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Abstract. Jordan and alternative tori are the coordinate algebras of extended
affine Lie algebras of type A; and As. In this paper we show that the derivation
algebra of a Jordan torus is a semidirect product of the ideal of inner derivations and
the subalgebra of central derivations. In the course of proving this result, we investi-
gate derivations of the more general class of division graded Jordan and alternative
algebras. We also describe invariant forms of these algebras.

Introduction

This paper provides a detailed description of the derivation algebra Der J
of a Jordan torus J. In particular, our main result 4.11 says that the derivation
algebra Der J of a Jordan torus J is a semidirect product,

Der J = IDer J x CDer J, (1)

of the ideal IDer J of inner derivations and the subalgebra CDer J of central
derivations of J.

Let us explain the concepts involved in the statement above. We consider
(linear) unital Jordan algebras J over a field F' of characteristic # 2. All our
algebras are G-graded, ie., J = @gEG Jg 5 JgJg C Jgyg, where G is an
abelian group. We call J division graded if every 0 # x, € J, is invertible. A
division-graded J is a Jordan G-torus if dim J, <1 for all g € G, and is simply
called a Jordan torus if G = Z™. Examples of Jordan tori are the plus algebras
of quantum tori (see 4.2) which recently have gained a lot of interest. Jordan
tori have recently been classified in [31].
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Perhaps even more important than the decomposition (1) itself is in our
opinion the concept of central derivations. In general, for a nonassociative G-
graded algebra A = € e A, with centre Z a central derivation Og is associ-
ated to any group homomorphism ©: G — (Z,+) by defining dg(ay) = O(g)aq
for a, € A;. We denote by CDer J the subalgebra of all central derivations.

We learned the concept of central derivations from the paper [24] by Os-
born and Passman where they have been introduced for twisted group algebras
and where (1) is proven for these algebras. That the derivation algebra is a
semidirect product of the ideal of inner derivations and a subalgebra had been
proven before in [4] for quantum tori and in [5] for Cayley tori, see 4.3. One of
the novelties of this paper is that we provide a conceptual description of this
subalgebra as the algebra of central derivations.

Although our main motivation are Jordan tori, in the body of the paper we
are considering more general algebras, namely Jordan or alternative division
graded algebras in §2 and the corresponding G-tori in §3. We do so since
the methods and results needed for the Jordan torus case easily generalize to
the more general settings, essentially without any extra cost, and since we
believe that the corresponding Lie algebras, studied in [32] and [29], are an
interesting class of algebras. Therefore, our paper also provides information
on DerT for any G-torus T, see for example 3.2 where a version of (1) is
proven for G-tori satisfying an additional condition. In §4 we then prove (1)
for all Jordan tori, by making use of their classification ([31]). As already
mentioned, (1) has been proven for associative tori in [4] and for nonassociative
alternative tori in [5]. Our paper provides a slightly more conceptual proof in
the latter case. It is included here since it can be done witout any extra
cost. Besides the decomposition (1) we also determine the precise structure of
CDer T and IDerT'. For example, we show that if G is finitely generated and A
is division graded, then CDer A is a generalized Witt algebra 2.9, more precisely
a generalization of the recent generalization of Witt algebras by Dokovié¢ and
Zhao [7].

Our interest in Jordan tori and their derivations comes from the theory of
extended affine Lie algebras: it is shown in [31] that the centreless cores of
extended affine Lie algebras of type A; are precisely the Tits-Kantor-Koecher
algebras of Jordan tori. Moreover, it is proven in the recent preprint [2] by
Allison and Gao that special classes of Jordan tori enter in the description of
the centreless cores of extended affine Lie algebras of reduced non-simply-laced
types. In the spirit of the paper [4] by Berman, Gao and Krylyuk on extended
affine Lie algebras of type A;,l > 3 (or [5] for type As) the description (1)
is an essential ingredient in the classification of all tame extended affine Lie
algebras of type A; and other types. Another ingredient in the construction of
extended affine Lie algebras of type Ay are invariant forms. It is well-known
that invariant forms are determined by invariant forms on the corresponding
coordinate algebras, see for example Koecher’s work [17] dealing with Tits-
Kantor-Koecher algebras or Benkart’s more recent paper [3] for root-graded
Lie algebras. We prove in 4.9 that for Jordan tori there exists, up to scalar
multiples, only one nondegenerate graded invariant form. The consequences of
our paper for extended affine Lie algebars will be elaborated in a sequel to this

paper.



This paper generalizes results contained in the second author’s Ph.D. thesis
written at the University of Ottawa under the supervision of the first author.

1. Basic definitions and notations

In this section we will review some basic concepts. Unless specified other-
wise, we will consider nonassociative (= not necessarily associative) algebras
over some field F' of arbitrary characteristic, denoted ch. F'. Our primary inter-
est are unital alternative and Jordan algebras. Whenever we consider Jordan
algebras we will assume that ch. F' # 2, unless explicitly stated otherwise.

1.1. Preliminaries. Let A be a nonassociative algebra with product writ-
ten as ab, a,b € A. For a,b,c € A we define the commutator as [a,b] = ab—ba =
(ada)(b) and the associator as (a,b,c) = (ab)e — a(be). The span of all com-
mutators and associators will be denoted [A, A] respectively (A, A, A).

The centre Z = Z(A) of A is defined as Z(A) = {z € A | [2,A] =0 =
(z,A,A) = (A, z,A)}. If A is unital Z(A) is a unital associative commutative
subalgebra of A and A is canonically an algebra over Z. The interplay between
the F-algebra and Z-algebra structure will be an important feature of this
paper. We have Z(A) ={z € A |[2,A4] =0 = (2,4,A)} if A is alternative
(but see 2.5) and Z(A) ={z€ A | (2, A, A) =0} if A is Jordan.

An F-linear map d: A — A is called a derivation of A if d(zy) = d(x)y +
zd(y) for all z,y € A. With the usual commutator the set of all derivations
of A is a Lie algebra denoted Derp A, or Der A if F' is clear form the context.
Any d € Derp A leaves the centre Z = Z(A) invariant and hence d |z € Derg Z
for d € Derrp A. Moreover, we note that zd is a derivation for any z € Z and
d € Derg A.

The definition of a derivation of course makes sense if A is an algebra over a
unital commutative associative ring, for example a unital F-algebra considered
as algebra over its centre Z. The Lie algebra of Z-linear derivations will be
denoted Derz A. Note that for d € Derg A, we have d € Dery A <= d |z = 0.
It is then easily seen that Derz A is an ideal of Derp A.

1.2. Central closure. Let A be a unital algebra such that its centre Z =
Z(A) does not contain any zero divisors of A, i.e., the Z-module A is torsion-
free. An example of such an algebra is a division G-graded algebra where G
is an ordered abelian group (2.3.(d)). Let Z be the field of fractions of the
integral domain Z. The central closure of A is defined as A = Z ®,; A which
we consider as an algebra over Z. We note the following facts [33]:

(i) z+ 1®x is an embedding of A into A.
(i) A is central over Z, i.e., the centre of A is Z.
(iii) A is prime (resp a domain) <= A is prime (resp a domain).

Let .
Dery A:= 7 ®z Dery A,

which we consider as a Lie algebra over Z. There is a canonical map
Derz A—Derz A:u®@d—l, ®d (1)
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where [, @d acts on Z® A via (I, ®d)(v®a) = uv®d(a). Using the fact that any
element in Derz A has the form % ®d for some 0 # z € Z and d € Dery A, it is
easily seen that this map is injective. Similarly, Der; A embeds into Derz A.
After an identification we therefore have

Dery A < Dery A < Der A, (2)
where < indicates a subalgebra. Also, we note:
If A is a finitely generated algebra over Z then Dery A = Derfz. (3)

Indeed, let {a; | 1 < i < n} be a generating set of the Z-algebra A. For d €
Der A we have d(1 ® a;) = (1/z;) @ b; for some 0 # z; € Z and b; € A. Thus,
putting z = [, z;, we obtain zd(1 ®a;) € 1 ® A. Since zd is Z-linear it follows
that 2d(1 ® A) C 1 ® A, so zd|1ga =t do € Derz A and d = 1dy € Deryz A,
proving (3).

For an associative algebra A we denote by AT the Jordan algebra defined
on A with U-operator U,y = xyx. The bilinear product of A' is given by
a.b= %(ab + ba) where on the right side we have the associative product of A.
Any subalgebra of AT is then also a Jordan algebra, in particular this is so for
H(A, %) :={a € A| a* = a} where % is an involution of A.

1.3. Lemma. Let A be an associative algebra with involution x. We ab-
breviate J = H(A,*) and consider J as a Jordan algebra. We assume that

(i) A is a torsion-free Z(A)-module, and
(i) Z(J)=Z(A)nJ.
We let A respectively J be the central closures of A and J. B B
Then x extends uniquely to an involution * of A such that H(A,x) = J

over the field of fractions L of Z(J) and L = H(A,*) N K for K the field of
fractions of Z(A).

Proof. The involution  on A is given by (1 ®a)* = L ®a* for 0 # z € Z(A)
and a € A. Since Z(J) C Z(A) we have a well-defined L-linear map

@:7:L®Z(J)J—>Z=K®Z(A)A : %@Z(J)x’_’l®Z(A)x-

z

By construction, its image is contained in H (_Z, x). We claim that in fact
¢(J) = H(A,«). Indeed, let 1 @74y a € H(A,*), with 0 # 2z € Z(A) and

a € A. Then 2*a = za* holds in A, hence za* € H(A,x) = J. Since also
¥z € Z(A)nJ = Z(J) it now follows that 1 @74y a = & @z a* =

z*z

%@Z(A) za* € o(J). 0

1.4. Inner derivations. For an associative algebra A and any = € A, the
map adz : A — A : y — [z,y] is a so-called inner derivation. More generally,
for an alternative algebra A over a field F' with ch. F' # 2, the inner derivations
are sums of the derivations Ay p = Rig ) — Liap) — 3[La, Ry, where L and R
denote the left respectively right multiplication in A. For a Jordan algebra J,
the inner derivations are sums of the derivations Aqp = [Lq, Lp], a,b € J (see
e.g. [14, page 35 and page 300]).



For the classes of algebras considered above, the set of all inner derivations
will be denoted by IDer A. It is easily seen that IDer A is an ideal of the Lie
algebra Derp A, and any inner derivation is Z-linear for Z = Z(A):

IDer A <« Dery A. (1)

Moreover, for any z € Z(A) we have zA,p = A.ep = Aq2p from which it
easily follows that

7 @z IDer A = IDer A (2)
where we used the identification 1.2.2.

Example. When A is an associative algebra, any derivation of A is clearly
a derivation of the Jordan algebra AT. The inner derivations of A" are also
inner derivations of A since

[L., L,] = 4ad[u, v], (3)
whence over a base field containing %,
Der A C Der AY and [A4,A4]/(Z(A)N[A, A]) 2IDer AT CIDer A (4)

(see 2.10.2 and 3.5 for equality).

1.5. Graded algebras. Let G be an abelian group, written additively
and assume that A is G-graded, i.e., A = ©gcq Ay and AjA;, C Agyy for all
g,h € G. In this paper we will only consider algebras graded by an abelian
group, although some results hold for non-abelian groups. For a € A, written
in the form a = }  _;a, with a; € Ay, the ag will be referred to as the
homogeneous components and any a € UgeG Ay will be called homogenous.

The support of A is supp A := {g € G | A; # (0)}. A subspace B of A is
graded if B = @4ca (BN Ay) in which case we put B, = BN A,. Examples of
graded subspaces are [A, A], (4, A, A) and Z(A). The subgroup of G generated
by supp Z, Z = Z(A), is called the central grading group. If H is this group
the Z-algebra A is G/H-graded: A = @geq/pAyg for Ag = @ycgdy.

1.6. Derivations of graded algebras. Let A = ©,cq A, be a G-graded
algebra. For g € GG define

Derp A)y ={d € Derrp A | d(Ap) C Ayyp for all h € G}, and
g g

grDer, A = @ (Derp A),.
geG

It is easily seen that grDer, A is a subalgebra of Derp A,
grDerp A < Derp A (1)
called the subalgebra of graded derivations. 1t is well-known that
grDerp A = Derp A if A is a finitely generated F-algebra (2)
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(see for example [11, Prop. 1] where this is proven for Lie algebras). For Z the
centre of A we put
grDer, A = @ (Derz A), where (Derz A)y = (Derp A)g N Dery A.
geG

It is easy to prove that

grDer, AN Dery A = grDer, A. (3)
Let H be a subgroup of G (later_ this will be the grading group of Z) and
put G = G/H. We then have a G-grading of A (see 1.5) and analogously a
G-grading of grDer A:

grDerp A = @ (grDerp A)g  where
e
(grDerp A)g = @ (grDerp A) g
9'€g
={d e grDerp A | d(Ag) C Agi5 for all a € G}.
We will put
(grDerp A) g := (grDerp A)g = @ (Derg A)p,.
heH

Concerning inner derivations of G-graded alternative or Jordan algebras A we
have

IDer A = @ (IDer A),, (4)
geG
where (IDer A), = (Der A), N IDer A. In particular, by 1.4.1,
IDer A C grDer; A. (5)

1.7. Example of a leftsymmetric algebra. The algebra and its graded
subalgebra, introduced in this subsection, will be used in 1.8 to define special
types of derivations.

Let G be an abelian group and let Z = . Z, be a commutative associa-
tive G-graded algebra (later this will be the centre of a nonassociative algebra).
We denote by Homy (G, Z) the F-vector space of abelian group homomorphisms
from G into the additive group (Z,+). Of course, Homyz (G, Z) also carries a
Z-module structure which however will not be important in the following. We
define an F-algebra on Homy(G, Z) by assigning to ©,& € Homy(G, Z) the
product © x &, given by

(@ %P)(9) = Xhee OR)P(9)n (1)
Note that this is well-defined since @(g), # 0 for finitely many h € G only. A
straightforward calculation shows that the associator with respect to * satisfies

(0,2,%)(9) = = Xhee OR)P(M)¥(g)n - (2)
Therefore (Homy (G, Z), ) is a leftsymmetric algebra, i.e., (©,P,¥) = (&,0,¥)
holds for all ©, ¢, ¥ € Homy(G, Z). Leftsymmetric algebras, rather their op-
posite algebras have recently been studied in [10] and [9] where the reader can
also find references to previous investigations. In particular, these two papers
consider examples of rightsymmetric algebras closely related to the example
above.



It is well-known and easily checked that for any leftsymmetric algebra the
commutator defines a Lie algebra. It will follow from the results in 1.8, 1.9 and
2.9 that the Lie algebra (Homy (G, Z),[.,.]) can be considered a generalization
of the Witt algebra.

We denote by Homgz(G, Z)s, the Z-submodule of all @ for which O(G) is
contained in the sum of finitely many Z,’s and by Homgz (G, Z,) the F-subspace
of those © € Homy (G, Z) with ©(G) C Z,, g € G. It is easily seen that

Homgz(G, Z)an = @ ,cc Homz(G, Z,)  (for all G) (3)
= Homyz (G, Z) if G is finitely generated. (4)

We have Homy (G, Z,,) * Homz (G, Z,,) C Homz (G, Zg, +4,), since
Ox P =0(g2)® for © € Homz(G,Z),® € Homz(G, Z,). (5)

Hence Homy (G, Z)gy is a subalgebra of (Homgy (G, Z), ) which is G-graded by
(3). We note
Hom(G, Z) * Hom(G, Zy) = 0. (6)

1.8. Central derivations. Let A be a G-graded unital algebra over F'
with centre Z = @, .y Zn and central grading group H. For the sake of
uniqueness

we assume in this subsection that supp A spans G as abelian group. (1)

In order to apply the results of 1.7 we will also consider Z as a G-graded
algebra. Any © € Homgz(G, Z) gives rise to an F-linear derivation dg of A,
defined on A, by

a@(ag) = @(g)ag (ag € Ag) (2)

and called a central derivation (see [24, 2] where this concept has been intro-
duced for the case of twisted group algebras). We denote by CDer g A the space
of central derivations. The formula

[89, a@] = a@*@—é*@ (3)
shows that CDerg A is a subalgebra of the Lie algebra Derp A and that
0: Homyz(G, Z) — CDerp A (4)

is an epimorphism of Lie algebras. It maps the subalgebra Homyz(G, Z)g, of
(Homgy(G, Z),].,.]) onto the graded subalgebra

(CDerr A)gin := 0(Homz(G, Z)in) = @j,c iy (CDerp A)y,
of grDerp A, where
G(HomZ(G, Zh)) =: (CDerF A)h C (Derp A)h .

The derivations in
D :={0o | © € Homz(G, Zy)} (5)

will be called degree derivations. By 1.7.6, D is always abelian.
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1.9. Generalized Witt algebras. Central derivations are related to a
generalization of the Witt algebra. This Lie algebra can naturally be defined
in the following setting:

(i) K is an associative commutative unital ring, H is an abelian group,

(i) Z = @) cy Zn is an associative commutative H-graded algebra over
K (later this will be a twisted group ring K*[H] of H over K, or even
the group algebra K[H]),

(iii) D is a K-module, and

(iv) p: Dx H — K : (d,h) — d(h) is a pairing which is K-linear in the
first variable and additive in the second.

We define
W =W(Z,D,p):=Z®x D =®pcy Zn @k D

and use the abbreviation zpd = z, Qk d for z, € Z,,d € D. There exists
a unique K-algebra product = on W such that (zxndi) * (z:d2) = zpdi(i)zid2
for homogenous zp,2; € Z, h,i € H and dy,dy € D. It is easily seen that
(W, %) is a leftsymmetric algebra, hence W together with the commutator is a
Lie algebra which we call the generalized Witt algebra associated to (Z, D, p).
Thus, the Lie algebra product of W is given by

[Zhdl, Zidg] — Zh%; (d1 (’L)dg — dg (h)dl) . (1)

For the special case of the group algebra Z = K[H], this Lie algebra has been
introduced in [7] where the reader can also find some background informa-
tion and examples, justifying the terminology. Another special case has been
considered in [26] and [28].

In the setting above, the left and right kernel of p are

DH .={de D:d(H) =0} (left kernel),
HP :={hc H:p(D,h) =0} (right kernel).

Example. In the setting of 1.8 we let K = Z, H the central grading group
of Z=27Z(A), D =Homy(G, Zy) and

p: Homz (G, Zy) x H — Zy : (p, h) — @(h) (2)

the canonical pairing. In this case D = {¢ € Homz(G, Zo) | ¢(H) = 0} which
is in general non-zero, e.g. for quantum tori. It follows from 1.7.5 that

w: W(Z, Homz (G, Zp), p) — Homz (G, Z)fin: 21 @ ¢ — 2ne (3)
is a homomorphism of leftsymmetric algebras, hence also for the associated

Lie algebras. Note that we now have constructed the following Lie algebra
homomorphisms

W (Z, Homy (G, Zo), p) — Homz (G, Z)gn — (CDerp A)gn - (4)

We will show in 2.9 that for so-called division graded algebras both maps pu
and 0 are isomorphisms.



1.10. Lemma. Let W = W(Z,D,p) be a generalized Witt algebra as in
1.9 above.

(a) Any K-submodule D" of D gives rise to a subalgebra Z @k D' of W.
Moreover,
Y = Z @ DY (1)

is an abelian ideal of W. If D = D' @ DY is a direct sum of K-modules, e.g.
if K is a field, the generalized Witt algebra W is a semidirect product,
W=XxY forX:=2Z®kgD (2)

of an abelian ideal Y and a subalgebra X which is again a generalized Witt
algebra, namely X =W (Z,D',p"), where p’ = p|D’ x H has zero left kernel.

(b) If K is a field of characteristic # 2 and p # 0 then W is perfect.

Proof. (a) is easy. For (b) we observe [zod, zpd| = zpzpd(h)d € Kzpd for
h € H and any d € D. Hence Zd C [W, W] for any d ¢ D¥. But for d € D
and any d; € D we have [z,d1, z;d] = zp2;d1(i)d. Since p # 0, there exist dy
and i € H such that d; (i) # 0 and so zxd € [W, W] for any k € H.

Remark. For the special case that K is a field of characteristic 0 and Z is
the group algebra of H, the structure of W is determined in [16]. In particular,
a more precise version of (2) is shown there: W is a semidirect product of the
abelian ideal Y and a simple subalgebra X which is again a generalized Witt
algebra. We will prove an analogue in our setting in 4.12.

1.11. Example: H(A, x) for x of second kind. Let A = @4cc Ay be a
unital associative G-graded algebra over a field F of ch. ' # 2 and suppose
is a graded involution of 4, i.e., A7 = A, for all g € G, which is of second kind
in the sense that F.1 = (E.1)* ¢ H(A,x). For simpler notation let us put

H:=H(A,x) and S:=S5(A4,x)={a€A|a" =—a}.

We identify £ = E.1. With F' = ENH we have that E/F is a Galois extension
of degree 2, so E = F'[s| for some s = —s* € E. Then

A=H®sH where sH=S (1)

as G-graded spaces. It follows that the supports of the associative algebra A
and the Jordan algebras AT and H all coincide:

supp A = supp AT =supp H . (2)
Since [a, b]* = —[a*,b*] and the Lie product [ -,- | is E-linear, (1) implies
[A,A] = [H,H] @ [H,S] with [A,A|nS=[H,H]=][S,S5] (3)
and [A,A|NH = [H,S] = s[H, H]. We have the general formula
A3 [z, ]y, 2] = 4y, z,2) € AT (4)
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where the left and right side are calculated in A and AT respectively. Hence
the centres of the Jordan algebras A" and H are given by

Z(AT)={2z€ A|[A,A 2] =0} and
ZH)={2€H|[H H:z]=0=ZANNH (5)

where the second equality in (5) follows from E-linearity of [ -,- |.

Let us now consider derivations. The involution * induces a Lie algebra
automorphism Derg AT — Derg AT : d +— d* of order 2, where d* is defined
by d*(a) = d(a*)*. Hence, with obvious notation,

Derp AT = H(Derg AT, %) @ S(Derg AT, )
Any d € H(Derg A*, %) leaves H invariant, hence we have a well-defined map
W: HDerg A", %) — Derp H : d +— d|p .
In fact, ¥ is an isomorphism. Injectivity of ¥ follows from (1), and for surjec-
tivity one notes that any d € Derp H extends to a d € Derg AT with d* = d
by defining d(h + sh') = d(h) + sd(h') for h,h’ € H. In the following we will
identify Derr H = H(Derg AT, *) via ¥. We then have

Derg AT = Derp H @ sDerp H (6)

where s Derp H = S(Derg AT, x). By construction, ¥ preserves the homoge-
neous spaces, hence (Derp H), is the fixed point space of the automorphism x,
and because of (6) we then have

dimE(DerEA+)g == dimF(DerF H)g (7)
for all g € G. For inner derivations 1.4.3 implies
IDer AT = ad[A, A] = ad[H, H] ® ad[H, S] = ad[H, H] ® sad[H, H|

where the second equality follows from (3) and (ad a)* = ad(—a*). Hence again
by 1.4.3

IDer H = ad[H, H] = IDer A" N Derp H (8)

so that (7) also holds for inner derivations. For a central derivation dg of
AT we have (0g)* = Do+ for ©*(g) = (O(g))*. The map O — O* leaves
Homy (G, Z(A™)) invariant. By (5), any © with ©* = © maps G into Z(H) and
hence Homy (G, Z(A™1)) = Homy (G, Z(H)) & s Homy (G, Z(H)) which implies

CDerp AT = CDerp H & s CDerp H . (9)

Therefore CDerp H = CDerg ATNDergr H and (7) also holds for central deriva-
tions.
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1.12. Graded invariant forms. A graded invariant form on G-graded F-
algebra A = @gcq Ay is a symmetric bilinear form (.|.): A x A — F satisfying
(i) (A4lAp) =0 for g+ h # 0, and
(ii) (ablc) = (albc) for all a,b,c € A.
The F-vector space of all graded invariant forms on A will be denoted GIF(A).
It is described in the following Lemma 1.13 whose proof will be left to the
reader.

We will say that a graded invariant form (.|.) is nondegenerate if its radical
rad(.|.) = {a € A | (a]A) = 0} vanishes. Clearly rad(.|.) is a graded ideal.
Hence, if A is graded-simple, i.e., A does not have non-zero graded ideals, then
any non-zero graded invariant form is nondegenerate.

1.13. Lemma (graded invariant forms). Let A be a G-graded algebra
over a field F, put GIF(A) = Ao/([A, Alo + (A, A, A)y) and denote by  the
map A — GIF(A) : a = decag — @ where ag is the image of ag € Ag
under the canonical projection of Ay onto GIF(A). Then every linear form
[ € GIF(A)* = Homp(GIF(A), F) gives rise to a graded invariant form (.|.)y
defined by (alb) s = f(m(ab)). The map

GIF(A)* — GIF(A) : f— (.|.)f (1)
is F-linear, and is an isomorphism if A is unital. In particular,

[A, Ao =0=(A4,A,A)y and A unital = GIF(A) =2 A]. (2)

1.14. Skew derivations. Let again A be a G-graded F-algebra and let
(.|.) be a graded invariant form. A derivation D is called a skew derivation if
(d(a)|b) + (ald(b)) = 0 for all a,b € A. The set of all skew derivations is a
subalgebra of Derp A, denoted SDerp A. It is straigthforward to check that

IDerp A C SDerp A for A alternative or Jordan, ch. F' # 2. (1)

It is also easily seen that a graded derivation is skew if and only if every
homogenous component is skew. Thus we have

gr3Derp A := grDerp AN SDerp A = @ (SDerp A), (2)
geG

where (SDerp A)g := SDerp AN (Derp A)y. Assume A is unital and let Z =
@D,cu Zn be the centre of A. Then for any h € H
CDerr AN (SDerp A)p, = {0e | © € Homy (G, Z;,),0(h) = 0}
if (.|.) is nondegenerate and A is unital. (3)
Indeed, if © € Homy(G, Z;,) then 0g € SDerp A if and only if for all ¢ € G and
ag € Aga b—g—h € A—g—h we have 0 = (@(g)a9|b—g—h)+(ag|@(_g_h)b—g—h) =

—(agb_g—p|©O(h)). Since A is unital and (.|.) is nondegenerate this is equivalent
to ©(h) = 0.
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2. Division graded algebras

We specialize the set-up of the previous section 1 and consider a class of
unital G-graded algebras which we assume to be alternative or Jordan. In the
latter case we will suppose that ch. F' # 2, unless explicitly stated otherwise.
We begin with a result on reflection spaces which naturally arise as the support
of division graded algebras.

2.1. Reflection spaces. A set M together with an operation M x M —
M : (m,n) — m-n is a reflection space in the sense of Loos ([19]) if it satisfies
the three axioms m-m = m, m-(m-n) =n and m-(n-p) = (m-n)-(m-p) for all
m,n,p € M. A homomorphism between reflection spaces is a map preserving
the products.

Now let G be an abelian group. With respect to the operation g-h = 2g—h,
the set G becomes a reflection space. It has a distinguished base point, the
zero element 0 of G. The following formulas hold in G:

0-g=—¢g and (1)
g1 (92 (Gm—-1"Gm) )
=2(g1—g2+9s— -+ (=1)"gm-1) + (=) g, (2)

For a subset S of G we denote by (S) the subgroup spanned by S. The
following conditions are equivalent for S C G:

(i) 0eSandS-SCS;

(ii) 2(S) c S and 2(S)+ S C S;

(iii) S is a union of cosets modulo 2(S) including the trivial coset 2(S).
Indeed, if (i) holds we have —S = S by (1) and hence every g € (S) can be
written in the form g = s; — s3 + 83 — -+ + (—=1)"*ls, for suitable s; € S
and n > 1. For arbitrary s € S we then obtain 2g + s € S from (2), thus
2(S) + 5 C S and in particular 2(S) C S since 0 € S. The implications (ii) =
(iii) and (iii) = (i) are immediate.

A subset S satisfying the equivalent conditions (i) — (iii) above will be called
a reflection subspace of G. The special case of S C G = (Z",+) and (S) = Z"
has been treated in [1, Ch.II §1] where S was called a semilattice. The descrip-
tion of reflection subspaces above is in fact a straightforward generalization of
[1, Ch.II Prop. 1.4 and Remark 1.6].

2.2. Proposition. Let S C G be a reflection subspace.

(a) If G is finitely generated as abelian group, S is finitely generated as
reflection space.

(b) Let H be an abelian group without 2-torsion. Then any homomorphism
p: S — H of reflection spaces preserving the base points uniquely extends to a
group homomorphism ®: (S) — H.

Proof. (a) Since a subgroup of a finitely generated group is again finitely
generated we may assume (S) = G. The quotient G/2G is a finitely spanned
Z]/2Z-vector space, hence finite. It therefore follows from 2.1 that S is the
union of a finite number of cosets modulo 2G, say 7; + 2G, 0 < i < n, where
we can assume 19 = 0.
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We next note that S contains a finite generating set of the abelian group G.
Indeed, by assumption, there exist finitely many elements xq,zs,...,z, € G
spanning G. But since G = (S) and S = —S, any z; is a finite sum of elements
of S, say x; = Zj oi; with 0;; € S. Hence the collection of all {o;;} is a finite
generating set of G contained in S.

Let X = {0;} U{70,...7,} and denote by S’ the reflection space generated
by X. By 2.1(ii) applied to S’, we have Zy C S’ for any y € S’. Hence, by
choosing appropriate g; in |J; Zo;; U {£7;} C S, 2.1.2 shows 29 + 7; € S’ for
every g € G and 7;, 0 <4 < n, proving S’ = S.

(b) We may again assume that (S) = G. Since ¢(0) = 0 by assumption we
have p(—s) = ¢(0-5) = 0- ¢(s) = —¢(s) for every s € S and also p(2s) =
©(s-0) =2p(s). Now for any g € G, s € S we obtain ¢(2s — 2g) = ¢(s-2g9) =
o(s) - v(2g9) = 2¢(s) — ¢(2¢g). Hence, if ¢(2g) € 2H, so is ¢(2(s — g)). Since
any g € G can be written in the form g = s; — sy + 83 — --- + (—=1)"*ls,
it follows by induction on n that ¢(2g) € 2H. We define &: G — H by
®(g) = 3¢(2g). Then @ extends p, and for s € S and g € G we have 2&(s+g) =
P(2s +29) = (s - (—29)) = »(s) - p(—29) = 2¢(s) + ©(29) = 2(P(s) + 2(9)),
whence @(s + g) = @(s) + D(g). Since any g € G is a finite sum of elements in
S, this implies, by induction, that @ is a group homomorphism. O

2.3. Strongly graded and division graded algebras. From now on we
will assume that A is a unital alternative or a unital Jordan algebra over F.
Unless specified otherwise we will assume that ch. F # 2 if A is Jordan.

We will say that a G-graded algebra A is strongly graded or that A has a
G-grading of strong type if AjA, = Ay, for all g, h € G. The algebra A is called
a division G-graded algebra if all nonzero homogeneous elements are invertible.
We list some known properties of division graded algebras.

(a) In any alternative algebra an element a is invertible if and only if the left
multiplication L, is invertible, and in this case (La)_1 = L,-1. Moreover, if
a,b are invertible then so is their product ab, and then (ab)~! = b~ta~!. This
easily implies that a division G-graded alternative algebra is strongly graded
and that its support is a subgroup of G ([29] or [23, 1.4.5] for the case of
associative algebras).

A division G-graded associative algebra, sometimes also called a graded
division ring [23], is a crossed product algebra D x G of G over an associative
division algebra D, and conversely [25, 2|. The classification of division Z"-
graded alternative algebras is given in [29].

(b) For a Jordan algebra A we denote by U, the U-operator of a Jordan
algebra, i.e., U,b = 2a(ab) — a?b. Since A is supposed to have a unit element 1,
one can recover the bilinear product from the U-operator in view of the formula
2ab = (Ugsp — Uy — Up)1. An element a € A is invertible if and only if U, is
invertible.

Let A be a division graded Jordan algebra and denote by S = supp A its
support. Then Ua, Ay = Aggyp forall g,h € S. Hence S is a reflection subspace
of G. We note that in general S is not a subgroup of G (see for example 4.4).

(c) ([29] or [23, 1.4.2] for associative algebras) For a totally ordered abelian
group G, e.g. G = Z", any division G-graded algebra A is a domain in the
sense that xy =0 = x =0 or y = 0 if A is alternative, and U,y = 0= 2 =10
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or y =0 if A is Jordan. We recall that any domain is strongly prime, meaning
nondegenerate and prime.

(d) The centre Z of a division G-graded algebra A is again division graded.
In particular, Zp is a field and Z = Z{[H] is a twisted group algebra where H
is the central grading group. Moreover, A is a division G-graded algebra over
Zy. If G is totally ordered, Z is an integral domain.

(e) Since A is graded-simple, any non-zero graded invariant form on A is
nondegenerate. For the existence of such forms see 1.13, 3.3 and 4.9.

We next present some preliminary results on division graded algebras.

2.4. Lemma. Let A be a division G-graded algebra such that

(i) G is finitely generated and
(ii) dimp Ay < oo forallgeG.

Then A is finitely generated as an algebra.

Proof. Let X C S = supp A be a finite generating set of the reflection space
S and let Y be the union of vector space bases of all A,, g € X. The subalgebra
A’ generated by Y is graded and has support S, in view of 2.1 and (a), (b) of
2.3. By induction on the number of generators needed to express s € S as a
product of factors from X one shows A, = A, for all s € S, hence A’ = A. O

2.5. Lemma. If A is an alternative division graded algebra, then

Z(A)={a€ A| [a, A] =0}. (1)

Proof. 1t suffices to show that any homogeneous a € A satisfying [a, A] =0
lies in the centre of A. It is proven in McCrimmon’s unpublished book [20, III
Lemma 4.1] that (a, A, A)? = 0 for all a € A with [a, A] = 0. In particular, for
homogeneous b, ¢ € A the equation (a,b, c)? = 0 forces (a,b,c) = 0. Since [20]
is not published, we mention that for the special case of a prime alternative
algebra over a field of characteristic # 3, the lemma follows from results in
[33]. Indeed, for the proof of (1) we may assume that A is not associative.
Then A is nondegenerate ([33, 9 Thm. 5]), hence its central closure A is a
simple alternative algebra (proof of [33, 9 Thm.9]) and (1) holds for A by [33,
7 Cor. of Lemma 7 and 7, Cor. 1 of Lemma 1]. In particular, any a € A
which commutes with A and hence with A associates with everything of A C A
proving (1). O

_ 2.6. Lemma. Let A be a dwision G-graded algebra whose central closure
A ezists (for example this holds by 2.3(c) if G is ordered) and has only inner
derivations. Then IDer A = grDer, A.

Proof. By 1.6.5 we only need to prove grDer, A C IDer A. So let 0 #
d € grDer, A. We may assume that d is homogeneous. By 1.2.2, we have
the derivation d = Id ® d of A which, by assumption and 1.4.2, has the form
d= 1A for some 0 # z € Z and some A € IDer A. Hence zd = A on A and
so, by restriction, zd = A on A. Considering the homogeneous components of
this equation we obtain a non-zero homogeneous z’ € Z and a homogeneous
A’ € IDer A such that 2’d = A’. Since 2’ is invertible it follows that d = LA’ €
IDer A. OJ
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2.7. Graded modules. Let A = ©4c¢ A be an associative division G-
graded algebra over F. Suppose that the group G acts on a set S. A left
A-module M is called a graded A-module of type S if M = @Pycs M, and
AgMs C M, for each g € G and s € S. In this case, we let 5§ := G.s € S/G
be the G-orbit of s and put M; := ©ycq M, . Obviously, M = ®§es/G Ms.

The following lemma is easy to prove. For related results see for example
[6, Thm. 3], [23, [.3.4] and [31, Lemma 3.6].

2.8. Lemma. Let A= $ycq Ay be an associative division G-graded alge-
bra and M = ®scs Ms a graded A-module of type S. Then:

(a) Mys = agMy; = AgM; for all g € G, s € S and any 0 # a, € A,.
Hence AMy = Ms.

(b) Suppose that G acts freely on S, i.e., g.s = s for some g € G and s € S
implies g = 0. Then Ms is a free A-module, namely any Ag-basis of the Ag-
vector space My is also an A-basis of Ms. Hence rank 4 Mz = dimy, My for all
s € 5. Moreover, M is a free A-module, there exists an A-basis of M consisting
of homogeneous elements and M = A®a, N for a suitable Ag-module N.

(¢) Suppose that G and S are totally ordered and that the action preserves
the order, i.e., g < ¢ and s < s' implies g.s < ¢'.s'. Then any graded
submodule N of M is saturated in the sense that N = {m € M | am €
N for some 0 # a € A}. Hence, for any multiplicatively closed subset B of
A we have B-"'*M = B™'N <« M =N.

2.9. Proposition. Let A be a division graded algebra with G = (supp A),
and Z = @y, ey Zn the centre of A with central grading group H. We choose
0 # zp € Zy for all h € H. Recall that D denotes the degree derivations as
defined in 1.8.5. Then the maps p and 0 of 1.9.4

W (Z, Homz(G, Zy), p) —— Homz(G, Z)n 2, (CDerp A)fin
are isomorphisms of Lie algebras. Moreover,

Homy,(G, Z)en = €D 2n Homz (G, Zo) & Z ®z, Homy (G, Zo), (1)

heH

(CDerg A)gy, = @ 2y D=2Z®z, D and (2)
heH

SDerp AN (CDerr A)sn = P 21{0e € D : O(h) = 0} (3)
heH

with respect to any nondegenerate graded invariant form on A.

Proof. (1) and (2) are immediate from 2.8, while (3) follows from 1.14.3.
In particular, (1) implies that p is an isomorphism. To show that O is an
isomorphism it suffices in view of 1.8.3 to prove injectivity. Assume therefore
that 2,0, = 0 for ¢ € Homy(G, Zy). Then ¢|suppa = 0 follows and hence
¢ = 0 because of our assumption G = (supp A). O

In the remainder of this section we will introduce division graded versions
of the standard examples of Jordan algebras.
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2.10. Proposition. Let A be a division graded associative algebra over a
field F of ch. F # 2.

(a) Any graded subalgebra J of AT is a division G-graded Jordan algebra as
soon as x=' € J for any non-zero homogeneous x € J. In particular, AT itself
1s division G-graded.

(b) If A is associatively generated by a division graded subalgebra J of A™
then

Z(J)=Z(A)nJ (1)

(c) For J =A% we have
Derp A =Derp AT, Z(A)=Z(A") and (2)
CDerp A = CDerp A™. (3)

If A is semiprime (b) follows from [22, Thm. 3.3]. However, A is in gen-
eral not semiprime. For example, even a group algebra over a field need not
be semiprime (see [18, (10.17)]). Also, for an arbitrary prime algebra A the
equality Derp A = Derp A™ follows from [13, Thm. 3.3]. Although A is in
general not prime, we can nevertheless use some of the methods of Herstein’s
proof. In particular, the crucial formula (4) below is taken from [13].

Proof. (a) follows from the fact that invertibility in A and A™ are the same.
For (b), the inclusion Z(A)NJ C Z(J) is obvious from 1.11.4. To prove the
other inclusion we may assume that 0 # z € Z(J) is a homogenous element.
For any = € J we then have [z, 2]? = 22.U,x — U,2? —U,2? = 0 since z € Z(J).
If 2 ¢ Z(A) then [z,z] # 0 for some homogenous z € J and hence [z, 2] is
invertible, contradicting [z, z]* = 0.

(c) It is clear that Der A C Der AT. So, let d € Der A* and put a® =
d(ab) — d(a)b — ad(b) for a,b € A. By calculating d((ab)ab + ba(ab)) in two
different way one obtains [13, Lemma 3.6]

abla,b] = 0. (4)

Linearizing in b gives

a’la, ¢] + a‘[a, b] = 0. (5)

It suffices to prove a® = 0 for all homogeneous a,b € A. We will do so by
distinguishing four cases.

Case 1) a,b € Z(A): Then d(ab) = d(a.b) = d(a).b+ a.d(b) = d(a)b-+ ad(b),
ie.,a® =0. Case2) a ¢ Z(A),b e Z(A): By (5) we then have a’[a, ¢] = 0 for all
¢ € A. Since a is homogenous there exists a homogeneous ¢ such that [a, c] # 0
and hence [a, c] invertible, forcing a® = 0. Case 3) a € Z(A),b ¢ Z(A): Since
a’ = —b? this case follows from the previous one. Case 4) a,b & Z(A): If
[a,b] # 0 we obtain a® = 0 from (4). Otherwise, we get a’[a,c] = 0 from (5)
for all ¢ € A, and again a® = 0 follows.

Thus Derp A = Derp AT. That Z(A) = Z(A™) follows from (1), and then
CDerp A = CDerp AT by definition. d
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2.11. Quadratic form Jordan algebras. Let & be an associative com-
mutative ring, M a ®-module and ¢: M — @ a quadratic form with base point,
ie., q(1) =1 for some 1 € M. We let q(x,y) = q(z + y) — q(x) — q(y) be the
polar of ¢, and define T = ¢(x,1)1 — x and U,y = q(z,y)x — q(z)y. Then M
together with the quadratic operator U is a (quadratic) Jordan algebra denoted
by J over ¢. We will often confuse J and M. It is well-known that any z € M

with invertible ¢(x) is invertible in J. Indeed, its inverse is 7! = ﬁf.

Suppose @ is G-graded, M is a graded module of type G and ¢: M — &
is graded in the sense that q(My) C Doy, q(My, My) C Pgip for g,h € G
and 1 € My. The corresponding Jordan algebra J is then G-graded, i.e.,
Uj,Jn C Jogyn and {Jy Jp Ji} C Jgynyi where {...} is the Jordan triple product
of J. Moreover, J is division G-graded if ¢ is anisotropic graded in the sense
that g(mg) is invertible for any 0 # mgy € My = J,.

If - € ®wehave J =01@V for V= {z € M| g(z,1) = 0} and with
respect to this decomposition the bilinear product of .J satisfies

(811 D Ul)(Sgl D Ug) = (8182 + f(’Ul,UQ))l D (81U2 + 82’1)1) (1)

for f = —%q(.,.)\VXV. In this case, the associator of x; = s;.1 @ v; is, with
obvious notation,

(s1 @ v1,52 D ve,s3Dvs) = f(v1,v2)vs — f(vs,v2)v1 € V. (2)

Hence @.1 C Z(J) and (J,J,J) C V. We note that J always has a non-zero
invariant form, namely (z|y) = ¢(xy, 1) is such a form. But in general this form
is not graded. We now describe special classes of quadratic form algebras.

2.12. Lemma. Let J be a quadratic form algebra over a G-graded ® con-
taining %, and decompose the underlying module M = &1 ®V as in 2.11
above. Suppose that V is an orthogonal sum of non-zero G-graded ®-modules
V@ i eI with |I| > 2 such that each q|V?) is anisotropic graded (hence the
type S; of V) is contained in G). We extend the grading of V' to M in the
canonical way, so that J is a G-graded algebra.

(a) Then Z(J) =@.1 and (J,J,J) =V, hence J = Z(J) @ (J,J,J).
(b) Let o(f) = {d € Endg V | f(du,v) + f(u,dv) = 0 for all u,v € V'} be
the orthogonal Lie algebra associated to f and let eo(f) be the ideal spanned by

all elementary orthogonal transformations E, ., u,v € V, given by E, ,(w) =
flu,w)v — fv,w)u = (v, w,v) = A, ,(w). Then

Derg J — o(f) :d — d|v (1)

is an isomorphism of Lie algebras mapping 1Der J onto eo(f).

(c) Suppose P is division graded, so that by 2.8 every V@ s free and has
a homogenous P-basis. Assume that V has finite rank with a homogeneous ®-
basis {v1,...,vn} satisfying f(vi,vj) = 0 for i # j. Then o(f) = eo(f), and
hence all @-linear derivations are inner. Moreover, {E,, ., | 1 <i<j <n} is
a D-basis of o(f).

Proof. At least in special cases, this result is known to the experts. For the
convenience of the reader we include a short proof.
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(a) Let z € Z(J)NV. By 2.11.2 we then have 0 = (z,u,v) = f(z,u)v for
any u,v in different submodules V(9. Considering homogenous components
then forces z = 0. Hence Z(J) = @.1. If u,v belong to the same V®) but w to
a different V) we get (u,v,w) = f(u,v)w. Since f(u,v) for suitable choices
of u,v is invertible, this shows w € (V,V, V), and then V = (J, J, J) follows.

(b) Any &-linear derivation d annihilates 1 € J and leaves V = (J, J, J)
invariant. That d|y € o(f) is immediate from the product formula 2.11.1.
Thus the map (1) is well-defined and injective. That it is also surjective is an
easy exercise. In case @ is a field (c) is well-known. In the setting of this lemma
it is proven in [8].

2.13. Construction of a division graded quadratic form Jordan
algebra. For easier reference we describe a special case of the situation con-
sidered in 2.12. This setting will be specialized in 4.5 to define Clifford tori.
Our construction uses the following data:

(i) @ is a division graded commutative associative ring with grading
group H = supp @ and % € do;

(ii) H is a subgroup of an abelian group G such that G/H is a 2-group,

i.e., any element of G/H has order < 2;

(ili) I C G is a set of representatives of some cosets of G modulo H

different from H, with at least two elements;

(iv)  (zi)ier is a family of non-zero (hence invertible) elements z; € Po;.
Assuming these data, we put zp = 1 € &g and let V), i € I U {0}, be the
graded @-module of type ¢ + H and rank 1 with basis v; € Vi(l) = dgv; where
vg =29 =1 € &y. Thus

VO =@,y Vi with V0, = @y
Fori € TU{0} welet ¢: V(¥ — & be the #-quadratic form given by ¢(¥) (v;) =
z; € ®o;. We then have a G-graded ¢-module M = @z‘elu{o} v = @geG M,
where ‘
M, - {Vi(ﬁh if g=i+hforicIU{0},heH
0 otherwise
with an anisotropic graded quadratic form ¢ = @, (0} ¢?, the orthogonal

sum of the quadratic forms ¢(*. Hence the corresponding quadratic form Jor-
dan algebra J, considered as algebra over F' = @, is division G-graded with
suppJ = I + H. Moreover, Lemma 2.12 applies. In particular, it follows from
1.13.2 and 2.12(a) that

dimp §IF(J) = 1. (1)
Since by construction A, ., € (IDerJ);1; we obtain, using 2.8, the following
more precise description of the inner derivation algebra.

2.14. Lemma. In the setting of 2.13 suppose I is finite, and let < be a
well-ordering on I. Also, denote by g the canonical image of g in G/H.

Then {Ay, v, | 1,7 € I,i < j} is a P-basis of IDer J = Derg J, and { Ay, o, :
i,j € I,i < j,i+j =g} is ad-basis of @pcpy (IDerJ)gpn = (IDer J)g . In
particular,

dimp (IDer J)g = [{{i,j} :i,j € I,i # j,i+j =g} (1)
In a special case, these dimensions have been calculated in [27, Lemma 2.4].
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2.15. Graded Albert algebras. Let A be a prime associative algebra
over I whose central closure A has (generic) degree 3, and let 4 € Z = Z(A) be
invertible. Assume that tr(A) C Z where tr is the generic trace of A. Then, the
subset J = (A, n) := A® A® A of the first Tits construction (A, u) = A A® A
is a Z-subalgebra such that (4, u) = (4, u) ([31, Lemma 6.5]). Hence J and J
are Albert algebras in the sense of [21]. Since J = (4, u) has degree 3, Schafer’s
theorem [14, Exercise 1, page 319] implies J = Z @ (J,J, J) if ch. F # 3.

To obtain a grading on J we assume the following data:
(i) A=®yec Ay is a G-graded prime associative algebra with centre Z;
(ii) |G/S| =3 where S = supp 4;
(ili) p € Zsgy, for some g € G\ S;
(iv) tris G-graded, i.e., tr(4y) C Z, for all g € G.
Then J = (A, ) is G-graded with homogeneous spaces defined as follows:

Ay @0@0 ifgesS
Jy=q 0B A;_g,®0 ifg—go€S
000® Agyg, ifg+goes.

Moreover, J is division graded if A is so. If, in addition, G is totally ordered and
ch. F # 3 then J = Z @ (J,J,J). Indeed, since (J,J,J) = Z @y (J,J, J) this
follows from Schafer’s Theorem and 2.8(c) applied to the Z-modules Z+(.J, J, J)
and ZN(J,J,J).

3. G-tori

In this section we will introduce a special class of division graded algebras,
so-called G-tori. Our main interest will be the study of their derivation al-
gebras. The basic assumptions of the previous sections remain in place: we
consider unital alternative and Jordan algebras over a field F', which in case of
Jordan algebras will be assumed to have ch. F' # 2.

3.1. G-tori. Let G be an abelian group. A division G-graded algebra
T=@,cqTy over F is called a G-torus if

(i) dimp T, <1 for all g € G, and
(ii) suppT generates G as abelian group.

If the G-torus is associative, alternative or Jordan, it is called an associative,
an alternative or a Jordan G-torus. We will frequently identify Ty = F. We
say that a G-torus is of strong type if T is strongly graded. In this case, the
support supp 7 is a subgroup of G. By 2.3.(a), any alternative G-torus is of
strong type. An associative G-torus is the same as a twisted group algebra
F'G]. In particular, if T is a G-torus and H its central grading group, the
centre Z(T') is a twisted group algebra of H. An example of a Jordan G-torus
is the quadratic form Jordan algebra of 2.13, viewed as algebra over F' = &.
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3.2. Theorem. LetT be a G-torus with central grading group H. Recall
that D denotes the degree derivations of T', see 1.8.5. Then:

(DerpT)o =D, (1)
(CDerp T)sn = @ (Derp T)s = (grDery T)a (2)
heH
DerT ¢ P (Derr T),, (3)
9¢H
(CDerp T)gn NIDer T = 0. (4)

If G is finitely generated then so is T, and hence Derp T = grDer, T'. In this
case we also have CDerp T' = (CDerp T)g, which is a generalized Witt algebra
by 2.9.

Proof. Let d € (DerpT)o, and define scalars ¢, for g € S = suppT by
d(ty) = @gtg, ty € T,. The fact that d is a derivation means

©g + @n = pg+n for g,h € S with T, T}, # 0. (5)

In particular, if T is alternative, it is a torus of strong type with § = G and
we have ¢ € Homy (G, Zp) which means that d is a degree derivation. For a
Jordan torus 1" we have dU, = Uqgy 5 + U,d for x € T which implies

P2g+h = 2pg +n for g,h €8S. (6)

Since o = 0 it follows from (5) that p_, = —¢p and then (6) shows that
p S — F is a homomorphism of reflection spaces preserving the base points.
By 2.2.b, ¢ extends uniquely to a group homomorphism @: G — F and so d is
a degree derivation also in this case. This implies (1) and then (2) is immediate
from 2.9.2 and the definition of (grDer, T') .

(3): Since IDer T is G-graded, it suffices to show that IDer TN (Derp 1)), =
0 for all h € H. Suppose there exists a non-zero d € (DerpT); for some
h € H. If T is Jordan we can assume that d = [L,,L,| where z € T,
y € Ty and g+ ¢ = h. Hence y = zx~! for some non-zero z € Z,. But
then (L, Ly] = [Ly,L.,—1] = L,[Ly, L;'] = 0, contradiction. The proof for
alternative algebras is similar, using the the form of inner derivations (see 1.4).
Thus (3) holds, and this implies (4). The last statement follows from 2.4, 1.6.2
and 1.7.4. U

Remark. We have

grDerp T = IDerT x (CDerp T)fin

as soon as any Z-linear derivation is inner. (7)

Indeed, by the result above we only have to show (DerpT), C IDerT for
g¢ H. But any d € (DerpT), has d(Z) C ZN@gegra (DerpT)y =0, so is
Z-linear.

By 2.12 the criterion (7) is fulfilled for the G-torus of 2.13 with a finite I.
This result is generalized in [8]. Other examples of G-tori satisfying (7) will
be discussed in 3.5. In the next section, we will use this criterion to establish
Derg T = IDerT x CDerg T for Jordan Z™-tori, even if IDer T' = Derz T' is not
always true there.
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3.3. Proposition. Let T be an alternative G-torus with central grading
group H. Then
(T.T.7) C[T\T] = Byen T (1)

hence
T=ZT)®[T,T) and GIF(T)=1T} (2)

is 1-dimensional. If T is associative, we have

IDerp T = IDerp TT = D,en Ty (3)

Proof. For easier notation we put B = G2 H T,. We will first prove that
(T,T,T) C B. Observe that (T,T,T) is G-graded and invariant under Z =
Z(T). Hence, either (T,T,T) C B or there exist homogeneous a,b,c € T such
that 1 = (a,b,¢). Then (ab)~! and c¢ have the same degree, and therefore
c = z(ab)~! = zb=ta~! for some non-zero z € Ty = Z, by 2.8.a. But then we
obtain the contradiction 1 = z(ab)(ab) "t —za(b(b=ta"!)) = z—z = 0. Similarly,
if [T,T] is not contained in B we have 1 = [a,b] for suitable homogeneous
a,b € T where b = 2’a™! for some 2’ € Z;. Then 1 = [a,a"1]2' = 0 gives a
contradiction.

For (1) it remains to prove B C [T, T]. By 2.5, any non-zero a € B satisfies
[a,T] # 0. It is of course not harmful to assume that a is homogeneous. Then
there exists a homogeneous b € T such that 0 # ab—ba = ab—(ba)(b~'b) = ab—
(b(ab™1))b (by the Moufang identity) = (a—b(ab™1))b. Since b is invertible, it
follows that 0 # a—b(ab™!) = za for some 0 # z € Zy. But then [ab™!,271b] =
271 ((ab~ )b — b(ab™1)) = 27 1(za) = a € [T, T] proving our result.

The first equation in (2) is obvious, and the second follows from 1.13.2.
For an associative T we always have IDerT' = adT = T//Z(T') and IDer T+ =
ad[T, T =T/(Z(T)N[T,T)). O

3.4. Corollary. Let A be an associative G-torus over a field F' of ch. F' # 2
and let % be a graded F-linear involution of A such that J := H(A,x*) is a
generating set of the associative algebra A. Denote by H the central grading
group of A. Then there is a graded isomorphism of Lie algebras

IDerJ = [J,J] = @ e\ (rusupps) A9 (graded isomorphism) (1)
and hence for all g € G

. _J0 ifge HUsuppJ
dimp (IDer J); = { 2
im e (IDer J)g 1 otherwise. 2)

Proof. Because of 1.4.3 we have an epimorphism
[J,J] = IDerJ : x +— ad x|, (3)

of graded Lie algebras. Its kernel consists of all « € [J,J] which commute
with J and hence also with A. But then z € Z(A) so that 3.3.2 shows z =

0. Hence (3) is an isomorphism. For the proof of the second part of (1) let
S(A,x) ={a€ A|a* = —a}. Then A =J @ S(A,*) and [J,J] C S(4,*) =
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¢supp g Ag follows. By 3.3.2 we also have [J, J] C @ 45 Ag. Conversely, for
g é HUSuppJ )and 0 #y € Ay we get [y, x] # 0 for somex € J; = Aj because
[y, J] = 0 would imply y € Z(A) = @,y An. Observe [y, z] € J and hence
g+ j € suppJ. Because suppJ is a reflection subspace of G we then obtain
g—j=0-(j-(g+7)) €suppJ (of course, this can also be seen directly). But
ly, 2] # 0 implies [yz~!,z] # 0, so yz=! € Jy_; and 0 # [yz~ ', 2] € A, C [J, J]
follows. Finally, (2) follows immediately from (1). O

3.5. Proposition. Let T be an associative G-torus where G is finitely gen-
erated and let H be the central grading group.
(a) (Osborn-Passman [24, Cor. 2.3]) The derivation algebra of T is a
semidirect product
Derp T = IDerT x CDerT (1)

where
CDerp T = (CDerp T)fin = (gtDerp Ty = @) ey (Derp ), and

DerT =P, gy (DerpT)g =D opy Ty
(b) For the associated Jordan algebra Tt we have Z(T) = Z(T™),
CDerp TT = CDergpT and IDerT" =1IDerT,
and hence also Derp T = IDer T x CDer TV is a semidirect product.

Proof. (a) (1) is proven in [24, loc. cit.]. The remaining equations follow
from 1.7.4, 3.2.2 and 3.2.3.
(b) is a corollary to (a), 2.10.2 and 3.3.3.

3.6. Proposition. Let T be an associative G-torus over a field E with
ch. E # 2 and let H be the central grading group of T'. Let J = @gEG J,CT™
be a Jordan G-torus over a subfield F' of E, and assume that J is a generating
set of the associative algebra T. Then Z(J) = Z(T)NJ = @pep Jn and
(s J,J) = Bpgpy Jn- In particular

J=2Z(J) & (J,J,J) and SIF(J) = Jo.

Proof. By 3.3 we have @ o,y Ty = [T,T] = [T, Z(T) + [T\, T]] = [T, [T, T]].
Because of 1.11.4 this implies (J,J,J) C JN[T,T] = @ gy Jy by . For the
other inclusion let 0 # z € J;, g ¢ H. Then z ¢ Z(T') and there exists a
homogeneous y € J such that [z,y] # 0. Hence, yz = zxy for some 0 # z € E.
Then (z,y,y™') = 1(2+2z+2"Yz € J,, ie, (z,y,y ') = tx for some non-zero
tEF,Whencexe(JJJ) O

3.7. Corollary. Let A be an associative G-torus over a field E of ch. E #
2. Suppose that G is finitely generated and that * is a graded involution of
second kind. With the notation of 1.11 we then have for the Jordan G-torus
H = H(A,x) over F:

(a) H = Z(H) & (H, H, H),

(b) Derp H = IDer H x CDer H.

Proof. (a) is a special case of 3.6. For (b) we have Derg AT = IDer AT x
CDer A™ by 3.5, and both summands are left invariant under the automorphism
d + d* of Derg AT. By 1.11.9 and 1.11.7 the fixed point spaces under * are
the corresponding subalgebras for H, whence the result. O
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4. 7Z™-tori

4.1. Tori. A Z"-torus will be called an n-torus or simply a torus. Hence an
n-torus is a division Z"-graded algebra T' = ®,eczn Ty, such that dimp T, <1
for all @« € Z™ and suppT generates Z". The reader is reminded that all
algebras considered here are alternative or Jordan over a field F' of ch. F' # 2 if
T is Jordan. In the following the notion “torus” will always mean an alternative
or a Jordan torus.

Let T = @®aezn To and T = @pezn T, be two n-tori. We will say that
T and T" are graded isomorphic, abbreviated as T =z» T”, if there exists an
isomorphism ¢ : T'— T” such that ¢(T,) = T}, for all a € Z".

We recall from 2.3 that supp T = Z" if T is alternative and that supp T is
a semilattice in Z™ if T' is Jordan. Also, by 2.4,

any torus is finitely generated, (1)

and any torus is a domain, and hence strongly prime (2.3.(c)).

The structure of alternative tori has been determined up to graded iso-
morphism in [5, Thm. 1.25] and in improved form in [29, 4.11]. Besides the
associative tori, see 4.2 below, there is one more type, the so-called Cayley
torus in ch. F' # 2, see 4.3.1.

4.2. Associative tori. An n xn matrix ¢ = (g;;) over a field F satisfying
¢ii = 1 and ¢j; = q;jl is called a quantum matriz. For a quantum matrix g
the associated quantum torus F, = F,[tf',... tX'] is the associative algebra
over F' with 2n generators tlﬂ, ...,tF1 and relations ifiti_1 = ti_lti = 1 and
tit; = qijtit; for all 1 <4,j5 < n. Note that Fj, is commutative if and only if
q = 1 where 1 is the quantum matrix whose entries are all 1. In this case, the
quantum torus Fj becomes the algebra of Laurent polynomials F' [tlil, ot
in n variables.

Let (01,...,0,) be a basis of Z", and define the degree of t, := t{* - - -t
where o = ayoy + -+ + a0, € Z", to be . Then F; = ®,ezn Ft, is an n-
torus. We call this grading a toral Z"-grading of Fy, or, if one needs to specify
a basis of Z", a (o1, ..., 0,)-grading of Fy.

It is shown in [5, 1.8] that any associative torus is graded isomorphic to
some Fj with a suitable toral grading. Any commutative associative torus is
graded isomorphic to a Laurent polynomial ring F; = F [tfl, - ,tfl].

4.3. Alternative tori. Suppose ch. F' # 2. For n > 3 the Cayley n-torus
O = (F[tFY, ... t5Y, 11, ta, t3)

is the F-algebra obtained by the Cayley-Dickson process over the Laurent poly-

nomial ring F[t{cl, ...,t51], using the structure constants ¢, to and t3. This
becomes an alternative torus with suppQ; = Z™ and centre F' [tlil, N
graded by

2701 + 2409 + 27,03 + Loy + - - - + Loy, (1)

for a basis (o1,...,0,) of Z™ with degt;, = 20, for i = 1,2,3 and degt; = o;
fori=4,...,n.

We will next describe Jordan tori. For details, see [31].
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4.4. Jordan tori of hermitian type. Let ¢ = (¢;;) be an elementary
quantum matrix, i.e., a quantum matrix with all £;; = 1 or —1. On the
quantum torus F., = F; [tlﬂ, .., tF1] there exists a unique involution * such
that t7 = ¢; for all i. The symmetric elements H (F¢,*) form a Jordan torus
with respect to the grading induced from a toral grading of F.. One can show
that supp H(F., ) = Z™ if and only if ¢ = 1 if and only if H(F,*) is of strong
type. If ¢ # 1, the central grading group of H (F_, ) is

20,01+« + 220 + Lot + -+ - + Loy, (1)

for a suitable toral (o1, ...,0,)-grading of F; and 2 < m < n ([30, 2.5] and
2.10.1), while by [30, 1.8] the central grading group of F; is always of type

2Z0y + -+ -+ 2Z09 + Logipr + -+ + Lo, (2)

Let F be a quadratic field extension of F. Let og be the non-trivial Galois
automorphism of E over F' (recall that we assume ch. F' # 2 for Jordan tori).
Let £ = (&;;) be a quantum matrix over E such that og(&;;)€;; = 1, or, equiv-
alently, o (&) = & for all 4,j. On the quantum torus Fe = Ee[tf!, ... tF]
over E, there exists a unique opg-semilinear involution ¢ such that o(t;) = ¢;
for all i. The symmetric elements H(E¢, o) form a Jordan torus over F' with
respect to the grading induced from a toral grading of F¢. We always have
supp H (E¢,0) = Z"™, and the central grading groups of H(FE¢,0) and E¢ coin-
cide.

4.5. Jordan tori of Clifford type. Let 2 < m < n and let S(™ be a
semilattice in Z™. We consider the following data:
(i) @ is the Laurent polynomial ring @ = F[t{', ..., '] which we view as
a division Z™-graded algebra of supp @ = 2Z™ @ Z"~™ with respect to
the canonical grading assigning ¢; the degree (0,...,0,2,0,...,0) with
2 in the ith component in case 1 < ¢ < m and degree (0,...,0,1,0,...,
0) for i > m;
(i) ICZ™CZm®Z ™ =1Z" is a set of representatives of S(™) /2Z™,
excluding the class 2Z™;
(iii) (zi)ier is a family of non-zero elements in Po;.

The Clifford torus J(S™), (z;)icr) is the quadratic form Jordan algebra con-
structed in 2.13 using the data above. In particular, the results mentioned in
2.12, 2.13 and 2.14 hold.

4.6. The Albert torus. Let n > 3. We assume that F' contains a primi-
tive 3rd root of unity w, in particular ch. F' # 3, and denote by w the quantum
n x n-matrix with (1, 2)-entry equal to w, (2, 1)-entry equal to w=! and all other
entries equal to 1.

Let I, = F,, [ufl, ...,uF'] be the quantum torus determined by w, and let
Z = Z(F,) be the centre of F,,. One finds Z = F[ui® ui® uit,. .. ufl],

the algebra of Laurent polynomials in the variables w3, u3, us,...,u,. Let
(01,...,0p) be a basis of Z™ and put

S :=Zoy + Zos + 3Zo3 + Loy + - - - + Loy,.
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We give F, a toral S-grading, i.e., F\y, = ®scs Fu, where
Uy = u?“ .- ~u;”" for 0 = mioq1 + moog + 3msos3 +myoy + - - + My0p,.

One knows ([31]) that A = F), fulfills the assumptions of 2.15 for G = Z" and
S as above. The exceptional Jordan algebra A; = (F,,, u3) of 2.15 is called the
Albert torus. The grading of A; defined in 2.15 is called the toral grading. We
note that

A; is of strong type. (1)

4.7. Classification of Jordan tori [31]. Letch. F' # 2. Then any Jordan
torus is graded isomorphic to one of the five tori

Ff, H(F.,*), H(Ee,0), J(S™, (2i)icr) or Ay
endowed with suitable toral gradings.

4.8. Central closures of tori. By 2.3.(d), the centre Z of a torus T is
an integral domain, so that we can form the central closure T of T (see 1.2).
It follows that T is always a central domain. By [31, 3.9], T is a Z"/H-torus
over Z, where H denotes the central grading group. Moreover, we have

T is a division algebra <= T is finite dimensional. (1)

Since both Jordan and alternative algebras are power associative, the impli-
cation <« is a special case of the general fact that a power associative finite
dimensional domain is a division algebra. To prove this general result, we
consider the subalgebra generated by a single element and are then reduced
to showing that a finite dimensional associative domain is a division algebra.
This is of course well-known, it is for example an immediate consequence of
Wedderburn’s Structure Theorem. For the other direction, suppose that T is
infinite dimensional. Then the rank of the central grading group H of T is less
than n. Hence the Z"/H-torus T contains a subalgebra which is a 1-torus. But
a 1-torus is not a division algebra by [31, 3.6] for Jordan tori and [29, §2] in
the alternative case, and then T is not a division algebra either.

We list here the central closures of Jordan tori and of the Cayley torus:

(a) The central closure of F" is the +-algebra of F, i.e., Fj” = EJF. (This
holds for any prime associative A by [22, Cor. 3.4]).

(b) By 1.3 the central closures of the hermitian tori H (F;,*) and H(E¢,0)
are H(F., ) and H(FEg, o) respectively. Here H(F.,«) is a finite-dimensional
central Jordan division algebra of degree 2™ for a suitable m. Indeed, by 4.4.2
and (1), F, is a central-simple division algebra of dimension 22!, hence of degree
2!. By the discussion on [14, p. 209] the degree of H(F.,x) is therefore either
2! of 271,

(c) The central closure of a Clifford torus J(S"™), (2;)ier) is a (|I] 4 1)-
dimensional Jordan division algebra of a symmetric bilinear form.

(d) The central closure of an Albert torus is a 27-dimensional Albert division
algebra over a field of characteristic # 2, 3. Similarly, the central closure of the
Cayley torus is an 8-dimensional octonion algebra over a field of characeristic
# 2, hence a division algebra by (1).
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As a consequence of the above, we have
dimzT < oo for T = H(F.,*), J(S™, (2:)ier),Or and As. (2)

We note that the central closures of Fy, F,” and H(E, o) are in general not
finite-dimensional over Z.

4.9. Proposition. For a Jordan torus J over F with ch. F # 3 in case
J is an Albert torus we have J = Z(J) & (J,J,J). Hence GIF(J) = F1 is
1-dimensional.

Proof. This follows from and 1.13.2 and the classification of Jordan tori
4.7, using 3.6 for J = Ff, H(F.,«), 3.7 for J = H(E¢,0), 2.13.1 for J =
J(S(m), (Zi)iel) and 2.15 for J = At. O

The analogous result for alternative G-tori is proven without classification
in 3.3.

4.10. Lemma. LetT be a Jordan torus but not of type F;’ or H(E¢,0) or
let T be a Cayley torus over a field F of ch. F # 2,3. Then IDerT = Derz T.

Proof. For a Clifford torus this is a special case of 2.12(c). For the remain-
ing cases we use 1.6.1 and 2.6. So it suffices to show that T has only inner
derivations. Given the structure of T described above this is known. Indeed,
for T = H(F.,*) we can use [14, Exercise 1, page 258] for algebras of degree 2
and [14, Theorem 9, page 254] for algebras of degree > 3, for the Albert torus
this follows from [14, Theorem 17, page 408] and for the Cayley torus this is a
consequence of [14, page 301, Lemma 3] (see also [5, Lemma 1.39(b)]). O

If Fy, T = F or H(E¢,0), then IDer T = Derz T is not true in general.
For example, if T is simple, then Der; T = Derg T because Z = F' in this case.
We are now ready to prove our main result.

4.11. Theorem. Let T be an n-torus over a field F and assume that
ch. FF # 2 if T is a Jordan torus and that ch. F # 2,3 if T is a Cayley torus or
an Albert torus. Then

DerT = IDerT x CDerT. (1)
With respect to any nondegenerate graded invariant form we have
SDerT = IDer T x (SDerT'N CDer T). (2)

If H C Z"™ is the central grading group of T then

DerT= @ (DerpT)o and CDerT = P (Derp T)a. (3)
a€Z"\H acH

Proof. For T =zn Fy and T =z. F (1) has been proven in 3.5 and for
T =yn H(E¢,0) in 3.7. The remaining cases follow from 3.2.7 and 4.10 keeping
in mind that grDerp T = Derp T since T is finitely generated. The structure
of SDerT" is immediate from 1.14, and (3) follows from 3.2. O
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Remarks. For an alternative torus (1) was known before. Indeed, an
alternative torus is either a quantum torus, in which case this was proven in
[4, Lemma 2.48, page 364] for the field ' = C of complex numbers, but the
proof works over any field or a Cayley torus, in which case (1) was proven for
ch. F' # 2,3 in [5, Theorem 1.40]. We have reproven the result here to show
how it fits in the more general framework of tori considered in this paper, and
also because it can be done without extra effort. Since (1) holds for Jordan and
alternative tori, it is natural to conjecture that it also holds for structurable
tori.

The ideal IDerT" will be described in more detail in 4.13 — 4.15 below.
The structure of the central derivation algebra CDerT is determined in 4.12.
Concerning SDer T'N CDer T, see 1.14.

4.12. Theorem. Let T be an n-torus with centre Z and central grading
group H of rank r. Then the central derivations CDer T are isomorphic to the
generalized Witt algebra associated to Z = F[H|, D = Homgz(Z", F) and the
canonical pairing p: Homg(Z", F) x H — F : (&, h) — ®(h). Moreover,

CDerT = Derp Z x Y (1)

where
(i) Z ®p Homg(H,F) = Derp Z = Der F[zif, ..., 25" is a generalized
Witt algebra and
(i) Y =2 Z®p Homy(Z"/H, F) is an abelian ideal.
If r > 1 and ch. F # 2 then CDerT is a perfect Lie algebra.

Proof. Since CDerTs, = CDerT by 3.2, it follows from 2.9 that CDerT'
is a generalized Witt algebra. Note that in our case the centre Z is actually
isomorphic to the group algebra of H with a suitable grading. The splitting
(1) will be a consequence of

Homgz(Z", F) = Homyz(H, F) ® Homz(Z" /H, F). (2)
To establish (2), we consider the canonical sequence of F-linear maps
0 — Homy(Z"/H, F) — Homy(Z", F) - Homgy(H,F) — 0 (3)

The imbedding ¢ is given by ¢ +— ¢ o7 where 7: Z" — 7" /H is the canonical
epimorphism. The map g is the restriction map. Obviously, the image of ¢
equals the kernel of p. We write H = myZey + - - - + mpZe,, where (e1,...,&,)
is a Z-basis of Z" and where my, ..., m, > 0. Then surjectivity of ¢ will follow
from

ch. F does not divide m,; for any nonzero m;. (4)

Indeed, for a Cayley torus or H(F¢,*) or a Clifford torus, all m; =1 or 2, and
ch. F' # 2 in these cases (see 4.3.1, 4.4.1 and 2.12 and 4.5). For an Albert torus,
all m; =1 or 3, but also ch. F' # 3 in this case (see 4.6). Thus we are left with
F,, Fqu and H(E¢, o). Since the central grading groups of Fj, and Fq+, and the
central grading groups of E¢ and H(FEg, o) coincide, we only need to consider
the case F, = F, [t{cl, ..., t1]. In this case, the result is proven in [12, Lemma
3.6]. We include a short proof for the convenience of the reader. Suppose that
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p := ch. F' divides my, # 0 for some k and let ¢ = (g;;). Then ¢,"* € Z, and so
et =t = qp " t;, whence ¢;* =1 for all j. Since my, = ply for some
[ > 1 and ch. F = p, we have qu’} = 1 for all j. Hence tiﬂ"‘ commutes with all
t;, and we get tf,j € Z, but lxer, &€ H, contradiction.

Thus, (4) holds and p is surjective. Hence (3) is exact and so (2) holds. By
1.10 we then have a decomposition

CDerT = (Z RQF HOmz(H,F)) X (Z XRp HomZ(Z"/H, F))

keeping in mind that D = Homgz(Z", F') and hence D¥ = Homgz(Z"/H, F).
The structure of Z @ p Homz(H, F') follows from 3.5(a) and 2.9.

Since Homgz(Z", F') = F", the right kernel of p is trivial, and hence p # 0
as soon as r > 1. In particular, by 1.10(c), CDerT is a perfect Lie algebra in
this case. g

We now turn to the description of IDer T'. As one can see from [4] and [5],
the knowledge of IDer T" will be useful in the classification of the extended affine
Lie algebras with coordinate algebras T'. For the convenience of the reader we
first give a summary of the results on IDer T obtained so far.

4.13. Summary of results on IDer7. Throughout, we let T be an n-
torus over a field F' satisfying the assumptions of 4.11. We denote by Z the
centre of T" and by H the central grading group. We have seen in 4.11.3 that

DerT= @ (IDerpT)a. (1)
a€Z"\H
Concerning the Lie algebra structure, we note that by 1.4.2 the Lie algebra
IDerT is a Z-form of IDerT where T is the central closure of T

(a) Specializing 3.5, 3.7 and 1.11.7 we know
dimp(IDerT), =1 foralla € Z"\ H and T = F, F} or H(E¢,0). (2)

Note that for T' = F}t and T = H(E¢,0), the central grading group H of T
coincides with the central grading group of F, and E¢ respectively. Of course,
(2) for T' = F, is already contained in [4, 2.55].

(b) By 3.4 we have a similar result for 7' = H(F.,x*). Denoting by H. the
central grading group of the quantum torus F. we have
dimp(IDer H(Fy, %))a = { 1 ac Zn.\ (H: Usupp H(F, )) (3)
0 otherwise
We note that H = H. Nsupp H(F,*) by 2.10.1 but H. ¢ supp H(F;,*) in
general.

(c) For the Cayley torus Q; where ch. F' # 3 one knows from [5, Theorem
1.40, page 4328|

dimp(IDer Q) =2 for all « € Z™" \ H. (4)

(d) The dimensions of (IDerT'), in the case of a Clifford torus follows from
the general formula 2.14.1. In particular, it is interesting to note that contrary
to all other cases, the dimension varies with o and it can also get arbitrarily
large. For example, in the setting of 4.5 assume that I = {o1,02}. Then
dim(IDerT'),, = 0 while dim(IDerT"),, 1o, = 1 (see [27, Lemma 2.4]). Or, if I

is maximal, i.e., I represents all non-zero classes in Z"/(2Z™ & Z"™) = 73, we
get dimp(IDer T), =2m" ! — 1 foralla € Z" \ H.

28



It remains to consider the Albert torus. Our analysis will be based on the
following general lemma.

4.14. Lemma. Let G = Z3 @ --- ® Z3 with v > 1 factors and let J =
Dgea Jg be a Jordan G-torus over F' which is of strong type. For an F'-vector
space V' we consider an F-bilinear map {-,-} : J x J — V satisfying

(i) A{zy, 2z} +{yz,a} + {zz,y} =0 and
For g € G denote {J, J}g =3 _ ., {Jes Js}. Then

dimp{J,J}, <r—1 forg#0. (1)

Proof. We choose 0 # t, € J, and note that then t,¢, = sty. for some

0 # s € F. It will be convenient to use the abbreviation {z : y} in case
{z :y} = s{x,y} for some 0 # s € F. Then

{tg tn} =n{ty : tgu_1yg4n} for 0 <n <2 (2)

Indeed, {1,.J} = 0 by (i) and for n = 2 we have {t,t,} = 2{ty, tyts} = 2{t, :
tg+n}. Next, welet e, =0@--- @ 1@ --- @0 with 1 € Z3 at the ith position
and put t; := t.,. We claim that for g =e+ f, e= > e;e; with 0 <e; <3

we have

{te, tf} = Z::l {tfi : tg—eﬂi} (3)
To prove (3) we observe that in general by (i), (ii) and commutativity of J
we hvae {zy,z} = {z,yz} + {y,zz}. Hence {t¢,t;} = {t7*(t32(---t&r)---) :
try = {7 2 (7 C i) - )by H {7 87) ) s} = {8 e ) F
{52 (- t&r) -+ +) t te—eye, b~ Continuing similarly with the second term proves
(3). From (3) and (2) we then obtain

{tetr} =220 eiftistgc.}- (4)
Now consider g = "', g;e; # 0. Applying (4) yields
{tl ) tg—El} = _{t9—81 ’ tl}
=—(g1 = Dft1 1 tg—c,} —go{ta  tg—cn} —ga{ts s tg—cst — -,

whence 0 = Y7, gi{t; : ty—.,} which gives a nontrivial relation among the
{ti,tg_si},izl,...,T. O

4.15. Theorem. For the Albert torus A, we have
dimp(IDerAy)q =2 for allaw € Z™ \ H.

Proof. We apply 4.14 to the central closure J = A; of A;. By [31] we know
that J = ©gezz Jais a Z3-torus with Jg = Z®z Z(At)s. Also, we let {z,y} =
[Ly, Ly] for z,y € J. Since {.J, J}5 = (IDer J)g, we get dimy(IDer J)g < 2 for
@ # 0 by 4.14 while (IDer J) = Z ® (IDer Ay)y = 0 by 1.4.2. On the other
side, one knows that Der,J = IDer J is a simple Lie algebra of type F4 (see
[15, page 21]), and so dimy Der .J = 52. Hence

52 = dimy IDer J = > dimy(IDer J)z < 26 -2 = 52,
a#0
and so dimp(IDer A¢), = dim(IDer J)g = 2. O
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