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We introduce a reflection space of an abelian group, which is a generalization of a
subgroup.

Let G = (G, +, 0) be an abelian group.

Definition 1 A subset E of G is called a refection space of G if

2x − y ∈ E (or 2E − E ⊂ E) (1)

for all x, y ∈ E. On the other hand, E is called a symmetric reflection space of G if

x − 2y ∈ E (or E − 2E ⊂ E) (2)

for all x, y ∈ E. Also, we say that E is pointed if 0 ∈ E.

(See [LN], [NY], [Y1], [Y2] and [Y3]. In some references a symmetric reflection space is
simply called a reflection space.)

For example, if G = Z, then a symmetric reflection space of Z is just mZ or m(2Z+1).
On the other hand, mZ + e for any m, e ∈ Z is a reflection space. In particular, any
singleton {e} is a reflection space.

Lemma 1 Let E be a symmetric reflection space of G. Then −E = E.
Hence E + 2E ⊂ E and 2E −E ⊂ E. Thus a symmetric reflection space is a reflection

space.

Proof ) For x ∈ E, we have x − 2x = −x ∈ E. Hence −E ⊂ E. Thus E ⊂ −E. 2

Lemma 2 Let E be a reflection space of G. Then

E is pointed =⇒ E is a symmetric reflection space.

Hence, a pointed reflection space is a pointed symmetric reflection space.
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Proof ) Since 0 ∈ E, we get −E ⊂ E. Hence E − 2E = −(2E − E) ⊂ E. 2

Lemma 3 Let E be a reflection space of G. Then E − e for any e ∈ E is a pointed
reflection space.

Proof ) We have 2(E − e) − (E − e) = (2E − E) − e ⊂ E − e, and so E is a reflection
space. It is clear that 0 ∈ E − e. 2

Lemma 4 Let E be a subset of G. For any e, e′ ∈ E, we have

〈E − e〉 = 〈E − e′〉,

where the bracket 〈A〉 means the subgroup generated by a subset A of G.

Proof ) For x ∈ E, we have x− e, e′− e ∈ E − e. Hence x− e′ = x− e− (e′− e) ∈ 〈E − e〉,
and so 〈E − e′〉 ⊂ 〈E − e〉. Similarly, we have 〈E − e〉 ⊂ 〈E − e′〉. 2

Lemma 5 Let E be a pointed reflection space of G, and let e ∈ E. Then 〈e〉 ⊂ E.

Proof) Since 0 ∈ E (so E is symmetric), we have ±2e = 0±2e ∈ E and ±3e = ±(e+2e) ∈
E. Similarly, we have 2me = 0± (2e+ · · ·+2e) ∈ E and (2m+1)e = e± (2e+ · · ·+2e) ∈ E
for all m ∈ Z. 2

More generally, we have:

Lemma 6 Let E be a symmetric reflection space of G. Suppose that {ei}i∈I ⊂ E, where
I is any index set. Then E + 2〈ei〉i∈I ⊂ E. Hence, E + 2〈E〉 = E.

Proof ) Let x ∈ E + 2〈ei〉i∈I. Then x = e + 2
∑n

j=1 εjeij , where εj = 1 or −1, and
eij ∈ {ei}i∈I. Thus x = e + 2ε1ei1 + · · ·+ 2εnein ∈ E, inductively. (Note that −eij ∈ E by
Lemma 1). 2

Let us classify reflection spaces.

Proposition 1 Let E be a subset of G. Then

E is a symmetric reflection space ⇐⇒ E =
m∪

i=1

(2〈E〉 + ei) (3)

for some 1 ≤ m ≤ |〈E〉/2〈E〉| and some ei ∈ E, and if E is pointed, then some ei = 0.
Moreover,

E is a reflection space ⇐⇒ E =
m∪

i=1

(2〈E − e〉 + xi) (4)

for any e ∈ G (see Lemma 4), and some xi ∈ E and 1 ≤ m ≤ |〈E − e〉/2〈E − e〉|.
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Proof ) For (3), (⇐=) is clear. For the other implication, E contains 2〈E〉 by Lemma 6.
Thus E is a union of cosets in 〈E〉/2〈E〉.

For (4), (⇐=) is clear. For the other implication, note that E−e for e ∈ E is a pointed
reflection space, by Lemma 3. Hence by (3), we have

E − e =
m∪

i=1

(2〈E − e〉 + gi),

where gi ∈ E − e. So letting xi := gi + e, we obtain (4). 2

Example 1 A union of cosets in (m1Z×m2Z)/(2m1Z×2m2Z) plus some (e1, e2) ∈ Z2 for
m1,m2 ∈ Z is an example of reflection spaces of Z2. In particular, (m1Z+e1)× (m2Z+e2)
is a reflection space of Z2.

Where can we find reflection spaces?

Let us recall extended affine root systems.

Definition 2 Let V be a finite-dimensional vector space over Q with a positive semidef-
inite symmetric bilinear form (·, ·). A subset R of V is called an extended affine root
system if R satisfies the following:

(A1) (α, α) 6= 0 for all α ∈ R, and R spans V ;

(A2) 〈α, β〉 ∈ Z for all α, β ∈ R, where 〈α, β〉 = 2(α,β)
(β,β) ;

(A3) σα(β) ∈ R for all α, β ∈ R, where σα(β) = β − 〈β, α〉α;

(A4) R = R1 ∪ R2 and (R1,R2) = 0 imply R1 = ∅ or R2 = ∅ (irreducibillity)

(see [MY] and [Y2]).

One can show that if (·, ·) is positive definite, then R is a finite irreducible root
system (see [MY]).

Let
V 0 := {x ∈ V | (x, y) = 0 for all y ∈ V }

be the radical of the form, and
: V −→ V/V 0

the canonical surjection. Note that R is a finite irreducible root system.
For ᾱ ∈ R, let α̇ ∈ V be an inverse image of ᾱ, i.e., α̇ = ᾱ. Let

Sα̇ := {s ∈ V 0 | α̇ + s ∈ R}.

Then we have

σα̇+s(α̇ + s) = α̇ + s − 〈α̇ + s, α̇ + s〉(α̇ + s) = −α̇ − s ∈ R.
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Thus −s ∈ S−α̇, and so −Sα̇ ⊂ S−α̇. Similarly, we have −S−α̇ ⊂ Sα̇, and hence

−Sα̇ = S−α̇. (5)

Also, we have

σα̇+t(α̇ + s) = α̇ + s − 〈α̇ + s, α̇ + t〉(α̇ + t) = −α̇ + s − 2t ∈ R,

and hence s − 2t ∈ S−α̇ for all s, t ∈ Sα̇. Thus Sα̇ − 2Sα̇ ⊂ S−α̇, and by (5), we get

2Sα̇ − Sα̇ ⊂ Sα̇,

for all α ∈ R. Thus, Sα̇ is a reflection space of V 0. We note that if we take α̇ ∈ R, e.g.
α̇ = α, then 0 ∈ Sα̇, and so Sα̇ is a pointed reflection space (see Lemma 2).

Reflection spaces are important not only for root systems but also for Lie algebras. Let
us give one simple example. Let F be a field of characteristic 6= 2.

Let {e, f, h} be a standard basis of the Lie algebra sl2(F ) so that [e, f ] = h, [h, e] = 2e
and [h, f ] = −2f , having the root system {±α} relative to Fh, i.e., α is the linear form of
Fh such that α(h) = 2. Let

L := sl2(F [t±1]) = sl2(F ) ⊗ F [t±1]

be the loop algebra, which is a (Zα × Z)-graded Lie algebra, defining

Ln
α = Fe ⊗ tn, Ln

−α = Ff ⊗ tn and Ln
0 = Fh ⊗ tn

for all n ∈ Z, and all the other homogeneous spaces are 0, i.e., Ln
kα = 0 for k 6= ±1, 0. Let

M := (e ⊗ trF [t±p]) ⊕ (f ⊗ t−rF [t±p]) ⊕ (h ⊗ F [t±p])

be the homogeneous subalgebra of L generated by e⊗ tr, f ⊗ t−r and h⊗ t±p for p, r ∈ Z.
Let

S±α := supp±αM = {n ∈ Z | M ∩ Ln
±α 6= 0}

be subsets of Z. For m, k ∈ Sα, since

[e ⊗ tm, [e ⊗ tm, f ⊗ t−k]] 6= 0,

we have 2m − k ∈ Sα. Thus Sα is a reflection space of Z. Similarly, S−α is a reflection
space of Z. Moreover, one can easily see that

Sα = pZ + r and S−α = pZ − r.

Thus reflection spaces naturally appear in supports of graded subalgebras of a loop algebra
(see [Y3] for more general examples).
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