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Abstract. Quantum tori or the octonion torus as the non-commutative ver-
sion or as the alternative but not associative version of the algebra of Laurent

polynomials in several variables are considered in Lie theory, especially the
theory of extended affine Lie algebras. In this report, we introduce a new way

of generalizing the Laurent polynomial algebra in the variety of Jordan alge-

bras. We call these algebras Jordan tori, and we announce the classification
of Jordan tori.

1. Introduction

Throughout this report, we assume that F is a field of characteristic 6= 2. Also,
algebras are always assumed to be unital linear algebras.

Definition 1. A Zn-graded Jordan algebra J = ⊕α∈Zn Jα over F with the prop-
erties:

(T1): every nonzero homogeneous element is invertible;
(T2): dimF Jα ≤ 1 for all α ∈ Zn;
(T3): supp(J) := {α ∈ Zn;Jα 6= (0)} generates Zn

is called a Jordan n-torus over F or simply a Jordan torus.

Clearly, Jordan tori generalize the algebra of Laurent polynomials in n-variables.
One can check that S := supp(J) satisfies the following properties:

0 ∈ S and S − 2S ⊂ S.

Thus S is a semilattice in Zn (see [1]). As another way of generalizing the Laurent
polynomial algebra, we consider a Zn-graded Jordan algebra J = ⊕α∈Zn Jα over F
with the property

dimF Jα = 1 and JαJβ = Jβ for all α, β ∈ Zn.(1)

One can show that such a J satisfies T1–T3, so J is a Jordan torus called of strong
type. A Jordan torus J = ⊕α∈Zn Jα of strong type satisfies not only supp(J) = Zn

but also xy 6= 0 for all 0 6= x, y ∈ J . However, none of these properties hold in
general Jordan tori.

Remark 1. (a) More generally, we call a Zn-graded algebra over F satisfying T1–T3
a torus. We note that alternative tori were classified, namely, they are isomorphic
to quantum tori or the octonion torus (see [4] and [9]). Also, one can check that
for Zn-graded alternative algebras, T1–T3 are equivalent to (1). So one can take
(1) as the definition of alternative tori as in [4].

(b) The classification of Jordan tori of strong type is announced in [9]. However,
for the classification of extended affine Lie algebras of type A1, one needs to consider
arbitrary Jordan tori. The classification below shows that there exist five types of
Jordan tori, but only three types of them are of strong type.
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We start by recalling quantum tori.

Definition 2. An n×n matrix q = (qij) over F such that qii = 1 and qji = q−1
ij is

called a quantum matrix. The quantum torus Fq = Fq[t±1
1 , . . . , t±1

n ] determined by
a quantum matrix q is defined as the associative algebra over F with 2n generators
t±1
1 , . . . , t±1

n , and relations tit
−1
i = t−1

i ti = 1 and tjti = qijtitj for all 1 ≤ i, j ≤ n.
We notice that Fq is commutative if and only if q = 1 where 1 is the quantum
matrix whose entries are all 1. In this case, the quantum torus becomes the Laurent
polynomial algebra, F1 = F [t±1

1 , . . . , t±1
n ].

It is easily seen that Fq has a Zn-grading, i.e., Fq = ⊕α∈Zn Ftα where tα =
tα1
1 · · · tαn

n for α = (α1, . . . , αn) ∈ Zn, and that Fq is an associative torus. More-
over, any associative torus is isomorphic to some quantum torus Fq, see [3]. The
multiplication rule for Fq is the following: for β = (β1, . . . , βn) ∈ Zn,

tαtβ =
∏

i<j

q
αiβj

ij tα+β .(2)

Construction 1. (i) Let Fq = Fq[t±1
1 , . . . , t±1

n ] be a quantum torus. Then the
plus algebra F+

q is a Jordan torus. In fact, F+
q = ⊕α∈Zn Ftα as F -vector spaces.

By (2), we have

tα · tβ =
1
2

[∏

i<j

q
αiβj

ij +
∏

i<j

q
βiαj

ij

]
tα1+β1
1 · · · tαn+βn

n(3)

=
1
2

∏

i<j

q
αiβj

ij

[
1 +

∏

i,j

q
αiβj

ij

]
tα+β ∈ Ftα+β .

Also, the invertible elements in Fq and in F+
q coincide (see e.g. [5]), and we have

supp(F+
q ) = Zn. Therefore, F+

q is a Jordan torus. By (3), F+
q is a Jordan torus of

strong type if and only if
∏

i,j

q
αiβj

ij 6= −1 for all α, β ∈ Zn.(4)

(ii) Let E be a field extension of F with [E : F ] ≤ 2, say E := F (
√

a ) for some
a ∈ F if [E : F ] = 2 and E = F if [E : F ] = 1. Let be the non-trivial Galois
automorphism of E over F if [E : F ] = 2 and the identity map of F if E = F . Let
ε = (εij) be a quantum matrix over E satisfying

εijεij = 1 (⇐⇒ εij = εji) for all i, j.(5)

Note that εij = 1 or −1 if E = F . For the quantum torus Eε = Eε[t±1
1 , . . . , t±1

n ]
over E determined by ε, there exists the unique involution ∗ : Eε −→ Eε over F
such that x∗ = x for all x ∈ E and t∗i = ti for all i = 1, . . . , n. In fact, ∗ is given by

(xtα)∗ := xtαn
n · · · tα1

1 = x
∏

i<j

ε
αiαj

ij tα.(6)

The symmetric elements H := H(Eε, ∗) form a Jordan algebra over F . By (6),
∗ is graded on Eε = ⊕α∈Zn Etα, i.e., (Etα)∗ = Etα for all α ∈ Zn, so we get
H = ⊕α∈Zn (Etα∩H) as F -vector spaces. Since E+

ε = ⊕α∈Zn Etα is a Jordan torus
over E, H is a Zn-graded Jordan algebra over F . If E = F , then dimF (Ftα∩H) ≤ 1.
Otherwise, Etα = (F +F

√
a )tα, so dimF Etα = 2. If xtα ∈ H for some x ∈ E, then√

axtα /∈ H. Hence dimF (Etα ∩ H) ≤ 1. In general, the inverse of a symmetric
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element is also symmetric. Since t1, . . . , tn ∈ H, supp(J) generates Zn. Thus
H = H(Eε, ∗) is a Jordan torus over F .

When E = F , we have εij = 1 or −1 for all 1 ≤ i, j ≤ n. So if ε 6= 1, then
εij = −1 for some i, j, and hence (titj)∗ = −titj . Therefore, supp(H) = Zn if and
only if ε = 1, i.e., H = F [t±1

1 , . . . , t±1
n ]. In particular, H = H(Fε, ∗) is never of

strong type unless ε = 1.
Let E 6= F . Assume that Etα ∩H = (0) for some α ∈ Zn. Then for 0 6= x ∈ E,

we have xtα + (xtα)∗ = 0, so (xtα)∗ = −xtα and (
√

axtα)∗ =
√

axtα. Hence
0 6= √

axtα ∈ Etα ∩H, which is a contradiction. Therefore, we get supp(H) = Zn

if E 6= F . Also, H = H(Eε, ∗) is a Jordan torus over F of strong type if and only
if ε satisfies (4).

Example 1. Let ζr ∈ C (the field of complex numbers) be a primitive r-th root of
unity. Consider the following quantum matrix

ζ = ζ(r) =




1 ζr 1 · · · 1

ζ−1
r 1 1

...

1 1 1
...

...
. . . 1

1 · · · · · · 1 1




.

Then ζ satisfies (5) for the complex conjugate over R (the field of real numbers),
so H(Cζ , ∗) is a Jordan torus over R. Note that H(Cζ , ∗) is of strong type if and
only if r is odd. Also, r = 2 is the case E = F , and r > 2 is the case E 6= F .

Construction 2. Let 2 ≤ m ≤ n and let S = Sm be a semilattice in Zm. Choose
a generating set {σ1, . . . , σm} of S which is a basis of Zm (this is possible by [1]).
Note that any element of S can be written as

2(α1σ1 + · · ·+ αmσm) + ε1σ1 + · · ·+ εmσm

for αi ∈ Z and εi ∈ {0, 1}, i = 1, . . . ,m. We put

I = IS := {ε = (ε1, . . . , εm) ∈ {0, 1}m ; ε1σ1 + · · ·+ εmσm ∈ S}.
We note that I always contains 0 = (0, . . . , 0). Let

Z := F [z±1
1 , . . . , z±1

n ] = ⊕α∈Zn Fzα

be the Laurent polynomial algebra, and V a free Z-module with basis{
tε ; ε ∈ I \ {0}}.

Define a Z-bilinear form f : V × V −→ Z by

f(tε, tη) =

{
aεzε if ε = η

0 otherwise

for all tε, tη, where 0 6= aε ∈ F and zε = zε1
1 · · · zεm

m for ε = (ε1, . . . , εm). Let

J =: Z ⊕ V

be the Jordan algebra over Z determined by the symmetric bilinear form f , i.e.,
the multiplication on J is defined by

(x + v)(y + w) = xy + f(v, w) + xw + yv(7)
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for x, y ∈ Z and v, w ∈ V . We put t0 := 1 so that
{
tε ; ε ∈ I

}
is a Z-basis of J ,

and {zαtε ; α ∈ Zn, ε ∈ I} is an F -basis of J . Let Zn := Zm ⊕ Zn−m and extend
{σ1, . . . , σm} to a basis {σ1, . . . , σm, σm+1, . . . , σn} of Zn. For α = α1σ1 + · · · +
αnσn ∈ Zn, there exist unique (α′1, . . . , α′m) ∈ Zm and ε = (ε1, . . . , εm) ∈ {0, 1}m

such that

α = 2(α′1σ1 + · · ·+ α′mσm) + ε1σ1 + · · ·+ εmσm + αm+1σm+1 + · · ·+ αnσn.

Put α′ := (α′1, . . . , α′m, αm+1, . . . , αn), tε := 0 for ε ∈ {0, 1}m \ I, and tα := zα′tε.
Since Zn 3 α −→ (α′, ε) ∈ Zn × {0, 1}m is a bijective map, we get

J =
⊕

(α′,ε)∈Zn×{0,1}m

Fzα′tε = ⊕α∈Zn Ftα

as F -vector spaces. By (7), we have

tαtβ = (zα′tε)(zβ′tη) =





aεzα′+β′+ε if ε = η 6= 0
zα′+β′tε if η = 0
zα′+β′tη if ε = 0
0 otherwise,

(8)

so we obtain tαtβ ⊂ Ftα+β . For α = (α′, ε) ∈ Zn × I, since t2α = aεz2α′+ε is invert-
ible, tα is invertible (see e.g. [5]). Since supp(J) contains the basis {σ1, . . . , σn} of
Zn, J = ⊕α∈Zn Ftα is a Jordan torus over F . We call J = J(Sm, {aε}) the Clifford
torus determined by Sm and {aε}. Note that Clifford tori are never of strong type
by (8), even if we take Sm = Zm. Also, clearly we have supp(J) = Sm + Zn−m

which is a semilattice in Zn.

Remark 2. When m = n and all aε = 1, this algebra J appeared in [1] as the
first example of an extended affine Lie algebra of type A1 graded by an arbitrary
semilattice.

For the final construction, we consider so-called first Tits constructions (see e.g.
[5]).

Definition 3. We say that a prime associative (or Jordan) algebra A over F has
central degree 3 if the central closure A = Z ⊗Z A is a finite dimensional central
simple algebra over Z of degree 3 where Z is the centre of A and Z is the field of
fractions of Z.

For example, a strongly prime exceptional Jordan algebra has central degree 3
by Zelmanov’s Prime Structure Theorem [7]. Since A is a finite dimensional power
associative algebra over Z, there exists the generic trace tr of A over Z (see e.g.
[5]). Note that A embeds into A via a 7→ 1 ⊗ a for a ∈ A (see e.g. [6]), so we
identify A with the subring of A. Considering this, we have the following lemma:

Lemma 1. Let A be a prime associative algebra over F of central degree 3, and
µ ∈ Z a unit where Z is the centre of A. Assume that tr(A) ⊂ Z. Then the
subset (A,µ) := A ⊕ A ⊕ A of the first Tits construction (A,µ) = A ⊕ A ⊕ A is a
Z-subalgebra such that (A,µ) ∼= (A,µ) over Z where (A,µ) = Z ⊗Z (A,µ).

We call the (A,µ) in Lemma 1 a first Tits construction over Z. It is a special
type of the general first Tits construction studied in [8].
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Construction 3. Assume that F contains a primitive 3rd root of unity (hence
charF 6= 3 in particular). Let ω := ζ(3) in Example 1, Fω = Fω[t±1

1 , . . . , t±1
n ] the

quantum torus determined by ω, and Z the centre of Fω. Then one finds that

Z = F [t±3
1 , t±3

2 , t±1
3 , . . . , t±1

n ],

the Laurent polynomial algebra in n-variables t31, t
3
2, t3, . . . , tn, and that Fω has

central degree 3 with tr(Fω) ⊂ Z where tr is the generic trace of the central closure
Fω of Fω over Z. Let

At = (Fω, t3) = Fω ⊕ Fω ⊕ Fω

be the first Tits construction over Z in Lemma 1. It is shown in [9] that At is a
Jordan torus of strong type called the Albert torus.

Remark 3. The Albert torus appeared as a coordinate algebra of extended affine
Lie algebras of type G2 in [1] and [2].

The classification of Jordan tori proceeds as follows. First one can easily show
that a Jordan torus J is a Jordan domain, i.e.,

Uxy = 0 =⇒ x = 0 or y = 0 for all x, y ∈ J,

where U is the U -operator. So J is in particular strongly prime. Thus by Zel-
manov’s Prime Structure Theorem [7], J is one of Hermitian, Clifford or Albert
type. One can easily see that F+

q , H(Fε, ∗) and H(Eε, ∗) are of Hermitian type,
that J(Sm, {aε}) is of Clifford type, and that At is of Albert type.

Before we state the result, we mention a strong property of isomorphisms in the
class of Jordan tori.

Definition 4. Let J = ⊕α∈Zn Jα and J ′ = ⊕α∈Zn J ′α be two Jordan tori. Then J
and J ′ are called isomorphic as graded algebras and denoted by J ∼=Zn J ′ if there
exists an isomorphism ϕ (as algebras) from J onto J ′ such that ϕ(Jα) = Jα for all
α ∈ Zn.

If we have an automorphism f of Zn, we always obtain a new Jordan tori by
renaming the degrees. More precisely, for J = ⊕α∈Zn Jα, we put J̃α := Jf(α). Then
a new Jordan algebra J̃ := ⊕α∈Zn J̃α defined by the same multiplication of J , is a
Jordan torus. Note that J = J̃ as algebras.

Using the above terminology, we have the following proposition saying that iso-
morphisms between Jordan tori become ‘almost graded isomorphisms’:

Proposition 1. Let ϕ : J = ⊕α∈Zn Jα−̃→J ′ = ⊕α∈Zn J ′α be an isomorphism
between Jordan tori. Then there exists an automorphism f of Zn such that

ϕ(Jf(α)) = J ′α for all α ∈ Zn.

Hence J ∼= J ′ if and only if J̃ ∼=Zn J ′.

Finally, we state the classification result:

Theorem 1. Let J be a Jordan torus over F . Then J is isomorphic to one of the
five types of Jordan tori

F+
q , H(Fε, ∗), H(Eε, ∗), J(Sm, {aε}) or At.
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Remark 4. (a) If F is algebraically closed, then H(Eε, ∗), E 6= F , does not exist,
and all aε of J(Sm, {aε}) can be chosen to be 1.

(b) If F does not contain a primitive 3rd root of unity, then At does not exist.
(c) There does not exist a Jordan torus obtained from a second Tits construction.
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