
over K,

(2) 0 6= µ1, µ2 ∈ K and µ3 = z1 such that (K,µ1, µ2) is a quaternion division
algebra over K,

(3) 0 6= µ1 ∈ K, µ2 = z1 and µ3 = z2 such that (K,µ1) is a quadratic field
extension of K or

(4) µ1 = z1, µ2 = z2 and µ3 = z3,

and (1), (2) or (3) when ch. F = 2,
Also, these four algebras are all non-isomorphic.

Proof. We already know that A is an octonion ring whose central closure A is an
octonion division algebra over Z. By 2.4, A is a Zn/Γ-graded alternative algebra,
where Γ = {α ∈ Zn | Zα = Z ∩ Aα 6= 0} is the central grading group of A, i.e.,

A =
⊕

α∈Zn/Γ

Aα where Aα = Z ⊗Z Aα and Aα = ZAα.

Since A is a division algebra, it is, in particular, a division Zn/Γ-graded algebra of
dimension 8. Hence every homogeneous space has the same dimension. Also, since the
octonion algebra A has a scalar involution, Zn/Γ is either (0) or an elementary group
of exponent 2, by 4.1. Therefore, we have four cases; there exists a basis {ε1, . . . , εn}
of Zn such that for m = 0, 1, 2, 3,

Γ = 2Zε1 + · · · + 2Zεm + Zεm+1 + · · · + Zεn.

Let
0 6= ti ∈ Aεi for 1 ≤ i ≤ m.

By 2.3(iii), we have A = ⊕α∈Zn/Γ Aα and hence

A = 〈ZA0, ti〉1≤i≤m

as a Z-algebra. Also by 4.1(iii), we have

n(ti, ZA0) = 0.

Moreover, by 4.1(ii), t2i ∈ Z1, and so t2i ∈ Z1 ∩ A2εi = Z(A) ∩ A2εi = Z2εi . Choose
0 6= zj ∈ Zεj for m < j ≤ n and put zi := t2i . Since Z is a commutative associative
Γ-torus over K, one can write

Z = K[z±1
1 , . . . , z±1

n ] =
⊕

α∈Γ

Kzα
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where zα = zα1
1 · · · zαn

n for α = 2α1ε1 + · · ·+ 2αmεm + αm+1εm+1 + · · ·+ αnεn ∈ Γ.

Case (I): m = 0, i.e., Γ = Zn.

By 2.4(ii), we have dimK A0 = dimZ A0 = dimZ A = 8. Since A0 is an alternative
division algebra over K, it is strongly prime, in particular. Since A is not associative,
neither is A0. Hence, A0 is an octonion algebra over its centre, by Slater’s Theorem
(5.1). However, since dimK A0 = 8, A0 is already central over K and it is an octonion
division algebra over K. By 2.3, we can identify (and always do below)

ZA0 = A0 ⊗K Z.

Hence we get A = ZA0 = A0 ⊗K K[z±1
1 , . . . , z±1

n ] = O1 in Construction 5.5(1).

For the next two cases, we prove a lemma. Recall that A is a subalgebra of A over
Z, by identifying x = 1 ⊗ x ∈ A for x ∈ A.

Lemma 5.8. Let ∗ be the scalar involution of the octonion division Z-algebra A.
Suppose that the K-algebra A0 has a scalar involution . Then, σ := ∗ |ZA0 is a
scalar involution of Z-algebra ZA0, and for zi ∈ Z, xi ∈ A0, we have σ(

∑
i zixi) =∑

i zixi.

Proof. By 2.4(ii), one can easily check that

A0 = Z ⊗Z A0
∼= Z ⊗K A0

over Z via y⊗ x 7→ y ⊗x for y ∈ Z and x ∈ A0. By 5.3, we can naturally extend to
the subalgebra A0 of A over Z. Namely, we can define y ⊗ x := y ⊗ x, which is still

a scalar involution over Z. But A0 has another scalar involution, that is, ∗ := ∗ |A0
.

So we get = ∗ on A0 since a scalar involution over a field is unique by 3.7. Finally,
one can check that σ is a scalar involution of ZA0 over Z. ¤

We denote this σ also by ∗.

Case (II): m = 1, i.e., Γ = 2Zε1 + Zε2 + · · · + Zεn.

Since every homogeneous space has the same dimension, we have dimZ A0 = 4. Then,

by 3.8, A0 = (A0, ∗) is a quaternion division algebra over Z with the restricted scalar

involution ∗ and A = (A0, µ) for some structure constant 0 6= µ ∈ Z. Also by 2.4(ii),
A0 is a 4-dimensional associative non-commutative division algebra over K. Hence it
has to be central and has degree 2. It is well-known that a central simple associative
algebra of degree 2 over a field is a quaternion algebra (see e.g. [9]). Hence, A0 has a
scalar involution over K, and by 5.8, ZA0 has the scalar involution ∗ = ∗ |ZA0 over
Z.

We show the following:
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Lemma 5.9. Let B = (B, ∗) be an associative composition algebra over a field L.
Let C = (B,µ) for 0 6= µ ∈ L and R a subring of L. Suppose:

(i) There exists t ∈ C such that n(t,B) = 0, where n is the norm on C.
(ii) 0 6= t2 ∈ R1 = R (we identify L1 with L).
(iii) P is a subalgebra of B over R such that the restriction of ∗ to P is a scalar

involution over R.
Then the algebra generated by P and t over R is equal to the algebra obtained by

the Cayley-Dickson process with structure constant t2 over R:

〈P, t〉 = (P, t2) and t = (0, 1) in (P, t2).

Moreover, the restriction of the scalar involution ∗ of C to (P, t2) is a scalar involution
over R.

Proof. Since B is a composition algebra, the norm n(·, ·) on C is nondegenerate
and the dimension of C over L is finite. From a well-known theorem in Linear
Algebra, we have dim B + dim B⊥ = dim C. By (3.6), we have vB ⊂ B⊥. Since
dim B+dim vB = dim C, we get vB = B⊥. Thus we have t = ve for some 0 6= e ∈ B,
by (i). Also, by (ii) we have 0 6= t2 = (ve)2 = µn(e)1 ∈ R, which is cancellable. Now,
we have by (3.1),

tP = (ve)P = v(Pe) ⊂ vB

and hence, 〈P, t〉 = P ⊕ tP . By (iii), P has a scalar involution ∗ = ∗ |P over R. We
have

(a + tb)(c + td) = (ac + t2db∗) + t(a∗d + cb) for all a, b, c, d ∈ P .

In fact, one checks, using t = ve, (3.1) and the associativity of P , a(td) = t(a∗d),
(tb)c = t(cb) and (tb)(td) = t2db∗. Hence 〈P, t〉 = P ⊕ tP = (P, t2) and t = (0, 1) in
(P, t2). Moreover, for b ∈ P ,

(tb)∗ = b∗(ve)∗ = b∗(e∗v∗) = b∗(−e∗v) = −b∗(ve) = −v(be) = −(ve)b = −tb.

So, ∗ |(P,t2) coincides with the scalar involution of (P, t2) over R. ¤

We apply 5.9 for A = 〈ZA0, t1〉:

L := Z, R := Z, B := (A0, ∗),
P := ZA0 ⊂ B, having the scalar involution ∗ over R,

C := A = (B, µ) and t := t1.

So we get
A = 〈ZA0, t1〉 = (ZA0, z1)

and t1 = (0, 1). Let H := A0 which is the quaternion division algebra over K described
above, in which case the division Γ-graded associative algebra

ZA0 = H ⊗K K[z±1
1 , . . . , z±1

n ]
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is equal to H1 constructed in 5.5(2). Thus we get

A = (ZA0, z1) = (H1, z1) = O2 in Construction 5.5(2),

which have the same Zn-gradings (see the uniqueness part of Zn-gradings in 5.3).

Case (III): m = 2, i.e., Γ = 2Zε1 + 2Zε2 + Zε3 + · · · + Zεn.
Since every homogeneous space has the same dimension, we have dimZ A0 = 2. Thus,

A0 = (A0, ∗) is a quadratic field extension of Z with the restricted scalar involution

∗, and by 3.8, through the 4-dimensional subalgebra B1 := A0 ⊕ Aε1 ,

A = (A0, µ1, µ2)

for some structure constants 0 6= µ1, µ2 ∈ Z. Also by 2.4(ii), A0 is a quadratic field
extension of K. Hence, A0 has a scalar involution over K, and by 5.8, ZA0 has the
scalar involution ∗ = ∗ |ZA0 over Z. Also, if A0 is not separable, then the scalar
involution of A0 is trivial. So, ∗ becomes trivial and A becomes commutative and
associative. This contradicts our setting. Therefore, A0 is a separable quadratic field
extension of K.

We show the following which is a corollary of 5.9:

Lemma 5.10. Let B = (B, ∗) be an associative composition algebra over a field L
and R a subring of L. Let C = (B,µ1, . . . , µm) for 0 6= µi ∈ L, 1 ≤ m ≤ 3, be an
alternative algebra over L. Let B0 := B and Bi := (Bi−1, µi), 1 ≤ i ≤ m. (All Bi

have the restricted scalar involution ∗ of C.) Suppose:
(i) There exist t1, . . . , tm ∈ C such that n(ti, Bi−1) = 0.
(ii) 0 6= t2i ∈ R1 = R for all 1 ≤ i ≤ m.
(iii) P is a subalgebra of B over R such that the restriction of ∗ to P is a scalar

involution over R.
Then,

〈P, t1, . . . , tm〉 = (P, t21, . . . , t2m)

and each ti = (0, 1) in
(
(P, t21, . . . , t2i−1), t

2
i

)
.

Proof. The case m = 1 is done by 5.9. For m > 1, assume that the subalgebra Pm−1

of Bm−1 generated by P, t1, . . . , tm−1 over R is equal to (P, t21, . . . , t2m−1) and that the
restriction of the scalar involution ∗ of Bm−1 to (P, t21, . . . , t2m−1) is a scalar involution
over R. Then, since C = (Bm−1, µm) has the element tm satisfying n(tm, Bm−1) = 0
and t2m ∈ R, we can apply 5.9 for B = Bm−1, P = Pm−1 and t = tm. Namely,

〈P, t1, . . . , tm〉 = 〈Pm−1, tm〉 = (Pm−1, t
2
m) = (P, t21, . . . , t2m),

and each ti has the required form. ¤
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As in Case (II), we apply 5.10 and get

A = 〈ZA0, t1, t2〉 = (ZA0, z1, z2),

t1 =
(
(0, 1), (0, 0)

)
and t2 =

(
(0, 0), (1, 0)

)
. Let E := A0 which is the separable

quadratic field extension of K shown above, in which case the division Γ-graded
commutative associative algebra

ZA0 = E ⊗K K[z±1
1 , . . . , z±1

n ]

is equal to E1 constructed in 5.5(3). Thus we get

A = (ZA0, z1, z2) = (E1, z1, z2) = O3 in Construction 5.5(3),

which have the same Zn-gradings.

Case (IV): m = 3, i.e., Γ = 2Zε1 + 2Zε2 + 2Zε3 + Zε4 + · · · + Zεn.
Since every homogeneous space has the same dimension, we have dimZ A0 = 1. Thus

we have Z1 = A0 = (A0, ∗) with the restricted scalar involution ∗ which is the trivial

involution, and by 3.8, through the subalgebras B2 = A0 ⊕ Aε1 ⊕ Aε2 ⊕ Aε1+ε2
and

B1,
A = (A0, µ1, µ2, µ3),

for some structure constants 0 6= µ1, µ2, µ3 ∈ Z if ch. F 6= 2.
Note that A0 = K and ZA0 = Z in this case. As in Case (II), we apply 5.10 and

get
A = 〈Z, t1, t2, t3〉 = (Z, z1, z2, z3) = O4 in Construction 5.5(4),

which have the same Zn-gradings. If ch. F = 2, then B1 = A0 ⊕ Aε1 is a purely

inseparable extension field of A0 by 4.1(i). Hence, B1 is not a composition algebra,
which contradicts 3.8. Therefore, Case (IV) cannot happen if ch. F = 2.

The different descriptions of the octonion rings follow from 5.6. The last statement
follows from the fact that A0 is an isomorphic invariant (which is easily shown). ¤
Example 5.11. We choose our base field F to be R, the field of real numbers. Then
there exist a unique quadratic field extension C, the field of complex numbers, a
unique quaternion division algebra H, Hamilton’s quaternion and a unique octonion
division algebra O, the algebras of Cayley numbers. Hence there exist four division
Zn-graded alternative but not associative algebras over R, namely, taking K to be R
in 5.5, O1, O2, O3 and O4, the Cayley torus over R.

Moreover, if we assume that a homogeneous space is finite dimensional (and hence
all homogeneous spaces are finite dimensional), then any division Zn-graded alterna-
tive but not associative algebra over R is isomorphic to one of the four algebras above
or another O4, the Cayley torus over C, taking K to be C in 5.5. Indeed, we know
that finite dimensional field extension K of R is R or C. If K = R, then we get the
four algebras above. If K = C, then the only finite dimensional division algebra over
C is C. Hence we have A0 = K = C and only Case (IV) appears in 5.7.

We showed that any division Zn-graded associative algebra is isomorphic to Dϕ,q

which is a natural generalization of quantum tori (see [13]). Thus:
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Corollary 5.12. A division Zn-graded alternative algebra A over F is graded iso-
morphic to some Dϕ,q or to one of the four octonion rings O1, O2, O3 and O4 for
some toral grading.

If a division Zn-graded alternative algebra A = ⊕α∈Zn Aα over F is a torus over
F , then A0 = Z0 = K = F . So we have the following corollary which improves the
result in [4], namely, the classification of alternative tori over any field:

Corollary 5.13. Let A be an alternative torus over F . Then, A is graded isomorphic
to either a quantum torus or the Cayley torus for some toral grading. If ch. F = 2,
then the Cayley torus does not exist, and so A is isomorphic to a quantum torus.

Corollary 5.14. Let A be an alternative torus over F and Z the centre. Assume
that A 6= Z. Then A has degree 2 over Z iff ch. F 6= 2 and A is graded isomorphic to
either the quaternion torus or the Cayley torus for some toral grading.

Proof. It follows form 4.3 and 5.13. ¤

§6 Division (A2, Zn)-graded Lie algebras

Let F be a field of characteristic 0 in this section. Recall the definition of division
(A2, Zn)-graded Lie algebras (see Definition 2.5 and 2.7 in [13]): Let g be a finite
dimensional split simple Lie algebra over F of type A2, h a split Cartan subalgebra
of g, ∆ its root system, and G = (G,+, 0) an abelian group. A ∆-graded Lie algebra
L = ⊕µ∈∆∪{0} Lµ over F with grading subalgebra g = (g, h) is (A2, G)-graded if
L = ⊕g∈G Lg is a G-graded Lie algebra (assuming supp L generates G) such that
g ⊂ L0. Then L has the double grading, namely, L = ⊕µ∈∆∪{0} ⊕g∈G Lg

µ, where
Lg

µ = Lµ ∩ Lg. Let Z(L) be the centre of L and {hµ ∈ h | µ ∈ ∆} the set of coroots.
Then L is called a division (A2, G)-graded Lie algebra if, for any µ ∈ ∆ and any

0 6= x ∈ Lg
µ, there exists y ∈ L−g

−µ such that [x, y] ≡ hµ modulo Z(L).

Example 6.1. Let A be a unital alternative algebra over F . Let

psl3(A) :=
(
sl3(F ) ⊗F A

)
⊕ DA,A,

where DA,A is the span of all inner derivations, i.e., DA,A = span{Da,b | a, b ∈ A},
where Da,b = [La, Lb] + [Ra, Rb] + [La, Rb]. (La and Ra are the left and the right
multiplication on A by a.) Then it is well-known that DA,A is an ideal of the Lie
algebra of derivations of A. Define a product [ , ] on psl3(A) containing DA,A as the
Lie subalgebra by

[x ⊗ a, y ⊗ b] = [x, y] ⊗ ab + ba

2
+

(
xy + yx − 2

3
tr(xy)I

)
⊗ ab − ba

2
+

1

3
tr(xy)Da,b

and [Db,c, x ⊗ a] = x ⊗ Db,c(a) = −[x ⊗ a,Db,c]

for x, y ∈ sl3(F ) and a, b, c ∈ A, where tr is the trace of a matrix and I is the identity
3 × 3 matrix. Then psl3(A) becomes a Lie algebra (see [11]). Let h be the Cartan
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subalgebra of diagonal matrices in sl3(F ), εi : h −→ F the projection onto the (i, j)-
entry for i = 1, 2, 3, and ∆ := {εi− εj | i 6= j}, which is a root system of type A2. Let
L0 = (h ⊗F A) ⊕ DA,A and Lεi−εj = eij(F ) ⊗F A, where eij(F ) is the set of matrix
units with coefficients in F . Then psl3(A) = ⊕α∈∆∪{0} Lα is a centreless A2-graded
Lie algebra with grading subalgebra sl3(F ) = (sl3(F ), h) (see [5] or [4]). Note that
if A is associative, this Lie algebra is isomorphic to psl3(A) defined in [13]. Suppose
that A = ⊕g∈G Ag is G-graded, then psl3(A) = ⊕g∈G Lg , where

Lg = (h ⊗F Ag) ⊕
∑

g=h+k

DAh,Ak ⊕
( ⊕

εi−εj∈∆

(
eij(F ) ⊗F Ag

))
,

gives us an (A2, G)-graded Lie algebra. We call this G-grading of psll+1(P ) the
natural compatible G-grading obtained from the G-grading of A. Let {hij := eij(1) −
eji(1) | εi − εj ∈ ∆} be the set of coroots. Then one can easily check that

[eij(1) ⊗ a, eji(1) ⊗ b] = hij ⊗ 1 ⇐⇒ b = a−1.

Thus, if A is division graded, then psl3(A) is a division (A2, G)-graded Lie algebra.

The rest of arguments works similarly to the case psl3(A) for a unital associative
algebra A. So we will omit some definitions and simply state results without proofs
(see [13] for the detail).

Lemma 6.2. Let A be a unital alternative algebra. Suppose that the A2-graded Lie
algebra psl3(A) described above is a division (A2, G)-graded Lie algebra. Then A is
a division G-graded algebra, and the G-grading of psl3(A) is the natural compatible
G-grading obtained from the G-grading of A.

Proposition 6.3. A division (A2, G)-graded Lie algebra L is an (A2, G)-cover of
psl3(A) admitting the natural compatible G-grading obtained from the G-grading of a
division G-graded alterative algebra A.

Thus, combining our main result 5.12, we obtain:

Theorem 6.4. Any division (A2, Zn)-graded Lie algebra is an (A2, Zn)-cover of
psl3(Dϕ,q) for some Dϕ,q or psl3(Oi) for i = 1, 2, 3, 4. Conversely, any psl3(Dϕ,q)
or psl3(Oi) is a division (A2, Zn)-graded Lie algebra.
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