
Derivations and Invariant Forms

of Jordan and Alternative Tori

Dedicated to Holger Petersson

Erhard Neher1

Department of Mathematics and Statistics, University of Ottawa
Ottawa, Ontario K1N 6N5, Canada

neher@uottawa.ca

Yoji Yoshii2

Department of Mathematical and Statistical Sciences, University of Alberta

Edmonton, Alberta, T6G 2G1

yoshii@math.ualberta.ca

Abstract. Jordan and alternative tori are the coordinate algebras of extended
affine Lie algebras of type A1 and A2. In this paper we show that the derivation

algebra of a Jordan torus is a semidirect product of the ideal of inner derivations and

the subalgebra of central derivations. In the course of proving this result, we investi-
gate derivations of the more general class of division graded Jordan and alternative

algebras. We also describe invariant forms of these algebras.

Introduction

This paper provides a detailed description of the derivation algebra Der J
of a Jordan torus J . In particular, our main result 4.11 says that the derivation
algebra DerJ of a Jordan torus J is a semidirect product,

DerJ = IDerJ o CDer J, (1)

of the ideal IDer J of inner derivations and the subalgebra CDerJ of central
derivations of J .

Let us explain the concepts involved in the statement above. We consider
(linear) unital Jordan algebras J over a field F of characteristic 6= 2. All our
algebras are G-graded, i.e., J =

⊕
g∈G Jg , JgJg′ ⊂ Jg+g′ , where G is an

abelian group. We call J division graded if every 0 6= xg ∈ Jg is invertible. A
division-graded J is a Jordan G-torus if dimJg ≤ 1 for all g ∈ G, and is simply
called a Jordan torus if G = Zn. Examples of Jordan tori are the plus algebras
of quantum tori (see 4.2) which recently have gained a lot of interest. Jordan
tori have recently been classified in [31].
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Perhaps even more important than the decomposition (1) itself is in our
opinion the concept of central derivations. In general, for a nonassociative G-
graded algebra A =

⊕
g∈G Ag with centre Z a central derivation ∂Θ is associ-

ated to any group homomorphism Θ: G → (Z,+) by defining ∂Θ(ag) = Θ(g)ag

for ag ∈ Ag . We denote by CDer J the subalgebra of all central derivations.

We learned the concept of central derivations from the paper [24] by Os-
born and Passman where they have been introduced for twisted group algebras
and where (1) is proven for these algebras. That the derivation algebra is a
semidirect product of the ideal of inner derivations and a subalgebra had been
proven before in [4] for quantum tori and in [5] for Cayley tori, see 4.3. One of
the novelties of this paper is that we provide a conceptual description of this
subalgebra as the algebra of central derivations.

Although our main motivation are Jordan tori, in the body of the paper we
are considering more general algebras, namely Jordan or alternative division
graded algebras in §2 and the corresponding G-tori in §3. We do so since
the methods and results needed for the Jordan torus case easily generalize to
the more general settings, essentially without any extra cost, and since we
believe that the corresponding Lie algebras, studied in [32] and [29], are an
interesting class of algebras. Therefore, our paper also provides information
on DerT for any G-torus T , see for example 3.2 where a version of (1) is
proven for G-tori satisfying an additional condition. In §4 we then prove (1)
for all Jordan tori, by making use of their classification ([31]). As already
mentioned, (1) has been proven for associative tori in [4] and for nonassociative
alternative tori in [5]. Our paper provides a slightly more conceptual proof in
the latter case. It is included here since it can be done witout any extra
cost. Besides the decomposition (1) we also determine the precise structure of
CDer T and IDerT . For example, we show that if G is finitely generated and A
is division graded, then CDer A is a generalized Witt algebra 2.9, more precisely
a generalization of the recent generalization of Witt algebras by Doković and
Zhao [7].

Our interest in Jordan tori and their derivations comes from the theory of
extended affine Lie algebras: it is shown in [31] that the centreless cores of
extended affine Lie algebras of type A1 are precisely the Tits-Kantor-Koecher
algebras of Jordan tori. Moreover, it is proven in the recent preprint [2] by
Allison and Gao that special classes of Jordan tori enter in the description of
the centreless cores of extended affine Lie algebras of reduced non-simply-laced
types. In the spirit of the paper [4] by Berman, Gao and Krylyuk on extended
affine Lie algebras of type Al, l ≥ 3 (or [5] for type A2) the description (1)
is an essential ingredient in the classification of all tame extended affine Lie
algebras of type A1 and other types. Another ingredient in the construction of
extended affine Lie algebras of type A1 are invariant forms. It is well-known
that invariant forms are determined by invariant forms on the corresponding
coordinate algebras, see for example Koecher’s work [17] dealing with Tits-
Kantor-Koecher algebras or Benkart’s more recent paper [3] for root-graded
Lie algebras. We prove in 4.9 that for Jordan tori there exists, up to scalar
multiples, only one nondegenerate graded invariant form. The consequences of
our paper for extended affine Lie algebars will be elaborated in a sequel to this
paper.
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This paper generalizes results contained in the second author’s Ph.D. thesis
written at the University of Ottawa under the supervision of the first author.

1. Basic definitions and notations

In this section we will review some basic concepts. Unless specified other-
wise, we will consider nonassociative (= not necessarily associative) algebras
over some field F of arbitrary characteristic, denoted ch. F . Our primary inter-
est are unital alternative and Jordan algebras. Whenever we consider Jordan
algebras we will assume that ch. F 6= 2, unless explicitly stated otherwise.

1.1. Preliminaries. Let A be a nonassociative algebra with product writ-
ten as ab, a, b ∈ A. For a, b, c ∈ A we define the commutator as [a, b] = ab−ba =
(ada)(b) and the associator as (a, b, c) = (ab)c − a(bc). The span of all com-
mutators and associators will be denoted [A,A] respectively (A,A,A).

The centre Z = Z(A) of A is defined as Z(A) = {z ∈ A | [z,A] = 0 =
(z, A,A) = (A, z,A)}. If A is unital Z(A) is a unital associative commutative
subalgebra of A and A is canonically an algebra over Z. The interplay between
the F -algebra and Z-algebra structure will be an important feature of this
paper. We have Z(A) = {z ∈ A | [z, A] = 0 = (z,A,A)} if A is alternative
(but see 2.5) and Z(A) = {z ∈ A | (z, A,A) = 0} if A is Jordan.

An F -linear map d: A → A is called a derivation of A if d(xy) = d(x)y +
xd(y) for all x, y ∈ A. With the usual commutator the set of all derivations
of A is a Lie algebra denoted DerF A, or DerA if F is clear form the context.
Any d ∈ DerF A leaves the centre Z = Z(A) invariant and hence d |Z ∈ DerF Z
for d ∈ DerF A. Moreover, we note that zd is a derivation for any z ∈ Z and
d ∈ DerF A.

The definition of a derivation of course makes sense if A is an algebra over a
unital commutative associative ring, for example a unital F -algebra considered
as algebra over its centre Z. The Lie algebra of Z-linear derivations will be
denoted DerZ A. Note that for d ∈ DerF A, we have d ∈ DerZ A ⇐⇒ d |Z = 0.
It is then easily seen that DerZ A is an ideal of DerF A.

1.2. Central closure. Let A be a unital algebra such that its centre Z =
Z(A) does not contain any zero divisors of A, i.e., the Z-module A is torsion-
free. An example of such an algebra is a division G-graded algebra where G
is an ordered abelian group (2.3.(d)). Let Z be the field of fractions of the
integral domain Z. The central closure of A is defined as A = Z ⊗Z A which
we consider as an algebra over Z. We note the following facts [33]:

(i) x 7→ 1 ⊗ x is an embedding of A into A.
(ii) A is central over Z, i.e., the centre of A is Z.
(iii) A is prime (resp a domain) ⇐⇒ A is prime (resp a domain).

Let
DerZ A := Z ⊗Z DerZ A,

which we consider as a Lie algebra over Z. There is a canonical map

DerZ A → DerZ A : u⊗ d 7→ lu ⊗ d (1)
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where lu⊗d acts on Z⊗A via (lu⊗d)(v⊗a) = uv⊗d(a). Using the fact that any
element in DerZ A has the form 1

z ⊗d for some 0 6= z ∈ Z and d ∈ DerZ A, it is

easily seen that this map is injective. Similarly, DerZ A embeds into DerZ A.
After an identification we therefore have

DerZ A < DerZ A < DerZ A, (2)

where < indicates a subalgebra. Also, we note:

If A is a finitely generated algebra over Z then DerZ A = DerZ A. (3)

Indeed, let {ai | 1 ≤ i ≤ n} be a generating set of the Z-algebra A. For d ∈
DerZ A we have d(1⊗ ai) = (1/zi)⊗ bi for some 0 6= zi ∈ Z and bi ∈ A. Thus,
putting z =

∏
i zi, we obtain zd(1⊗ ai) ∈ 1⊗A. Since zd is Z-linear it follows

that zd(1 ⊗ A) ⊂ 1 ⊗ A, so zd|1⊗A =: d0 ∈ DerZ A and d = 1
z d0 ∈ DerZ A,

proving (3).

For an associative algebra A we denote by A+ the Jordan algebra defined
on A with U -operator Uxy = xyx. The bilinear product of A+ is given by
a.b = 1

2 (ab + ba) where on the right side we have the associative product of A.
Any subalgebra of A+ is then also a Jordan algebra, in particular this is so for
H(A, ∗) := {a ∈ A | a∗ = a} where ∗ is an involution of A.

1.3. Lemma. Let A be an associative algebra with involution ∗. We ab-
breviate J = H(A, ∗) and consider J as a Jordan algebra. We assume that

(i) A is a torsion-free Z(A)-module, and
(ii) Z(J) = Z(A) ∩ J.

We let A respectively J be the central closures of A and J.
Then ∗ extends uniquely to an involution ∗ of A such that H(A, ∗) ∼= J

over the field of fractions L of Z(J) and L = H(A, ∗) ∩ K for K the field of
fractions of Z(A).

Proof. The involution ∗ on A is given by (1
z ⊗a)∗ = 1

z∗ ⊗a∗ for 0 6= z ∈ Z(A)
and a ∈ A. Since Z(J) ⊂ Z(A) we have a well-defined L-linear map

ϕ: J = L ⊗Z(J) J −→ A = K ⊗Z(A) A : 1
z ⊗Z(J) x 7−→ 1

z ⊗Z(A) x .

By construction, its image is contained in H(A, ∗). We claim that in fact
ϕ(J) = H(A, ∗). Indeed, let 1

z ⊗Z(A) a ∈ H(A, ∗), with 0 6= z ∈ Z(A) and
a ∈ A. Then z∗a = za∗ holds in A, hence za∗ ∈ H(A, ∗) = J . Since also
z∗z ∈ Z(A) ∩ J = Z(J) it now follows that 1

z ⊗Z(A) a = z
z∗z ⊗Z(A) a∗ =

1
z∗z ⊗Z(A) za∗ ∈ ϕ(J). ¤

1.4. Inner derivations. For an associative algebra A and any x ∈ A, the
map ad x : A → A : y 7→ [x, y] is a so-called inner derivation. More generally,
for an alternative algebra A over a field F with ch. F 6= 2, the inner derivations
are sums of the derivations ∆a,b = R[a,b] − L[a,b] − 3[La, Rb], where L and R
denote the left respectively right multiplication in A. For a Jordan algebra J ,
the inner derivations are sums of the derivations ∆a,b = [La, Lb], a, b ∈ J (see
e.g. [14, page 35 and page 300]).
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For the classes of algebras considered above, the set of all inner derivations
will be denoted by IDer A. It is easily seen that IDerA is an ideal of the Lie
algebra DerF A, and any inner derivation is Z-linear for Z = Z(A):

IDerA / DerZ A. (1)

Moreover, for any z ∈ Z(A) we have z∆a,b = ∆za,b = ∆a,zb from which it
easily follows that

Z ⊗Z IDerA = IDerA (2)

where we used the identification 1.2.2.

Example. When A is an associative algebra, any derivation of A is clearly
a derivation of the Jordan algebra A+. The inner derivations of A+ are also
inner derivations of A since

[Lu, Lv] = 4 ad[u, v], (3)

whence over a base field containing 1
2 ,

DerA ⊂ DerA+ and [A,A]/(Z(A) ∩ [A,A]) ∼= IDerA+ ⊂ IDerA (4)

(see 2.10.2 and 3.5 for equality).

1.5. Graded algebras. Let G be an abelian group, written additively
and assume that A is G-graded, i.e., A = ⊕g∈G Ag and AgAh ⊂ Ag+h for all
g, h ∈ G. In this paper we will only consider algebras graded by an abelian
group, although some results hold for non-abelian groups. For a ∈ A, written
in the form a =

∑
g∈G ag with ag ∈ Ag , the ag will be referred to as the

homogeneous components and any a ∈
⋃

g∈G Ag will be called homogenous.
The support of A is suppA := {g ∈ G | Ag 6= (0)}. A subspace B of A is
graded if B = ⊕g∈G(B ∩ Ag) in which case we put Bg = B ∩ Ag. Examples of
graded subspaces are [A,A], (A,A,A) and Z(A). The subgroup of G generated
by suppZ, Z = Z(A), is called the central grading group. If H is this group
the Z-algebra A is G/H-graded: A = ⊕g∈G/HAg for Ag = ⊕g∈gAg.

1.6. Derivations of graded algebras. Let A = ⊕g∈G Ag be a G-graded
algebra. For g ∈ G define

(DerF A)g = {d ∈ DerF A | d(Ah) ⊂ Ag+h for all h ∈ G}, and

grDerF A =
⊕

g∈G

(DerF A)g.

It is easily seen that grDerF A is a subalgebra of DerF A,

grDerF A < DerF A (1)

called the subalgebra of graded derivations. It is well-known that

grDerF A = DerF A if A is a finitely generated F -algebra (2)
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(see for example [11, Prop. 1] where this is proven for Lie algebras). For Z the
centre of A we put

grDerZ A =
⊕

g∈G

(DerZ A)g where (DerZ A)g = (DerF A)g ∩ DerZ A.

It is easy to prove that

grDerF A ∩ DerZ A = grDerZ A. (3)

Let H be a subgroup of G (later this will be the grading group of Z) and
put G = G/H. We then have a G-grading of A (see 1.5) and analogously a
G-grading of grDerF A:

grDerF A =
⊕

g∈G

(grDerF A)g where

(grDerF A)g =
⊕

g′∈g

(grDerF A)g′

= {d ∈ grDerF A | d(Aa) ⊂ Ag+a for all a ∈ G}.
We will put

(grDerF A)H := (grDerF A)0 =
⊕

h∈H

(DerF A)h.

Concerning inner derivations of G-graded alternative or Jordan algebras A we
have

IDerA =
⊕

g∈G

(IDerA)g (4)

where (IDerA)g = (DerA)g ∩ IDerA. In particular, by 1.4.1,

IDerA ⊂ grDerZ A . (5)

1.7. Example of a leftsymmetric algebra. The algebra and its graded
subalgebra, introduced in this subsection, will be used in 1.8 to define special
types of derivations.

Let G be an abelian group and let Z =
⊕

g∈G Zg be a commutative associa-
tive G-graded algebra (later this will be the centre of a nonassociative algebra).
We denote by HomZ(G, Z) the F -vector space of abelian group homomorphisms
from G into the additive group (Z,+). Of course, HomZ(G,Z) also carries a
Z-module structure which however will not be important in the following. We
define an F -algebra on HomZ(G, Z) by assigning to Θ,Φ ∈ HomZ(G, Z) the
product Θ ∗ Φ, given by

(Θ ∗ Φ)(g) =
∑

h∈G Θ(h)Φ(g)h (1)

Note that this is well-defined since Φ(g)h 6= 0 for finitely many h ∈ G only. A
straightforward calculation shows that the associator with respect to ∗ satisfies

(Θ,Φ, Ψ)(g) = −
∑

h∈G Θ(h)Φ(h)Ψ(g)h . (2)

Therefore (HomZ(G, Z), ∗) is a leftsymmetric algebra, i.e., (Θ,Φ,Ψ ) = (Φ, Θ,Ψ )
holds for all Θ, Φ,Ψ ∈ HomZ(G, Z). Leftsymmetric algebras, rather their op-
posite algebras have recently been studied in [10] and [9] where the reader can
also find references to previous investigations. In particular, these two papers
consider examples of rightsymmetric algebras closely related to the example
above.
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It is well-known and easily checked that for any leftsymmetric algebra the
commutator defines a Lie algebra. It will follow from the results in 1.8, 1.9 and
2.9 that the Lie algebra (HomZ(G,Z), [., .]) can be considered a generalization
of the Witt algebra.

We denote by HomZ(G, Z)fin the Z-submodule of all Θ for which Θ(G) is
contained in the sum of finitely many Zg’s and by HomZ(G, Zg) the F -subspace
of those Θ ∈ HomZ(G, Z) with Θ(G) ⊂ Zg , g ∈ G. It is easily seen that

HomZ(G, Z)fin =
⊕

g∈G HomZ(G, Zg) (for all G) (3)

= HomZ(G, Z) if G is finitely generated. (4)

We have HomZ(G, Zg1
) ∗ HomZ(G,Zg1

) ⊂ HomZ(G, Zg1+g2
), since

Θ ∗ Φ = Θ(g2)Φ for Θ ∈ HomZ(G, Z), Φ ∈ HomZ(G, Zg2
). (5)

Hence HomZ(G, Z)fin is a subalgebra of (HomZ(G, Z), ∗) which is G-graded by
(3). We note

Hom(G, Z) ∗ Hom(G, Z0) = 0. (6)

1.8. Central derivations. Let A be a G-graded unital algebra over F
with centre Z =

⊕
h∈H Zh and central grading group H. For the sake of

uniqueness

we assume in this subsection that suppA spans G as abelian group. (1)

In order to apply the results of 1.7 we will also consider Z as a G-graded
algebra. Any Θ ∈ HomZ(G, Z) gives rise to an F -linear derivation ∂Θ of A,
defined on Ag by

∂Θ(ag) = Θ(g)ag (ag ∈ Ag) (2)

and called a central derivation (see [24, 2] where this concept has been intro-
duced for the case of twisted group algebras). We denote by CDerF A the space
of central derivations. The formula

[∂Θ, ∂Φ] = ∂Θ∗Φ−Φ∗Θ (3)

shows that CDerF A is a subalgebra of the Lie algebra DerF A and that

∂: HomZ(G, Z) → CDerF A (4)

is an epimorphism of Lie algebras. It maps the subalgebra HomZ(G,Z)fin of
(HomZ(G, Z), [., .]) onto the graded subalgebra

(CDerF A)fin := ∂(HomZ(G, Z)fin) =
⊕

h∈H(CDerF A)h

of grDerF A, where

∂(HomZ(G, Zh)) =: (CDerF A)h ⊂ (DerF A)h .

The derivations in
D := {∂Θ | Θ ∈ HomZ(G, Z0)} (5)

will be called degree derivations. By 1.7.6, D is always abelian.
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1.9. Generalized Witt algebras. Central derivations are related to a
generalization of the Witt algebra. This Lie algebra can naturally be defined
in the following setting:

(i) K is an associative commutative unital ring, H is an abelian group,
(ii) Z =

⊕
h∈H Zh is an associative commutative H-graded algebra over

K (later this will be a twisted group ring Kt[H] of H over K , or even
the group algebra K [H]),

(iii) D is a K-module, and
(iv) p: D × H → K : (d, h) 7→ d(h) is a pairing which is K-linear in the

first variable and additive in the second.

We define
W := W (Z,D, p) := Z ⊗K D =

⊕
h∈H Zh ⊗K D

and use the abbreviation zhd = zh ⊗K d for zh ∈ Zh, d ∈ D. There exists
a unique K-algebra product ∗ on W such that (zhd1) ∗ (zid2) = zhd1(i)zid2

for homogenous zh, zi ∈ Z, h, i ∈ H and d1, d2 ∈ D. It is easily seen that
(W, ∗) is a leftsymmetric algebra, hence W together with the commutator is a
Lie algebra which we call the generalized Witt algebra associated to (Z,D, p).
Thus, the Lie algebra product of W is given by

[zhd1, zid2] = zhzi (d1(i)d2 − d2(h)d1) . (1)

For the special case of the group algebra Z = K[H], this Lie algebra has been
introduced in [7] where the reader can also find some background informa-
tion and examples, justifying the terminology. Another special case has been
considered in [26] and [28].

In the setting above, the left and right kernel of p are

DH := {d ∈ D : d(H) = 0} (left kernel),

HD := {h ∈ H : p(D,h) = 0} (right kernel).

Example. In the setting of 1.8 we let K = Z0, H the central grading group
of Z = Z(A), D = HomZ(G, Z0) and

p: HomZ(G, Z0) ×H → Z0 : (ϕ, h) 7→ ϕ(h) (2)

the canonical pairing. In this case DH = {ϕ ∈ HomZ(G, Z0) | ϕ(H) = 0} which
is in general non-zero, e.g. for quantum tori. It follows from 1.7.5 that

µ: W (Z, HomZ(G, Z0), p) −→ HomZ(G,Z)fin: zh ⊗ ϕ 7→ zhϕ (3)

is a homomorphism of leftsymmetric algebras, hence also for the associated
Lie algebras. Note that we now have constructed the following Lie algebra
homomorphisms

W (Z,HomZ(G, Z0), p)
µ−→ HomZ(G,Z)fin

∂−→ (CDerF A)fin . (4)

We will show in 2.9 that for so-called division graded algebras both maps µ
and ∂ are isomorphisms.
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1.10. Lemma. Let W = W (Z, D, p) be a generalized Witt algebra as in
1.9 above.

(a) Any K-submodule D′ of D gives rise to a subalgebra Z ⊗K D′ of W .
Moreover,

Y := Z ⊗K DH (1)

is an abelian ideal of W . If D = D′ ⊕ DH is a direct sum of K-modules, e.g.
if K is a field, the generalized Witt algebra W is a semidirect product,

W = X n Y for X := Z ⊗K D′ (2)

of an abelian ideal Y and a subalgebra X which is again a generalized Witt
algebra, namely X = W (Z, D′, p′), where p′ = p|D′ ×H has zero left kernel.

(b) If K is a field of characteristic 6= 2 and p 6= 0 then W is perfect.

Proof. (a) is easy. For (b) we observe [z0d, zhd] = z0zhd(h)d ∈ Kzhd for
h ∈ H and any d ∈ D. Hence Zd ⊂ [W,W ] for any d /∈ DH . But for d ∈ DH

and any d1 ∈ D we have [zhd1, zid] = zhzid1(i)d. Since p 6= 0, there exist d1

and i ∈ H such that d1(i) 6= 0 and so zkd ∈ [W,W ] for any k ∈ H.

Remark. For the special case that K is a field of characteristic 0 and Z is
the group algebra of H, the structure of W is determined in [16]. In particular,
a more precise version of (2) is shown there: W is a semidirect product of the
abelian ideal Y and a simple subalgebra X which is again a generalized Witt
algebra. We will prove an analogue in our setting in 4.12.

1.11. Example: H(A, ∗) for ∗ of second kind. Let A = ⊕g∈G Ag be a
unital associative G-graded algebra over a field E of ch. E 6= 2 and suppose ∗
is a graded involution of A, i.e., A∗

g = Ag for all g ∈ G, which is of second kind
in the sense that E.1 = (E.1)∗ 6⊂ H(A, ∗). For simpler notation let us put

H := H(A, ∗) and S := S(A, ∗) = {a ∈ A | a∗ = −a}.

We identify E = E.1. With F = E∩H we have that E/F is a Galois extension
of degree 2, so E = F [s] for some s = −s∗ ∈ E. Then

A = H ⊕ sH where sH = S (1)

as G-graded spaces. It follows that the supports of the associative algebra A
and the Jordan algebras A+ and H all coincide:

suppA = suppA+ = supp H . (2)

Since [a, b]∗ = −[a∗, b∗] and the Lie product [ ·, · ] is E-linear, (1) implies

[A,A] = [H,H] ⊕ [H, S] with [A,A] ∩ S = [H,H] = [S, S] (3)

and [A,A] ∩H = [H,S] = s[H,H]. We have the general formula

A 3 [x, [y, z]] = 4(y, x, z) ∈ A+ (4)
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where the left and right side are calculated in A and A+ respectively. Hence
the centres of the Jordan algebras A+ and H are given by

Z(A+) = {z ∈ A | [A, [A, z]] = 0} and

Z(H) = {z ∈ H | [H, [H, z]] = 0} = Z(A+) ∩ H (5)

where the second equality in (5) follows from E-linearity of [ ·, · ].

Let us now consider derivations. The involution ∗ induces a Lie algebra
automorphism DerE A+ → DerE A+ : d 7→ d∗ of order 2, where d∗ is defined
by d∗(a) = d(a∗)∗. Hence, with obvious notation,

DerE A+ = H(DerE A+, ∗)⊕ S(DerE A+, ∗)

Any d ∈ H(DerE A+, ∗) leaves H invariant, hence we have a well-defined map

Ψ : H(DerE A+, ∗) −→ DerF H : d 7→ d|H .

In fact, Ψ is an isomorphism. Injectivity of Ψ follows from (1), and for surjec-
tivity one notes that any d ∈ DerF H extends to a d̃ ∈ DerE A+ with d̃∗ = d̃
by defining d̃(h + sh′) = d(h) + sd(h′) for h, h′ ∈ H. In the following we will
identify DerF H = H(DerE A+, ∗) via Ψ . We then have

DerE A+ = DerF H ⊕ s DerF H (6)

where s DerF H = S(DerE A+, ∗). By construction, Ψ preserves the homoge-
neous spaces, hence (DerF H)g is the fixed point space of the automorphism ∗,
and because of (6) we then have

dimE(DerE A+)g = dimF (DerF H)g (7)

for all g ∈ G. For inner derivations 1.4.3 implies

IDerA+ = ad[A,A] = ad[H,H] ⊕ ad[H,S] = ad[H,H] ⊕ s ad[H, H ]

where the second equality follows from (3) and (ad a)∗ = ad(−a∗). Hence again
by 1.4.3

IDerH = ad[H,H] = IDerA+ ∩DerF H (8)

so that (7) also holds for inner derivations. For a central derivation ∂Θ of
A+ we have (∂Θ)∗ = ∂Θ∗ for Θ∗(g) = (Θ(g))∗. The map Θ 7→ Θ∗ leaves
HomZ(G, Z(A+)) invariant. By (5), any Θ with Θ∗ = Θ maps G into Z(H) and
hence HomZ(G,Z(A+)) = HomZ(G, Z(H))⊕ s HomZ(G, Z(H)) which implies

CDerE A+ = CDerF H ⊕ s CDerF H . (9)

Therefore CDerF H = CDerE A+∩DerF H and (7) also holds for central deriva-
tions.
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1.12. Graded invariant forms. A graded invariant form on G-graded F -
algebra A = ⊕g∈G Ag is a symmetric bilinear form (.|.): A ×A → F satisfying

(i) (Ag |Ah) = 0 for g + h 6= 0, and
(ii) (ab|c) = (a|bc) for all a, b, c ∈ A.

The F -vector space of all graded invariant forms on A will be denoted GIF(A).
It is described in the following Lemma 1.13 whose proof will be left to the
reader.

We will say that a graded invariant form (.|.) is nondegenerate if its radical
rad(.|.) = {a ∈ A | (a|A) = 0} vanishes. Clearly rad(.|.) is a graded ideal.
Hence, if A is graded-simple, i.e., A does not have non-zero graded ideals, then
any non-zero graded invariant form is nondegenerate.

1.13. Lemma (graded invariant forms). Let A be a G-graded algebra
over a field F , put GIF(A) = A0/([A,A]0 + (A,A,A)0) and denote by π the
map A → GIF(A) : a =

∑
g∈G ag 7→ a0 where a0 is the image of a0 ∈ A0

under the canonical projection of A0 onto GIF(A). Then every linear form
f ∈ GIF(A)∗ = HomF (GIF(A), F ) gives rise to a graded invariant form (.|.)f

defined by (a|b)f = f(π(ab)). The map

GIF(A)∗ → GIF(A) : f 7→ (.|.)f (1)

is F -linear, and is an isomorphism if A is unital. In particular,

[A,A]0 = 0 = (A,A,A)0 and A unital =⇒ GIF(A) ∼= A∗
0 . (2)

1.14. Skew derivations. Let again A be a G-graded F -algebra and let
(.|.) be a graded invariant form. A derivation D is called a skew derivation if
(d(a)|b) + (a|d(b)) = 0 for all a, b ∈ A. The set of all skew derivations is a
subalgebra of DerF A, denoted SDerF A. It is straigthforward to check that

IDerF A ⊂ SDerF A for A alternative or Jordan, ch. F 6= 2. (1)

It is also easily seen that a graded derivation is skew if and only if every
homogenous component is skew. Thus we have

grSDerF A := grDerF A ∩ SDerF A =
⊕

g∈G

(SDerF A)g (2)

where (SDerF A)g := SDerF A ∩ (DerF A)g. Assume A is unital and let Z =⊕
h∈H Zh be the centre of A. Then for any h ∈ H

CDerF A ∩ (SDerF A)h = {∂Θ | Θ ∈ HomZ(G, Zh), Θ(h) = 0}
if (.|.) is nondegenerate and A is unital. (3)

Indeed, if Θ ∈ HomZ(G, Zh) then ∂Θ ∈ SDerF A if and only if for all g ∈ G and
ag ∈ Ag , b−g−h ∈ A−g−h we have 0 = (Θ(g)ag |b−g−h)+(ag|Θ(−g−h)b−g−h) =
−(agb−g−h|Θ(h)). Since A is unital and (.|.) is nondegenerate this is equivalent
to Θ(h) = 0.
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2. Division graded algebras

We specialize the set-up of the previous section 1 and consider a class of
unital G-graded algebras which we assume to be alternative or Jordan. In the
latter case we will suppose that ch. F 6= 2, unless explicitly stated otherwise.
We begin with a result on reflection spaces which naturally arise as the support
of division graded algebras.

2.1. Reflection spaces. A set M together with an operation M × M →
M : (m, n) 7→ m ·n is a reflection space in the sense of Loos ([19]) if it satisfies
the three axioms m·m = m, m ·(m·n) = n and m·(n ·p) = (m·n) ·(m·p) for all
m, n, p ∈ M . A homomorphism between reflection spaces is a map preserving
the products.

Now let G be an abelian group. With respect to the operation g ·h = 2g−h,
the set G becomes a reflection space. It has a distinguished base point, the
zero element 0 of G. The following formulas hold in G:

0 · g = −g and (1)

g1 · (g2 · (· · · (gm−1 · gm) · · ·)
= 2(g1 − g2 + g3 − · · · + (−1)mgm−1) + (−1)m+1gm (2)

For a subset S of G we denote by 〈S〉 the subgroup spanned by S. The
following conditions are equivalent for S ⊂ G:

(i) 0 ∈ S and S · S ⊂ S;
(ii) 2〈S〉 ⊂ S and 2〈S〉+ S ⊂ S;
(iii) S is a union of cosets modulo 2〈S〉 including the trivial coset 2〈S〉.

Indeed, if (i) holds we have −S = S by (1) and hence every g ∈ 〈S〉 can be
written in the form g = s1 − s2 + s3 − · · · + (−1)n+1sn for suitable si ∈ S
and n ≥ 1. For arbitrary s ∈ S we then obtain 2g + s ∈ S from (2), thus
2〈S〉 + S ⊂ S and in particular 2〈S〉 ⊂ S since 0 ∈ S. The implications (ii) ⇒
(iii) and (iii) ⇒ (i) are immediate.

A subset S satisfying the equivalent conditions (i) – (iii) above will be called
a reflection subspace of G. The special case of S ⊂ G = (Zn,+) and 〈S〉 = Zn

has been treated in [1, Ch.II §1] where S was called a semilattice. The descrip-
tion of reflection subspaces above is in fact a straightforward generalization of
[1, Ch.II Prop. 1.4 and Remark 1.6].

2.2. Proposition. Let S ⊂ G be a reflection subspace.
(a) If G is finitely generated as abelian group, S is finitely generated as

reflection space.
(b) Let H be an abelian group without 2-torsion. Then any homomorphism

ϕ: S → H of reflection spaces preserving the base points uniquely extends to a
group homomorphism Φ: 〈S〉 → H.

Proof. (a) Since a subgroup of a finitely generated group is again finitely
generated we may assume 〈S〉 = G. The quotient G/2G is a finitely spanned
Z/2Z-vector space, hence finite. It therefore follows from 2.1 that S is the
union of a finite number of cosets modulo 2G, say τi + 2G, 0 ≤ i ≤ n, where
we can assume τ0 = 0.
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We next note that S contains a finite generating set of the abelian group G.
Indeed, by assumption, there exist finitely many elements x1, x2, . . . , xm ∈ G
spanning G. But since G = 〈S〉 and S = −S, any xi is a finite sum of elements
of S, say xi =

∑
j σij with σij ∈ S. Hence the collection of all {σij} is a finite

generating set of G contained in S.

Let X = {σij}∪{τ0, . . . τn} and denote by S′ the reflection space generated
by X . By 2.1(ii) applied to S′, we have Zy ⊂ S′ for any y ∈ S ′. Hence, by
choosing appropriate gi in

⋃
i Zσij ∪ {±τi} ⊂ S′, 2.1.2 shows 2g + τi ∈ S′ for

every g ∈ G and τi, 0 ≤ i ≤ n, proving S′ = S.

(b) We may again assume that 〈S〉 = G. Since ϕ(0) = 0 by assumption we
have ϕ(−s) = ϕ(0 · s) = 0 · ϕ(s) = −ϕ(s) for every s ∈ S and also ϕ(2s) =
ϕ(s · 0) = 2ϕ(s). Now for any g ∈ G, s ∈ S we obtain ϕ(2s− 2g) = ϕ(s · 2g) =
ϕ(s) · ϕ(2g) = 2ϕ(s) − ϕ(2g). Hence, if ϕ(2g) ∈ 2H, so is ϕ(2(s − g)). Since
any g ∈ G can be written in the form g = s1 − s2 + s3 − · · · + (−1)n+1sn

it follows by induction on n that ϕ(2g) ∈ 2H. We define Φ: G → H by
Φ(g) = 1

2ϕ(2g). Then Φ extends ϕ, and for s ∈ S and g ∈ G we have 2Φ(s+g) =
ϕ(2s + 2g) = ϕ(s · (−2g)) = ϕ(s) · ϕ(−2g) = 2ϕ(s) + ϕ(2g) = 2(Φ(s) + Φ(g)),
whence Φ(s + g) = Φ(s) + Φ(g). Since any g ∈ G is a finite sum of elements in
S, this implies, by induction, that Φ is a group homomorphism. ¤

2.3. Strongly graded and division graded algebras. From now on we
will assume that A is a unital alternative or a unital Jordan algebra over F .
Unless specified otherwise we will assume that ch. F 6= 2 if A is Jordan.

We will say that a G-graded algebra A is strongly graded or that A has a
G-grading of strong type if AgAh = Agh for all g, h ∈ G. The algebra A is called
a division G-graded algebra if all nonzero homogeneous elements are invertible.
We list some known properties of division graded algebras.

(a) In any alternative algebra an element a is invertible if and only if the left
multiplication La is invertible, and in this case (La)−1 = La−1 . Moreover, if
a, b are invertible then so is their product ab, and then (ab)−1 = b−1a−1. This
easily implies that a division G-graded alternative algebra is strongly graded
and that its support is a subgroup of G ([29] or [23, I.4.5] for the case of
associative algebras).

A division G-graded associative algebra, sometimes also called a graded
division ring [23], is a crossed product algebra D ∗ G of G over an associative
division algebra D, and conversely [25, 2]. The classification of division Zn-
graded alternative algebras is given in [29].

(b) For a Jordan algebra A we denote by Ua the U -operator of a Jordan
algebra, i.e., Uab = 2a(ab)−a2b. Since A is supposed to have a unit element 1,
one can recover the bilinear product from the U-operator in view of the formula
2ab = (Ua+b − Ua − Ub)1. An element a ∈ A is invertible if and only if Ua is
invertible.

Let A be a division graded Jordan algebra and denote by S = suppA its
support. Then UAg

Ah = A2g+h for all g, h ∈ S. Hence S is a reflection subspace
of G. We note that in general S is not a subgroup of G (see for example 4.4).

(c) ([29] or [23, I.4.2] for associative algebras) For a totally ordered abelian
group G, e.g. G = Zn, any division G-graded algebra A is a domain in the
sense that xy = 0 ⇒ x = 0 or y = 0 if A is alternative, and Uxy = 0 ⇒ x = 0
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or y = 0 if A is Jordan. We recall that any domain is strongly prime, meaning
nondegenerate and prime.

(d) The centre Z of a division G-graded algebra A is again division graded.
In particular, Z0 is a field and Z = Zt

0[H] is a twisted group algebra where H
is the central grading group. Moreover, A is a division G-graded algebra over
Z0. If G is totally ordered, Z is an integral domain.

(e) Since A is graded-simple, any non-zero graded invariant form on A is
nondegenerate. For the existence of such forms see 1.13, 3.3 and 4.9.

We next present some preliminary results on division graded algebras.

2.4. Lemma. Let A be a division G-graded algebra such that

(i) G is finitely generated and
(ii) dimF Ag < ∞ for all g ∈ G.

Then A is finitely generated as an algebra.

Proof. Let X ⊂ S = suppA be a finite generating set of the reflection space
S and let Y be the union of vector space bases of all Ag , g ∈ X . The subalgebra
A′ generated by Y is graded and has support S, in view of 2.1 and (a), (b) of
2.3. By induction on the number of generators needed to express s ∈ S as a
product of factors from X one shows A′

s = As for all s ∈ S, hence A′ = A. ¤

2.5. Lemma. If A is an alternative division graded algebra, then

Z(A) = {a ∈ A | [a, A] = 0}. (1)

Proof. It suffices to show that any homogeneous a ∈ A satisfying [a,A] = 0
lies in the centre of A. It is proven in McCrimmon’s unpublished book [20, III
Lemma 4.1] that (a,A,A)2 = 0 for all a ∈ A with [a,A] = 0. In particular, for
homogeneous b, c ∈ A the equation (a, b, c)2 = 0 forces (a, b, c) = 0. Since [20]
is not published, we mention that for the special case of a prime alternative
algebra over a field of characteristic 6= 3, the lemma follows from results in
[33]. Indeed, for the proof of (1) we may assume that A is not associative.
Then A is nondegenerate ([33, 9 Thm. 5’]), hence its central closure A is a
simple alternative algebra (proof of [33, 9 Thm.9]) and (1) holds for A by [33,
7 Cor. of Lemma 7 and 7, Cor. 1 of Lemma 1]. In particular, any a ∈ A
which commutes with A and hence with A associates with everything of A ⊂ A
proving (1). ¤

2.6. Lemma. Let A be a division G-graded algebra whose central closure
A exists (for example this holds by 2.3(c) if G is ordered) and has only inner
derivations. Then IDerA = grDerZ A.

Proof. By 1.6.5 we only need to prove grDerZ A ⊂ IDerA. So let 0 6=
d ∈ grDerZ A. We may assume that d is homogeneous. By 1.2.2, we have
the derivation d̃ = Id ⊗ d of A which, by assumption and 1.4.2, has the form
d̃ = 1

z ∆ for some 0 6= z ∈ Z and some ∆ ∈ IDerA. Hence zd̃ = ∆ on A and
so, by restriction, zd = ∆ on A. Considering the homogeneous components of
this equation we obtain a non-zero homogeneous z′ ∈ Z and a homogeneous
∆′ ∈ IDerA such that z′d = ∆′. Since z′ is invertible it follows that d = 1

z′ ∆
′ ∈

IDerA. ¤
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2.7. Graded modules. Let A = ⊕g∈G A be an associative division G-
graded algebra over F . Suppose that the group G acts on a set S. A left
A-module M is called a graded A-module of type S if M = ⊕s∈S Ms, and
AgMs ⊂ Mg.s for each g ∈ G and s ∈ S. In this case, we let s̄ := G.s ∈ S/G
be the G-orbit of s and put Ms̄ := ⊕g∈G Mg.s. Obviously, M =

⊕
s̄∈S/G Ms̄.

The following lemma is easy to prove. For related results see for example
[6, Thm. 3], [23, I.3.4] and [31, Lemma 3.6].

2.8. Lemma. Let A = ⊕g∈G Ag be an associative division G-graded alge-
bra and M = ⊕s∈S Ms a graded A-module of type S. Then:

(a) Mg.s = agMs = AgMs for all g ∈ G, s ∈ S and any 0 6= ag ∈ Ag.
Hence AMs = Ms.

(b) Suppose that G acts freely on S, i.e., g.s = s for some g ∈ G and s ∈ S
implies g = 0. Then Ms̄ is a free A-module, namely any A0-basis of the A0-
vector space Ms is also an A-basis of Ms̄. Hence rankA Ms̄ = dimA0

Ms′ for all
s′ ∈ s̄. Moreover, M is a free A-module, there exists an A-basis of M consisting
of homogeneous elements and M ∼= A ⊗A0

N for a suitable A0-module N .

(c) Suppose that G and S are totally ordered and that the action preserves
the order, i.e., g < g′ and s < s′ implies g.s < g′.s′. Then any graded
submodule N of M is saturated in the sense that N = {m ∈ M | am ∈
N for some 0 6= a ∈ A}. Hence, for any multiplicatively closed subset B of
A we have B−1M = B−1N ⇐⇒ M = N.

2.9. Proposition. Let A be a division graded algebra with G = 〈suppA〉,
and Z =

⊕
h∈H Zh the centre of A with central grading group H. We choose

0 6= zh ∈ Zh for all h ∈ H. Recall that D denotes the degree derivations as
defined in 1.8.5. Then the maps µ and ∂ of 1.9.4

W (Z, HomZ(G, Z0), p)
µ−→ HomZ(G, Z)fin

∂−→ (CDerF A)fin

are isomorphisms of Lie algebras. Moreover,

HomZ(G, Z)fin =
⊕

h∈H

zh HomZ(G, Z0) ∼= Z ⊗Z0
HomZ(G,Z0), (1)

(CDerF A)fin =
⊕

h∈H

zhD = Z ⊗Z0
D and (2)

SDerF A ∩ (CDerF A)fin =
⊕

h∈H

zh{∂Θ ∈ D : Θ(h) = 0} (3)

with respect to any nondegenerate graded invariant form on A.

Proof. (1) and (2) are immediate from 2.8, while (3) follows from 1.14.3.
In particular, (1) implies that µ is an isomorphism. To show that ∂ is an
isomorphism it suffices in view of 1.8.3 to prove injectivity. Assume therefore
that zh∂ϕ = 0 for ϕ ∈ HomZ(G, Z0). Then ϕ|supp A = 0 follows and hence
ϕ = 0 because of our assumption G = 〈suppA〉. ¤

In the remainder of this section we will introduce division graded versions
of the standard examples of Jordan algebras.
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2.10. Proposition. Let A be a division graded associative algebra over a
field F of ch. F 6= 2.

(a) Any graded subalgebra J of A+ is a division G-graded Jordan algebra as
soon as x−1 ∈ J for any non-zero homogeneous x ∈ J. In particular, A+ itself
is division G-graded.

(b) If A is associatively generated by a division graded subalgebra J of A+

then

Z(J) = Z(A) ∩ J . (1)

(c) For J = A+ we have

DerF A = DerF A+ , Z(A) = Z(A+) and (2)

CDerF A = CDerF A+. (3)

If A is semiprime (b) follows from [22, Thm. 3.3]. However, A is in gen-
eral not semiprime. For example, even a group algebra over a field need not
be semiprime (see [18, (10.17)]). Also, for an arbitrary prime algebra A the
equality DerF A = DerF A+ follows from [13, Thm. 3.3]. Although A is in
general not prime, we can nevertheless use some of the methods of Herstein’s
proof. In particular, the crucial formula (4) below is taken from [13].

Proof. (a) follows from the fact that invertibility in A and A+ are the same.
For (b), the inclusion Z(A) ∩ J ⊂ Z(J) is obvious from 1.11.4. To prove the
other inclusion we may assume that 0 6= z ∈ Z(J) is a homogenous element.
For any x ∈ J we then have [x, z]2 = 2x.Uzx−Uxz2−Uzx

2 = 0 since z ∈ Z(J).
If z 6∈ Z(A) then [x, z] 6= 0 for some homogenous x ∈ J and hence [x, z] is
invertible, contradicting [x, z]2 = 0.

(c) It is clear that DerA ⊂ Der A+. So, let d ∈ DerA+ and put ab =
d(ab) − d(a)b − ad(b) for a, b ∈ A. By calculating d((ab)ab + ba(ab)) in two
different way one obtains [13, Lemma 3.6]

ab[a, b] = 0. (4)

Linearizing in b gives

ab[a, c] + ac[a, b] = 0. (5)

It suffices to prove ab = 0 for all homogeneous a, b ∈ A. We will do so by
distinguishing four cases.

Case 1) a, b ∈ Z(A): Then d(ab) = d(a.b) = d(a).b+ a.d(b) = d(a)b+ ad(b),
i.e., ab = 0. Case 2) a 6∈ Z(A), b ∈ Z(A): By (5) we then have ab[a, c] = 0 for all
c ∈ A. Since a is homogenous there exists a homogeneous c such that [a, c] 6= 0
and hence [a, c] invertible, forcing ab = 0. Case 3) a ∈ Z(A), b 6∈ Z(A): Since
ab = −ba this case follows from the previous one. Case 4) a, b 6∈ Z(A): If
[a, b] 6= 0 we obtain ab = 0 from (4). Otherwise, we get ab[a, c] = 0 from (5)
for all c ∈ A, and again ab = 0 follows.

Thus DerF A = DerF A+. That Z(A) = Z(A+) follows from (1), and then
CDerF A = CDerF A+ by definition. ¤
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2.11. Quadratic form Jordan algebras. Let Φ be an associative com-
mutative ring, M a Φ-module and q: M → Φ a quadratic form with base point,
i.e., q(1) = 1 for some 1 ∈ M . We let q(x, y) = q(x + y) − q(x) − q(y) be the
polar of q, and define x = q(x, 1)1 − x and Uxy = q(x, y)x − q(x)y. Then M
together with the quadratic operator U is a (quadratic) Jordan algebra denoted
by J over Φ. We will often confuse J and M . It is well-known that any x ∈ M
with invertible q(x) is invertible in J . Indeed, its inverse is x−1 = 1

q(x)x.

Suppose Φ is G-graded, M is a graded module of type G and q: M → Φ
is graded in the sense that q(Mg) ⊂ Φ2g, q(Mg ,Mh) ⊂ Φg+h for g, h ∈ G
and 1 ∈ M0. The corresponding Jordan algebra J is then G-graded, i.e.,
UJg

Jh ⊂ J2g+h and {Jg Jh Ji} ⊂ Jg+h+i where {...} is the Jordan triple product
of J . Moreover, J is division G-graded if q is anisotropic graded in the sense
that q(mg) is invertible for any 0 6= mg ∈ Mg = Jg.

If 1
2 ∈ Φ we have J = Φ.1 ⊕ V for V = {x ∈ M | q(x, 1) = 0} and with

respect to this decomposition the bilinear product of J satisfies

(s11 ⊕ v1)(s21 ⊕ v2) = (s1s2 + f(v1, v2))1 ⊕ (s1v2 + s2v1) (1)

for f = −1
2q(., .)|V ×V . In this case, the associator of xi = si.1 ⊕ vi is, with

obvious notation,

(s1 ⊕ v1, s2 ⊕ v2, s3 ⊕ v3) = f(v1, v2)v3 − f(v3, v2)v1 ∈ V. (2)

Hence Φ.1 ⊂ Z(J) and (J, J, J) ⊂ V . We note that J always has a non-zero
invariant form, namely (x|y) = q(xy, 1) is such a form. But in general this form
is not graded. We now describe special classes of quadratic form algebras.

2.12. Lemma. Let J be a quadratic form algebra over a G-graded Φ con-
taining 1

2 , and decompose the underlying module M = Φ.1 ⊕ V as in 2.11
above. Suppose that V is an orthogonal sum of non-zero G-graded Φ-modules
V (i), i ∈ I with |I | ≥ 2 such that each q|V (i) is anisotropic graded (hence the
type Si of V (i) is contained in G). We extend the grading of V to M in the
canonical way, so that J is a G-graded algebra.

(a) Then Z(J) = Φ.1 and (J, J, J) = V , hence J = Z(J) ⊕ (J, J, J).

(b) Let o(f) = {d ∈ EndΦ V | f(du, v) + f(u, dv) = 0 for all u, v ∈ V } be
the orthogonal Lie algebra associated to f and let eo(f) be the ideal spanned by
all elementary orthogonal transformations Eu,v, u, v ∈ V , given by Eu,v(w) =
f(u,w)v − f(v,w)u = (u, w, v) = ∆v,u(w). Then

DerΦ J → o(f) : d 7→ d|V (1)

is an isomorphism of Lie algebras mapping IDerJ onto eo(f).

(c) Suppose Φ is division graded, so that by 2.8 every V (i) is free and has
a homogenous Φ-basis. Assume that V has finite rank with a homogeneous Φ-
basis {v1, . . . , vn} satisfying f(vi, vj) = 0 for i 6= j. Then o(f) = eo(f), and
hence all Φ-linear derivations are inner. Moreover, {Evi,vj

| 1 ≤ i < j ≤ n} is
a Φ-basis of o(f).

Proof. At least in special cases, this result is known to the experts. For the
convenience of the reader we include a short proof.
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(a) Let z ∈ Z(J) ∩ V . By 2.11.2 we then have 0 = (z, u, v) = f(z, u)v for
any u, v in different submodules V (i). Considering homogenous components
then forces z = 0. Hence Z(J) = Φ.1. If u, v belong to the same V (i) but w to
a different V (j) we get (u, v,w) = f(u, v)w. Since f(u, v) for suitable choices
of u, v is invertible, this shows w ∈ (V, V, V ), and then V = (J, J, J) follows.

(b) Any Φ-linear derivation d annihilates 1 ∈ J and leaves V = (J, J, J)
invariant. That d|V ∈ o(f) is immediate from the product formula 2.11.1.
Thus the map (1) is well-defined and injective. That it is also surjective is an
easy exercise. In case Φ is a field (c) is well-known. In the setting of this lemma
it is proven in [8].

2.13. Construction of a division graded quadratic form Jordan
algebra. For easier reference we describe a special case of the situation con-
sidered in 2.12. This setting will be specialized in 4.5 to define Clifford tori.
Our construction uses the following data:

(i) Φ is a division graded commutative associative ring with grading
group H = supp Φ and 1

2 ∈ Φ0;
(ii) H is a subgroup of an abelian group G such that G/H is a 2-group,

i.e., any element of G/H has order ≤ 2;
(iii) I ⊂ G is a set of representatives of some cosets of G modulo H

different from H, with at least two elements;
(iv) (zi)i∈I is a family of non-zero (hence invertible) elements zi ∈ Φ2i.

Assuming these data, we put z0 = 1 ∈ Φ0 and let V (i), i ∈ I ∪ {0}, be the

graded Φ-module of type i + H and rank 1 with basis vi ∈ V
(i)
i = Φ0vi where

v0 = z0 = 1 ∈ Φ0. Thus

V (i) =
⊕

h∈H V
(i)
i+h with V

(i)
i+h = Φhvi.

For i ∈ I∪{0} we let q(i): V (i) → Φ be the Φ-quadratic form given by q(i)(vi) =
zi ∈ Φ2i. We then have a G-graded Φ-module M =

⊕
i∈I∪{0} V (i) =

⊕
g∈G Mg

where

Mg =

{
V

(i)
i+h if g = i + h for i ∈ I ∪ {0}, h ∈ H

0 otherwise

with an anisotropic graded quadratic form q =
⊕

i∈I∪{0} q(i), the orthogonal

sum of the quadratic forms q(i). Hence the corresponding quadratic form Jor-
dan algebra J , considered as algebra over F = Φ0, is division G-graded with
suppJ = I + H. Moreover, Lemma 2.12 applies. In particular, it follows from
1.13.2 and 2.12(a) that

dimF GIF(J) = 1. (1)

Since by construction ∆vi,vj
∈ (IDerJ)i+j we obtain, using 2.8, the following

more precise description of the inner derivation algebra.

2.14. Lemma. In the setting of 2.13 suppose I is finite, and let < be a
well-ordering on I. Also, denote by g the canonical image of g in G/H.

Then {∆vi,vj
| i, j ∈ I, i < j} is a Φ-basis of IDerJ = DerΦ J , and {∆vi,vj

:

i, j ∈ I, i < j, i + j = g} is a Φ-basis of
⊕

h∈H (IDerJ)g+h = (IDerJ)g . In
particular,

dimF (IDerJ)g = |{{i, j} : i, j ∈ I, i 6= j, i + j = g}| (1)

In a special case, these dimensions have been calculated in [27, Lemma 2.4].
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2.15. Graded Albert algebras. Let A be a prime associative algebra
over F whose central closure A has (generic) degree 3, and let µ ∈ Z = Z(A) be
invertible. Assume that tr(A) ⊂ Z where tr is the generic trace of A. Then, the
subset J = (A,µ) := A⊕A⊕A of the first Tits construction (A,µ) = A⊕A⊕A
is a Z-subalgebra such that (A, µ) = (A,µ) ([31, Lemma 6.5]). Hence J and J
are Albert algebras in the sense of [21]. Since J = (A,µ) has degree 3, Schafer’s
theorem [14, Exercise 1, page 319] implies J = Z ⊕ (J, J, J) if ch. F 6= 3.

To obtain a grading on J we assume the following data:

(i) A = ⊕g∈G Ag is a G-graded prime associative algebra with centre Z;

(ii) |G/S| = 3 where S = supp A;

(iii) µ ∈ Z3g0
for some g0 ∈ G \ S;

(iv) tr is G-graded, i.e., tr(Ag) ⊂ Zg for all g ∈ G.

Then J = (A, µ) is G-graded with homogeneous spaces defined as follows:

Jg :=





Ag ⊕ 0 ⊕ 0 if g ∈ S
0 ⊕Ag−g0

⊕ 0 if g − g0 ∈ S
0 ⊕ 0 ⊕Ag+g0

if g + g0 ∈ S.

Moreover, J is division graded if A is so. If, in addition, G is totally ordered and
ch. F 6= 3 then J = Z ⊕ (J, J, J). Indeed, since (J, J, J) = Z ⊗Z (J, J, J) this
follows from Schafer’s Theorem and 2.8(c) applied to the Z-modules Z+(J, J, J)
and Z ∩ (J, J, J).

3. G-tori

In this section we will introduce a special class of division graded algebras,
so-called G-tori. Our main interest will be the study of their derivation al-
gebras. The basic assumptions of the previous sections remain in place: we
consider unital alternative and Jordan algebras over a field F , which in case of
Jordan algebras will be assumed to have ch. F 6= 2.

3.1. G-tori. Let G be an abelian group. A division G-graded algebra
T =

⊕
g∈G Tg over F is called a G-torus if

(i) dimF Tg ≤ 1 for all g ∈ G, and

(ii) suppT generates G as abelian group.

If the G-torus is associative, alternative or Jordan, it is called an associative,
an alternative or a Jordan G-torus. We will frequently identify T0 = F . We
say that a G-torus is of strong type if T is strongly graded. In this case, the
support suppT is a subgroup of G. By 2.3.(a), any alternative G-torus is of
strong type. An associative G-torus is the same as a twisted group algebra
F t[G]. In particular, if T is a G-torus and H its central grading group, the
centre Z(T ) is a twisted group algebra of H. An example of a Jordan G-torus
is the quadratic form Jordan algebra of 2.13, viewed as algebra over F = Φ0.
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3.2. Theorem. Let T be a G-torus with central grading group H. Recall
that D denotes the degree derivations of T , see 1.8.5. Then:

(DerF T )0 = D , (1)

(CDerF T )fin =
⊕

h∈H

(DerF T )h = (grDerF T )H , (2)

IDerT ⊂
⊕

g 6∈H

(DerF T )g , (3)

(CDerF T )fin ∩ IDerT = 0 . (4)

If G is finitely generated then so is T , and hence DerF T = grDerF T . In this
case we also have CDerF T = (CDerF T )fin which is a generalized Witt algebra
by 2.9.

Proof. Let d ∈ (DerF T )0, and define scalars ϕg for g ∈ S = supp T by
d(tg) = ϕgtg , tg ∈ Tg . The fact that d is a derivation means

ϕg + ϕh = ϕg+h for g, h ∈ S with TgTh 6= 0. (5)

In particular, if T is alternative, it is a torus of strong type with S = G and
we have ϕ ∈ HomZ(G, Z0) which means that d is a degree derivation. For a
Jordan torus T we have dUx = Udx,x + Uxd for x ∈ T which implies

ϕ2g+h = 2ϕg + ϕh for g, h ∈ S. (6)

Since ϕ0 = 0 it follows from (5) that ϕ−h = −ϕh and then (6) shows that
ϕ : S → F is a homomorphism of reflection spaces preserving the base points.
By 2.2.b, ϕ extends uniquely to a group homomorphism Φ: G → F and so d is
a degree derivation also in this case. This implies (1) and then (2) is immediate
from 2.9.2 and the definition of (grDerF T )H .

(3): Since IDerT is G-graded, it suffices to show that IDer T ∩ (DerF T )h =
0 for all h ∈ H. Suppose there exists a non-zero d ∈ (DerF T )h for some
h ∈ H. If T is Jordan we can assume that d = [Lx, Ly] where x ∈ Tg ,
y ∈ Tg′ and g + g′ = h. Hence y = zx−1 for some non-zero z ∈ Zh. But
then [Lx, Ly] = [Lx, Lzx−1 ] = Lz[Lx, L−1

x ] = 0, contradiction. The proof for
alternative algebras is similar, using the the form of inner derivations (see 1.4).
Thus (3) holds, and this implies (4). The last statement follows from 2.4, 1.6.2
and 1.7.4. ¤

Remark. We have

grDerF T = IDerT o (CDerF T )fin

as soon as any Z-linear derivation is inner. (7)

Indeed, by the result above we only have to show (DerF T )g ⊂ IDerT for
g /∈ H. But any d ∈ (DerF T )g has d(Z) ⊂ Z ∩ ⊕g′∈g+H (DerF T )g′ = 0, so is
Z-linear.

By 2.12 the criterion (7) is fulfilled for the G-torus of 2.13 with a finite I .
This result is generalized in [8]. Other examples of G-tori satisfying (7) will
be discussed in 3.5. In the next section, we will use this criterion to establish
DerF T = IDerT oCDerF T for Jordan Zn-tori, even if IDerT = DerZ T is not
always true there.
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3.3. Proposition. Let T be an alternative G-torus with central grading
group H. Then

(T, T, T ) ⊂ [T, T ] =
⊕

g 6∈H Tg (1)

hence
T = Z(T ) ⊕ [T, T ] and GIF(T ) ∼= T ∗

0 (2)

is 1-dimensional. If T is associative, we have

IDerF T = IDerF T+ ∼=
⊕

g 6∈H Tg. (3)

Proof. For easier notation we put B =
⊕

g 6∈H Tg. We will first prove that
(T, T, T ) ⊂ B. Observe that (T, T, T ) is G-graded and invariant under Z =
Z(T ). Hence, either (T, T, T ) ⊂ B or there exist homogeneous a, b, c ∈ T such
that 1 = (a, b, c). Then (ab)−1 and c have the same degree, and therefore
c = z(ab)−1 = zb−1a−1 for some non-zero z ∈ T0 = Z0 by 2.8.a. But then we
obtain the contradiction 1 = z(ab)(ab)−1−za(b(b−1a−1)) = z−z = 0. Similarly,
if [T, T ] is not contained in B we have 1 = [a, b] for suitable homogeneous
a, b ∈ T where b = z′a−1 for some z′ ∈ Z0. Then 1 = [a, a−1]z′ = 0 gives a
contradiction.

For (1) it remains to prove B ⊂ [T, T ]. By 2.5, any non-zero a ∈ B satisfies
[a, T ] 6= 0. It is of course not harmful to assume that a is homogeneous. Then
there exists a homogeneous b ∈ T such that 0 6= ab−ba = ab−(ba)(b−1b) = ab−
(b(ab−1))b (by the Moufang identity) = (a− b(ab−1))b. Since b is invertible, it
follows that 0 6= a−b(ab−1) = za for some 0 6= z ∈ Z0. But then [ab−1, z−1b] =
z−1((ab−1)b − b(ab−1)) = z−1(za) = a ∈ [T, T ] proving our result.

The first equation in (2) is obvious, and the second follows from 1.13.2.
For an associative T we always have IDer T = adT ∼= T/Z(T ) and IDerT+ =
ad[T, T ] ∼= T/(Z(T ) ∩ [T, T ]). ¤

3.4. Corollary. Let A be an associative G-torus over a field F of ch. F 6= 2
and let ∗ be a graded F -linear involution of A such that J := H(A, ∗) is a
generating set of the associative algebra A. Denote by H the central grading
group of A. Then there is a graded isomorphism of Lie algebras

IDerJ ∼= [J, J ] =
⊕

g∈G\(H∪supp J) Ag (graded isomorphism) (1)

and hence for all g ∈ G

dimF (IDerJ)g =
{

0 if g ∈ H ∪ suppJ
1 otherwise.

(2)

Proof. Because of 1.4.3 we have an epimorphism

[J, J ] → IDerJ : x 7→ adx|J (3)

of graded Lie algebras. Its kernel consists of all x ∈ [J, J ] which commute
with J and hence also with A. But then x ∈ Z(A) so that 3.3.2 shows x =
0. Hence (3) is an isomorphism. For the proof of the second part of (1) let
S(A, ∗) = {a ∈ A | a∗ = −a}. Then A = J ⊕ S(A, ∗) and [J, J ] ⊂ S(A, ∗) =
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⊕
g/∈supp J Ag follows. By 3.3.2 we also have [J, J ] ⊂

⊕
g/∈H Ag. Conversely, for

g /∈ (H∪supp J) and 0 6= y ∈ Ag we get [y, x] 6= 0 for some x ∈ Jj = Aj because
[y, J ] = 0 would imply y ∈ Z(A) =

⊕
h∈H Ah. Observe [y, x] ∈ J and hence

g + j ∈ supp J . Because suppJ is a reflection subspace of G we then obtain
g − j = 0 · (j · (g + j)) ∈ supp J (of course, this can also be seen directly). But
[y, x] 6= 0 implies [yx−1, x] 6= 0, so yx−1 ∈ Jg−j and 0 6= [yx−1, x] ∈ Ag ⊂ [J, J ]
follows. Finally, (2) follows immediately from (1). ¤

3.5. Proposition. Let T be an associative G-torus where G is finitely gen-
erated and let H be the central grading group.

(a) (Osborn-Passman [24, Cor. 2.3]) The derivation algebra of T is a
semidirect product

DerF T = IDerT o CDerT (1)

where

CDerF T = (CDerF T )fin = (grDerF T )H =
⊕

h∈H (DerF T )h and

IDerT =
⊕

g 6∈H(DerF T )g
∼=

⊕
g 6∈H Tg .

(b) For the associated Jordan algebra T+ we have Z(T ) = Z(T+),

CDerF T+ = CDerF T and IDerT+ = IDerT,

and hence also DerF T+ = IDerT+ o CDer T+ is a semidirect product.

Proof. (a) (1) is proven in [24, loc. cit.]. The remaining equations follow
from 1.7.4, 3.2.2 and 3.2.3.

(b) is a corollary to (a), 2.10.2 and 3.3.3.

3.6. Proposition. Let T be an associative G-torus over a field E with
ch. E 6= 2 and let H be the central grading group of T . Let J =

⊕
g∈G Jg ⊂ T+

be a Jordan G-torus over a subfield F of E, and assume that J is a generating
set of the associative algebra T . Then Z(J) = Z(T ) ∩ J =

⊕
h∈H Jh and

(J, J, J) =
⊕

h6∈H Jh. In particular

J = Z(J) ⊕ (J, J, J) and GIF(J) ∼= J0.

Proof. By 3.3 we have
⊕

g 6∈H Tg = [T, T ] = [T,Z(T ) + [T, T ]] = [T, [T, T ]].
Because of 1.11.4 this implies (J, J, J) ⊂ J ∩ [T, T ] =

⊕
g 6∈H Jg by . For the

other inclusion let 0 6= x ∈ Jg , g 6∈ H. Then x 6∈ Z(T ) and there exists a
homogeneous y ∈ J such that [x, y] 6= 0. Hence, yx = zxy for some 0 6= z ∈ E.
Then (x, y, y−1) = 1

4(2+z +z−1)x ∈ Jg, i.e., (x, y, y−1) = tx for some non-zero
t ∈ F , whence x ∈ (J, J, J). ¤

3.7. Corollary. Let A be an associative G-torus over a field E of ch. E 6=
2. Suppose that G is finitely generated and that ∗ is a graded involution of
second kind. With the notation of 1.11 we then have for the Jordan G-torus
H = H(A, ∗) over F :

(a) H = Z(H)⊕ (H, H,H),
(b) DerF H = IDerH o CDer H.

Proof. (a) is a special case of 3.6. For (b) we have DerE A+ = IDerA+ o
CDer A+ by 3.5, and both summands are left invariant under the automorphism
d 7→ d∗ of DerE A+. By 1.11.9 and 1.11.7 the fixed point spaces under ∗ are
the corresponding subalgebras for H, whence the result. ¤
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4. Zn-tori

4.1. Tori. A Zn-torus will be called an n-torus or simply a torus. Hence an
n-torus is a division Zn-graded algebra T = ⊕α∈Zn Tα such that dimF Tα ≤ 1
for all α ∈ Zn and suppT generates Zn. The reader is reminded that all
algebras considered here are alternative or Jordan over a field F of ch. F 6= 2 if
T is Jordan. In the following the notion “torus” will always mean an alternative
or a Jordan torus.

Let T = ⊕α∈Zn Tα and T ′ = ⊕α∈Zn T ′
α be two n-tori. We will say that

T and T ′ are graded isomorphic, abbreviated as T ∼=Zn T ′, if there exists an
isomorphism ϕ : T → T ′ such that ϕ(Tα) = T ′

α for all α ∈ Zn.
We recall from 2.3 that suppT = Zn if T is alternative and that suppT is

a semilattice in Zn if T is Jordan. Also, by 2.4,

any torus is finitely generated, (1)

and any torus is a domain, and hence strongly prime (2.3.(c)).

The structure of alternative tori has been determined up to graded iso-
morphism in [5, Thm. 1.25] and in improved form in [29, 4.11]. Besides the
associative tori, see 4.2 below, there is one more type, the so-called Cayley
torus in ch. F 6= 2, see 4.3.1.

4.2. Associative tori. An n×n matrix q = (qij) over a field F satisfying
qii = 1 and qji = q−1

ij is called a quantum matrix. For a quantum matrix q

the associated quantum torus Fq = Fq [t
±1
1 , . . . , t±1

n ] is the associative algebra
over F with 2n generators t±1

1 , . . . , t±1
n , and relations tit

−1
i = t−1

i ti = 1 and
tjti = qijtitj for all 1 ≤ i, j ≤ n. Note that Fq is commutative if and only if
q = 1 where 1 is the quantum matrix whose entries are all 1. In this case, the
quantum torus F1 becomes the algebra of Laurent polynomials F [t±1

1 , . . . , t±1
n ]

in n variables.
Let 〈σ1, . . . , σn〉 be a basis of Zn, and define the degree of tα := tα1

1 · · · tαn
n ,

where α = α1σ1 + · · · + αnσn ∈ Zn, to be α. Then Fq = ⊕α∈Zn Ftα is an n-
torus. We call this grading a toral Zn-grading of Fq, or, if one needs to specify
a basis of Zn, a 〈σ1, . . . , σn〉-grading of Fq.

It is shown in [5, 1.8] that any associative torus is graded isomorphic to
some Fq with a suitable toral grading. Any commutative associative torus is
graded isomorphic to a Laurent polynomial ring F1 = F [t±1

1 , . . . , t±1
n ].

4.3. Alternative tori. Suppose ch. F 6= 2. For n ≥ 3 the Cayley n-torus

Ot = (F [t±1
1 , . . . , t±1

n ], t1, t2, t3)

is the F -algebra obtained by the Cayley-Dickson process over the Laurent poly-
nomial ring F [t±1

1 , . . . , t±1
n ], using the structure constants t1, t2 and t3. This

becomes an alternative torus with supp Ot = Zn and centre F [t±1
1 , . . . , t±1

n ]
graded by

2Zσ1 + 2Zσ2 + 2Zσ3 + Zσ4 + · · · + Zσn, (1)

for a basis 〈σ1, . . . , σn〉 of Zn with deg ti = 2σi for i = 1, 2, 3 and deg ti = σi

for i = 4, . . . , n.

We will next describe Jordan tori. For details, see [31].
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4.4. Jordan tori of hermitian type. Let ε = (εij) be an elementary
quantum matrix, i.e., a quantum matrix with all εij = 1 or −1. On the
quantum torus Fε = Fε[t

±1
1 , . . . , t±1

n ], there exists a unique involution ∗ such
that t∗i = ti for all i. The symmetric elements H(Fε, ∗) form a Jordan torus
with respect to the grading induced from a toral grading of Fε. One can show
that suppH(Fε, ∗) = Zn if and only if q = 1 if and only if H(Fε, ∗) is of strong
type. If q 6= 1, the central grading group of H(Fε, ∗) is

2Zσ1 + · · · + 2Zσm + Zσm+1 + · · ·+ Zσn, (1)

for a suitable toral 〈σ1, . . . , σn〉-grading of Fε and 2 ≤ m ≤ n ([30, 2.5] and
2.10.1), while by [30, 1.8] the central grading group of Fε is always of type

2Zσ1 + · · · + 2Zσ2l + Zσ2l+1 + · · · + Zσn. (2)

Let E be a quadratic field extension of F . Let σE be the non-trivial Galois
automorphism of E over F (recall that we assume ch. F 6= 2 for Jordan tori).
Let ξ = (ξij) be a quantum matrix over E such that σE(ξij)ξij = 1, or, equiv-
alently, σE(ξij) = ξji for all i, j. On the quantum torus Eξ = Eξ[t

±1
1 , . . . , t±1

n ]
over E, there exists a unique σE-semilinear involution σ such that σ(ti) = ti
for all i. The symmetric elements H(Eξ, σ) form a Jordan torus over F with
respect to the grading induced from a toral grading of Eξ . We always have
suppH(Eξ, σ) = Zn, and the central grading groups of H(Eξ, σ) and Eξ coin-
cide.

4.5. Jordan tori of Clifford type. Let 2 ≤ m ≤ n and let S(m) be a
semilattice in Zm. We consider the following data:

(i) Φ is the Laurent polynomial ring Φ = F [t±1
1 , . . . , t±1

n ] which we view as
a division Zn-graded algebra of suppΦ = 2Zm⊕Zn−m with respect to
the canonical grading assigning ti the degree (0, . . . , 0, 2, 0, . . . , 0) with
2 in the ith component in case 1 ≤ i ≤ m and degree (0, . . . , 0, 1, 0, . . . ,
0) for i > m;

(ii) I ⊂ Zm ⊂ Zm ⊕ Zn−m = Zn is a set of representatives of S(m)/2Zm,
excluding the class 2Zm;

(iii) (zi)i∈I is a family of non-zero elements in Φ2i.

The Clifford torus J(S(m), (zi)i∈I) is the quadratic form Jordan algebra con-
structed in 2.13 using the data above. In particular, the results mentioned in
2.12, 2.13 and 2.14 hold.

4.6. The Albert torus. Let n ≥ 3. We assume that F contains a primi-
tive 3rd root of unity ω, in particular ch. F 6= 3, and denote by w the quantum
n×n-matrix with (1, 2)-entry equal to ω, (2, 1)-entry equal to ω−1 and all other
entries equal to 1.

Let Fw = Fw[u±1
1 , . . . , u±1

n ] be the quantum torus determined by w, and let
Z = Z(Fw) be the centre of Fw. One finds Z = F [u±3

1 , u±3
2 , u±1

3 , . . . , u±1
n ],

the algebra of Laurent polynomials in the variables u3
1, u

3
2, u3, . . . , un. Let

〈σ1, . . . , σn〉 be a basis of Zn and put

S := Zσ1 + Zσ2 + 3Zσ3 + Zσ4 + · · · + Zσn.
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We give Fw a toral S-grading, i.e., Fw = ⊕σ∈S Fuσ where

uσ = um1
1 · · · umn

n for σ = m1σ1 + m2σ2 + 3m3σ3 + m4σ4 + · · · + mnσn.

One knows ([31]) that A = Fw fulfills the assumptions of 2.15 for G = Zn and
S as above. The exceptional Jordan algebra At = (Fw, u3) of 2.15 is called the
Albert torus. The grading of At defined in 2.15 is called the toral grading. We
note that

At is of strong type. (1)

4.7. Classification of Jordan tori [31]. Let ch. F 6= 2. Then any Jordan
torus is graded isomorphic to one of the five tori

F+
q , H(Fε, ∗), H(Eξ, σ), J(S(m), (zi)i∈I) or At

endowed with suitable toral gradings.

4.8. Central closures of tori. By 2.3.(d), the centre Z of a torus T is
an integral domain, so that we can form the central closure T of T (see 1.2).
It follows that T is always a central domain. By [31, 3.9], T is a Zn/H-torus
over Z, where H denotes the central grading group. Moreover, we have

T is a division algebra ⇐⇒ T is finite dimensional. (1)

Since both Jordan and alternative algebras are power associative, the impli-
cation ⇐ is a special case of the general fact that a power associative finite
dimensional domain is a division algebra. To prove this general result, we
consider the subalgebra generated by a single element and are then reduced
to showing that a finite dimensional associative domain is a division algebra.
This is of course well-known, it is for example an immediate consequence of
Wedderburn’s Structure Theorem. For the other direction, suppose that T is
infinite dimensional. Then the rank of the central grading group H of T is less
than n. Hence the Zn/H-torus T contains a subalgebra which is a 1-torus. But
a 1-torus is not a division algebra by [31, 3.6] for Jordan tori and [29, §2] in
the alternative case, and then T is not a division algebra either.

We list here the central closures of Jordan tori and of the Cayley torus:

(a) The central closure of F+
q is the +-algebra of Fq, i.e., F+

q = Fq
+
. (This

holds for any prime associative A by [22, Cor. 3.4]).
(b) By 1.3 the central closures of the hermitian tori H(Fε, ∗) and H(Eξ, σ)

are H(Fε, ∗) and H(Eξ, σ) respectively. Here H(Fε, ∗) is a finite-dimensional
central Jordan division algebra of degree 2m for a suitable m. Indeed, by 4.4.2
and (1), Fε is a central-simple division algebra of dimension 22l, hence of degree
2l. By the discussion on [14, p. 209] the degree of H(Fε, ∗) is therefore either
2l of 2l−1.

(c) The central closure of a Clifford torus J(S(m), (zi)i∈I) is a (|I | + 1)-
dimensional Jordan division algebra of a symmetric bilinear form.

(d) The central closure of an Albert torus is a 27-dimensional Albert division
algebra over a field of characteristic 6= 2, 3. Similarly, the central closure of the
Cayley torus is an 8-dimensional octonion algebra over a field of characeristic
6= 2, hence a division algebra by (1).
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As a consequence of the above, we have

dimZ T < ∞ for T = H(Fε, ∗), J(S(m), (zi)i∈I),Ot and At. (2)

We note that the central closures of Fq, F+
q and H(Eξ, σ) are in general not

finite-dimensional over Z.

4.9. Proposition. For a Jordan torus J over F with ch. F 6= 3 in case
J is an Albert torus we have J = Z(J) ⊕ (J, J, J). Hence GIF(J) ∼= F1 is
1-dimensional.

Proof. This follows from and 1.13.2 and the classification of Jordan tori
4.7, using 3.6 for J = F +

q , H(Fε, ∗), 3.7 for J = H(Eξ, σ), 2.13.1 for J =

J(S(m), (zi)i∈I) and 2.15 for J = At. ¤
The analogous result for alternative G-tori is proven without classification

in 3.3.

4.10. Lemma. Let T be a Jordan torus but not of type F+
q or H(Eξ, σ) or

let T be a Cayley torus over a field F of ch. F 6= 2, 3. Then IDerT = DerZ T .

Proof. For a Clifford torus this is a special case of 2.12(c). For the remain-
ing cases we use 1.6.1 and 2.6. So it suffices to show that T has only inner
derivations. Given the structure of T described above this is known. Indeed,
for T = H(Fε, ∗) we can use [14, Exercise 1, page 258] for algebras of degree 2
and [14, Theorem 9, page 254] for algebras of degree ≥ 3, for the Albert torus
this follows from [14, Theorem 17, page 408] and for the Cayley torus this is a
consequence of [14, page 301, Lemma 3] (see also [5, Lemma 1.39(b)]). ¤

If Fq , T = F+
q or H(Eξ, σ), then IDerT = DerZ T is not true in general.

For example, if T is simple, then DerZ T = DerF T because Z = F in this case.
We are now ready to prove our main result.

4.11. Theorem. Let T be an n-torus over a field F and assume that
ch. F 6= 2 if T is a Jordan torus and that ch. F 6= 2, 3 if T is a Cayley torus or
an Albert torus. Then

DerT = IDerT o CDer T. (1)

With respect to any nondegenerate graded invariant form we have

SDerT = IDerT o (SDerT ∩ CDer T ). (2)

If H ⊂ Zn is the central grading group of T then

IDerT =
⊕

α∈Zn\H

(DerF T )α and CDerT =
⊕

α∈H

(DerF T )α. (3)

Proof. For T ∼=Zn Fq and T ∼=Zn F+
q (1) has been proven in 3.5 and for

T ∼=Zn H(Eξ, σ) in 3.7. The remaining cases follow from 3.2.7 and 4.10 keeping
in mind that grDerF T = DerF T since T is finitely generated. The structure
of SDerT is immediate from 1.14, and (3) follows from 3.2. ¤
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Remarks. For an alternative torus (1) was known before. Indeed, an
alternative torus is either a quantum torus, in which case this was proven in
[4, Lemma 2.48, page 364] for the field F = C of complex numbers, but the
proof works over any field or a Cayley torus, in which case (1) was proven for
ch. F 6= 2, 3 in [5, Theorem 1.40]. We have reproven the result here to show
how it fits in the more general framework of tori considered in this paper, and
also because it can be done without extra effort. Since (1) holds for Jordan and
alternative tori, it is natural to conjecture that it also holds for structurable
tori.

The ideal IDerT will be described in more detail in 4.13 – 4.15 below.
The structure of the central derivation algebra CDerT is determined in 4.12.
Concerning SDer T ∩ CDerT , see 1.14.

4.12. Theorem. Let T be an n-torus with centre Z and central grading
group H of rank r. Then the central derivations CDer T are isomorphic to the
generalized Witt algebra associated to Z = F [H], D ∼= HomZ(Zn, F ) and the
canonical pairing p: HomZ(Zn, F ) ×H → F : (Φ, h) 7→ Φ(h). Moreover,

CDer T ∼= DerF Z n Y (1)

where

(i) Z ⊗F HomZ(H,F ) ∼= DerF Z ∼= DerF [z±1
1 , . . . , z±1

r ] is a generalized
Witt algebra and

(ii) Y ∼= Z ⊗F HomZ(Zn/H,F ) is an abelian ideal.

If r ≥ 1 and ch. F 6= 2 then CDerT is a perfect Lie algebra.

Proof. Since CDerTfin = CDer T by 3.2, it follows from 2.9 that CDerT
is a generalized Witt algebra. Note that in our case the centre Z is actually
isomorphic to the group algebra of H with a suitable grading. The splitting
(1) will be a consequence of

HomZ(Zn, F ) = HomZ(H, F ) ⊕HomZ(Zn/H,F ). (2)

To establish (2), we consider the canonical sequence of F -linear maps

0 → HomZ(Zn/H, F )
ι−→ HomZ(Zn, F )

%−→ HomZ(H,F ) → 0 (3)

The imbedding ι is given by ϕ 7→ ϕ ◦ π where π: Zn → Zn/H is the canonical
epimorphism. The map % is the restriction map. Obviously, the image of ι
equals the kernel of %. We write H = m1Zε1 + · · ·+ mnZεn where 〈ε1, . . . , εn〉
is a Z-basis of Zn and where m1, . . . ,mn ≥ 0. Then surjectivity of % will follow
from

ch. F does not divide mi for any nonzero mi. (4)

Indeed, for a Cayley torus or H(Fε, ∗) or a Clifford torus, all mi = 1 or 2, and
ch. F 6= 2 in these cases (see 4.3.1, 4.4.1 and 2.12 and 4.5). For an Albert torus,
all mi = 1 or 3, but also ch. F 6= 3 in this case (see 4.6). Thus we are left with
Fq, F+

q and H(Eξ, σ). Since the central grading groups of Fq and F +
q , and the

central grading groups of Eξ and H(Eξ, σ) coincide, we only need to consider
the case Fq = Fq[t

±1
1 , . . . , t±1

n ]. In this case, the result is proven in [12, Lemma
3.6]. We include a short proof for the convenience of the reader. Suppose that
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p := ch. F divides mk 6= 0 for some k and let q = (qij). Then tmk

k ∈ Z, and so
tmk

k tj = tjt
mk

k = qmk

kj tmk

k tj , whence qmk

kj = 1 for all j. Since mk = plk for some

lk ≥ 1 and ch. F = p, we have qlk
kj = 1 for all j. Hence tlkk commutes with all

tj, and we get tlkk ∈ Z, but lkεk 6∈ H, contradiction.
Thus, (4) holds and % is surjective. Hence (3) is exact and so (2) holds. By

1.10 we then have a decomposition

CDer T = (Z ⊗F HomZ(H,F )) n (Z ⊗F HomZ(Zn/H, F ))

keeping in mind that D ∼= HomZ(Zn, F ) and hence DH ∼= HomZ(Zn/H, F ).
The structure of Z ⊗F HomZ(H,F ) follows from 3.5(a) and 2.9.

Since HomZ(Zn, F ) ∼= Fn, the right kernel of p is trivial, and hence p 6= 0
as soon as r ≥ 1. In particular, by 1.10(c), CDerT is a perfect Lie algebra in
this case. ¤

We now turn to the description of IDer T . As one can see from [4] and [5],
the knowledge of IDer T will be useful in the classification of the extended affine
Lie algebras with coordinate algebras T . For the convenience of the reader we
first give a summary of the results on IDer T obtained so far.

4.13. Summary of results on IDerT . Throughout, we let T be an n-
torus over a field F satisfying the assumptions of 4.11. We denote by Z the
centre of T and by H the central grading group. We have seen in 4.11.3 that

IDerT =
⊕

α∈Zn\H

(IDerF T )α . (1)

Concerning the Lie algebra structure, we note that by 1.4.2 the Lie algebra
IDerT is a Z-form of IDerT where T is the central closure of T .

(a) Specializing 3.5, 3.7 and 1.11.7 we know

dimF (IDerT )α = 1 for all α ∈ Zn \ H and T = Fq, F
+
q or H(Eξ, σ). (2)

Note that for T = F+
q and T = H(Eξ, σ), the central grading group H of T

coincides with the central grading group of Fq and Eξ respectively. Of course,
(2) for T = Fq is already contained in [4, 2.55].

(b) By 3.4 we have a similar result for T = H(Fε, ∗). Denoting by Hε the
central grading group of the quantum torus Fε we have

dimF (IDerH(Fε, ∗))α =
{

1 α ∈ Zn \ (Hε ∪ suppH(Fε, ∗))
0 otherwise

(3)

We note that H = Hε ∩ suppH(Fε, ∗) by 2.10.1 but Hε 6⊂ supp H(Fε, ∗) in
general.

(c) For the Cayley torus Ot where ch. F 6= 3 one knows from [5, Theorem
1.40, page 4328]

dimF (IDer Ot)α = 2 for all α ∈ Zn \ H. (4)

(d) The dimensions of (IDer T )α in the case of a Clifford torus follows from
the general formula 2.14.1. In particular, it is interesting to note that contrary
to all other cases, the dimension varies with α and it can also get arbitrarily
large. For example, in the setting of 4.5 assume that I = {σ1, σ2}. Then
dim(IDerT )σi

= 0 while dim(IDerT )σ1+σ2
= 1 (see [27, Lemma 2.4]). Or, if I

is maximal, i.e., I represents all non-zero classes in Zn/(2Zm ⊕ Zn) ∼= Zm
2 , we

get dimF (IDerT )α = 2m−1 − 1 for all α ∈ Zn \ H.
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It remains to consider the Albert torus. Our analysis will be based on the
following general lemma.

4.14. Lemma. Let G = Z3 ⊕ · · · ⊕ Z3 with r ≥ 1 factors and let J =
⊕g∈G Jg be a Jordan G-torus over F which is of strong type. For an F -vector
space V we consider an F -bilinear map {·, ·} : J × J → V satisfying

(i) {xy, z} + {yz, x} + {zx, y} = 0 and
(ii) {x, y} + {y, x} = 0.

For g ∈ G denote {J, J}g =
∑

g=e+f {Je, Jf}. Then

dimF {J, J}g ≤ r − 1 for g 6= 0. (1)

Proof. We choose 0 6= tg ∈ Jg and note that then tgth = stg+h for some
0 6= s ∈ F . It will be convenient to use the abbreviation {x : y} in case
{x : y} = s{x, y} for some 0 6= s ∈ F . Then

{tng , th} = n{tg : t(n−1)g+h} for 0 ≤ n ≤ 2. (2)

Indeed, {1, J} = 0 by (i) and for n = 2 we have {t2g, th} = 2{tg , tgth} = 2{tg :
tg+h}. Next, we let εi = 0 ⊕ · · · ⊕ 1 ⊕ · · · ⊕ 0 with 1 ∈ Z3 at the ith position
and put ti := tεi

. We claim that for g = e + f , e =
∑

i eiεi with 0 ≤ ei < 3
we have

{te, tf} =
∑r

i=1 {tei
i : tg−eiεi

} (3)

To prove (3) we observe that in general by (i), (ii) and commutativity of J
we hvae {xy, z} = {x, yz} + {y, xz}. Hence {te, tf} = {te1

1 (te2
2 (· · · ter

r ) · · ·) :
tr} = {te1

1 : (te2
2 (· · · ter

r ) · · ·)tr} + {(te2
2 (· · · ter

r ) · · ·) : te1
1 tr} = {te1

1 : te−e1ε1
} +

{(te2
2 (· · · ter

r ) · · ·) : te−e1ε1}. Continuing similarly with the second term proves
(3). From (3) and (2) we then obtain

{te, tf} =
∑r

i=1 ei{ti : tg−εi
}. (4)

Now consider g =
∑r

i=1 giεi 6= 0. Applying (4) yields

{t1, tg−ε1
} = −{tg−ε1

, t1}
= −(g1 − 1){t1 : tg−ε1

} − g2{t2 : tg−ε2
} − g3{t3 : tg−ε3

} − · · · ,
whence 0 =

∑r
i=1 gi{ti : tg−εi

} which gives a nontrivial relation among the
{ti, tg−εi

}, i = 1, . . . , r. ¤

4.15. Theorem. For the Albert torus At we have

dimF (IDer At)α = 2 for all α ∈ Zn \ H.

Proof. We apply 4.14 to the central closure J = At of At. By [31] we know
that J = ⊕α∈Z3

3
Jα is a Z3

3-torus with Jα = Z⊗Z Z(At)α. Also, we let {x, y} :=

[Lx, Ly] for x, y ∈ J . Since {J, J}α = (IDerJ)α, we get dimZ(IDerJ)α ≤ 2 for
α 6= 0 by 4.14 while (IDerJ)0 = Z ⊗ (IDer At)H = 0 by 1.4.2. On the other
side, one knows that DerZ J = IDerJ is a simple Lie algebra of type F4 (see
[15, page 21]), and so dimZ DerJ = 52. Hence

52 = dimZ IDerJ =
∑

α 6=0

dimZ(IDerJ)α ≤ 26 · 2 = 52,

and so dimF (IDer At)α = dimZ(IDerJ)α = 2. ¤
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