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We introduce a reflection space of an abelian group, which is a generalization of a
subgroup.

Let G = (G, +,0) be an abelian group.
Definition 1 A subset F of G is called a refection space of G if
2c—yeFE (or 2ZE—ECE) (1)
for all z,y € E. On the other hand, F is called a symmetric reflection space of G if
x—2yeE (or E—2ECE) (2)
for all z,y € E. Also, we say that F is pointed if 0 € F.

(See [LN], [NY], [Y1], [Y2] and [Y3]. In some references a symmetric reflection space is
simply called a reflection space.)

For example, if G = Z, then a symmetric reflection space of Z is just mZ or m(2Z+1).
On the other hand, mZ + e for any m,e € Z is a reflection space. In particular, any
singleton {e} is a reflection space.

Lemma 1 Let E be a symmetric reflection space of G. Then —FE = E.
Hence E+2E C E and 2E — E C E. Thus a symmetric reflection space is a reflection
space.

Proof) For x € E, we have x —2x = —x € E. Hence —E C E. Thus F C —FE. O
Lemma 2 Let E be a reflection space of G. Then
FE is pointed = FE is a symmetric reflection space.

Hence, a pointed reflection space is a pointed symmetric reflection space.



Proof) Since 0 € E, we get —E C E. Hence F —2F = —(2E— E)C E. O

Lemma 3 Let E be a reflection space of G. Then E — e for any e € E is a pointed
reflection space.

Proof) We have 2(E —e) — (E —¢) = (2E — FE)—e C E — e, and so E is a reflection
space. It is clear that 0 € E —e. O

Lemma 4 Let E be a subset of G. For any e, ¢’ € E, we have
<E—€> = <E_€,>7
where the bracket (A) means the subgroup generated by a subset A of G.

Proof) Forxz € E, wehavez —e,e’ —e € E—e. Hencex —e’' =z —e— (¢ —e) € (E—e),
and so (E — ¢€') C (E — e). Similarly, we have (E —e) C (E —¢'). O

Lemma 5 Let E be a pointed reflection space of G, and let e € E. Then (e) C E.

Proof) Since 0 € E (so E is symmetric), we have £2e = 0+£2e € F and £3e = £(e+2e) €
E. Similarly, we have 2me =0+ (2e+---+2¢) € Eand 2m+1)e =e+(2e+---+2¢) € E
forallm e Z. O

More generally, we have:

Lemma 6 Let E be a symmetric reflection space of G. Suppose that {e;};c5 C E, where
J is any index set. Then E + 2(e;);ez C E. Hence, E+2(E) = E.

Proof) Let v € E + 2(e;)ie3- Then z = e + 237" ¢je;;, where ¢; = 1 or —1, and
ei; € {ei}iey. Thus x = e +2e1e;, + - - + 2€5¢;, € E, inductively. (Note that —e;; € E by
Lemma 1). O

Let us classify reflection spaces.

Proposition 1 Let E be a subset of G. Then

m
E is a symmetric reflection space <= E = U (2(E) + €) (3)
i=1

for some 1 <m < |(E)/2(E)| and some e; € E, and if E is pointed, then some e; = 0.
Moreover,
m
E is a reflection space <= E = U (2(FE —e) 4+ x;) (4)
i=1

for any e € G (see Lemma 4), and some z; € E and 1 < m < |(E —e)/2(FE — e)|.



Proof) For (3), (<) is clear. For the other implication, F contains 2(E) by Lemma 6.
Thus E is a union of cosets in (F)/2(E).

For (4), («<=) is clear. For the other implication, note that E —e for e € E is a pointed
reflection space, by Lemma 3. Hence by (3), we have

E—ec=|J @E-e) +g)
=1

where g; € F — e. So letting z; := g; + e, we obtain (4). O

Example 1 A union of cosets in (m17Z x maZ)/(2m17Z x 2moZ) plus some (e1, e2) € Z for
m1, mo € Z is an example of reflection spaces of Z2. In particular, (miZ+e1) x (maZ +e3)
is a reflection space of Z2.

Where can we find reflection spaces?

Let us recall extended affine root systems.

Definition 2 Let V be a finite-dimensional vector space over Q with a positive semidef-
inite symmetric bilinear form (-,-). A subset R of V is called an extended affine root
system if R satisfies the following:

Al) (a,a) # 0 for all @ € R, and R spans V;

A2) («, ) € Z for all a, § € R, where (a, §) = Bﬁ) ;

A3) 04(8) € R for all o, f € R, where 0,(8) = — (B, a)q;

A4) R =R URy and (R1,R2) =0 imply Ry =0 or Re =0 (irreducibillity)

(
(
(
(

(see [MY] and [Y2]).

One can show that if (-,-) is positive definite, then PR is a finite irreducible root
system (see [MY]).

Let
VO:={2 eV |(z,y) =0 forally e V}

be the radical of the form, and
-V —Vv/V°

the canonical surjection. Note that R is a finite irreducible root system.
For & € R, let & € V be an inverse image of a, i.e., & = a. Let

So:={se V| a+scR.
Then we have

Oats(@+s)=a+s—(a+s,a+s)(ad+s)=—da—seR.



Thus —s € S_4, and so —Sg C S_g4. Similarly, we have —S_4 C S, and hence
—Ss = S_4- (5)
Also, we have
Oaqt(@+s)=da+s—(ad+s,a+t)(ad+t)=—a+s—2t R,
and hence s — 2t € S_j for all s,t € S5. Thus Sy — 2S5 C S_g4, and by (5), we get
254 — Sa C Sa,

for all & € R. Thus, S is a reflection space of V?. We note that if we take & € R, e.g.
& = «, then 0 € Sg, and so S is a pointed reflection space (see Lemma 2).

Reflection spaces are important not only for root systems but also for Lie algebras. Let
us give one simple example. Let F' be a field of characteristic # 2.

Let {e, f,h} be a standard basis of the Lie algebra sla(F) so that [e, f] = h, [h,e] = 2e
and [h, f] = —2f, having the root system {fa} relative to Fh, i.e., a is the linear form of
Fh such that a(h) = 2. Let

L := sly(F[t*Y]) = sly(F) @ F[t*]
be the loop algebra, which is a (Za x Z)-graded Lie algebra, defining
Ly =Fet', L",=Ff®t" and Lj=Fh®t"
for all n € Z, and all the other homogeneous spaces are 0, i.e., L}, = 0 for k # £1,0. Let
M = (e @ " F[t*F]) @ (f @ t "F[t*P)) @ (h @ F[t*7))

be the homogeneous subalgebra of L generated by e ®t", f @t~ and h ® t*P for p,r € Z.
Let
Siq:=suppy M ={neZ|MnL}, #0}

be subsets of Z. For m, k € S,, since
[e®@t™ [e@t™ f@t ¥ #0,

we have 2m — k € S,. Thus S, is a reflection space of Z. Similarly, S_, is a reflection
space of Z. Moreover, one can easily see that

Soa=pZ+r and S_o=pZ-—r.

Thus reflection spaces naturally appear in supports of graded subalgebras of a loop algebra
(see [Y3] for more general examples).
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