Reflection spaces of an abelian group

Iwate University

Yoji Yoshii

We introduce a *reflection space* of an abelian group, which is a generalization of a subgroup.

Let G = (G, +, 0) be an abelian group.

Definition 1 A subset E of G is called a **refection space** of G if

$$2x - y \in E \qquad \text{(or} \quad 2E - E \subset E) \tag{1}$$

for all $x, y \in E$. On the other hand, E is called a symmetric reflection space of G if

$$x - 2y \in E \quad \text{(or } E - 2E \subset E)$$
 (2)

for all $x, y \in E$. Also, we say that E is **pointed** if $0 \in E$.

(See [LN], [NY], [Y1], [Y2] and [Y3]. In some references a symmetric reflection space is simply called a reflection space.)

For example, if $G = \mathbb{Z}$, then a symmetric reflection space of \mathbb{Z} is just $m\mathbb{Z}$ or $m(2\mathbb{Z}+1)$. On the other hand, $m\mathbb{Z}+e$ for any $m,e\in\mathbb{Z}$ is a reflection space. In particular, any singleton $\{e\}$ is a reflection space.

Lemma 1 Let E be a symmetric reflection space of G. Then -E = E.

Hence $E+2E\subset E$ and $2E-E\subset E$. Thus a symmetric reflection space is a reflection space.

Proof) For $x \in E$, we have $x - 2x = -x \in E$. Hence $-E \subset E$. Thus $E \subset -E$. \square

Lemma 2 Let E be a reflection space of G. Then

 $E \text{ is pointed} \Longrightarrow E \text{ is a symmetric reflection space.}$

Hence, a pointed reflection space is a pointed symmetric reflection space.

Proof) Since $0 \in E$, we get $-E \subset E$. Hence $E - 2E = -(2E - E) \subset E$. \square

Lemma 3 Let E be a reflection space of G. Then E - e for any $e \in E$ is a pointed reflection space.

Proof) We have $2(E-e)-(E-e)=(2E-E)-e\subset E-e$, and so E is a reflection space. It is clear that $0\in E-e$. \square

Lemma 4 Let E be a subset of G. For any $e, e' \in E$, we have

$$\langle E - e \rangle = \langle E - e' \rangle,$$

where the bracket $\langle A \rangle$ means the subgroup generated by a subset A of G.

Proof) For $x \in E$, we have x - e, $e' - e \in E - e$. Hence $x - e' = x - e - (e' - e) \in \langle E - e \rangle$, and so $\langle E - e' \rangle \subset \langle E - e \rangle$. Similarly, we have $\langle E - e \rangle \subset \langle E - e' \rangle$. \square

Lemma 5 Let E be a pointed reflection space of G, and let $e \in E$. Then $\langle e \rangle \subset E$.

Proof) Since $0 \in E$ (so E is symmetric), we have $\pm 2e = 0 \pm 2e \in E$ and $\pm 3e = \pm (e+2e) \in E$. Similarly, we have $2me = 0 \pm (2e + \cdots + 2e) \in E$ and $(2m+1)e = e \pm (2e + \cdots + 2e) \in E$ for all $m \in \mathbb{Z}$. \square

More generally, we have:

Lemma 6 Let E be a symmetric reflection space of G. Suppose that $\{e_i\}_{i\in\mathfrak{I}}\subset E$, where \mathfrak{I} is any index set. Then $E+2\langle e_i\rangle_{i\in\mathfrak{I}}\subset E$. Hence, $E+2\langle E\rangle=E$.

Proof) Let $x \in E + 2\langle e_i \rangle_{i \in \mathfrak{I}}$. Then $x = e + 2\sum_{j=1}^n \epsilon_j e_{i_j}$, where $\epsilon_j = 1$ or -1, and $e_{i_j} \in \{e_i\}_{i \in \mathfrak{I}}$. Thus $x = e + 2\epsilon_1 e_{i_1} + \cdots + 2\epsilon_n e_{i_n} \in E$, inductively. (Note that $-e_{i_j} \in E$ by Lemma 1). \square

Let us classify reflection spaces.

Proposition 1 Let E be a subset of G. Then

$$E \text{ is a symmetric reflection space} \iff E = \bigcup_{i=1}^{m} (2\langle E \rangle + e_i)$$
 (3)

for some $1 \le m \le |\langle E \rangle/2\langle E \rangle|$ and some $e_i \in E$, and if E is pointed, then some $e_i = 0$. Moreover,

E is a reflection space
$$\iff E = \bigcup_{i=1}^{m} (2\langle E - e \rangle + x_i)$$
 (4)

for any $e \in G$ (see Lemma 4), and some $x_i \in E$ and $1 \le m \le |\langle E - e \rangle/2\langle E - e \rangle|$.

Proof) For (3), (\iff) is clear. For the other implication, E contains $2\langle E \rangle$ by Lemma 6. Thus E is a union of cosets in $\langle E \rangle/2\langle E \rangle$.

For (4), (\iff) is clear. For the other implication, note that E-e for $e \in E$ is a pointed reflection space, by Lemma 3. Hence by (3), we have

$$E - e = \bigcup_{i=1}^{m} (2\langle E - e \rangle + g_i),$$

where $g_i \in E - e$. So letting $x_i := g_i + e$, we obtain (4). \square

Example 1 A union of cosets in $(m_1\mathbb{Z} \times m_2\mathbb{Z})/(2m_1\mathbb{Z} \times 2m_2\mathbb{Z})$ plus some $(e_1, e_2) \in \mathbb{Z}^2$ for $m_1, m_2 \in \mathbb{Z}$ is an example of reflection spaces of \mathbb{Z}^2 . In particular, $(m_1\mathbb{Z} + e_1) \times (m_2\mathbb{Z} + e_2)$ is a reflection space of \mathbb{Z}^2 .

Where can we find reflection spaces?

Let us recall extended affine root systems.

Definition 2 Let V be a finite-dimensional vector space over \mathbb{Q} with a positive semidefinite symmetric bilinear form (\cdot, \cdot) . A subset \mathfrak{R} of V is called an **extended affine root system** if \mathfrak{R} satisfies the following:

- (A1) $(\alpha, \alpha) \neq 0$ for all $\alpha \in \Re$, and \Re spans V;
- (A2) $\langle \alpha, \beta \rangle \in \mathbb{Z}$ for all $\alpha, \beta \in \mathfrak{R}$, where $\langle \alpha, \beta \rangle = \frac{2(\alpha, \beta)}{(\beta, \beta)}$;
- (A3) $\sigma_{\alpha}(\beta) \in \mathfrak{R}$ for all $\alpha, \beta \in \mathfrak{R}$, where $\sigma_{\alpha}(\beta) = \beta \langle \beta, \alpha \rangle \alpha$;
- (A4) $\Re = \Re_1 \cup \Re_2$ and $(\Re_1, \Re_2) = 0$ imply $\Re_1 = \emptyset$ or $\Re_2 = \emptyset$ (irreducibility)

(see [MY] and [Y2]).

One can show that if (\cdot, \cdot) is positive definite, then \mathfrak{R} is a **finite irreducible root** system (see [MY]).

Let

$$V^0 := \{ x \in V \mid (x, y) = 0 \text{ for all } y \in V \}$$

be the radical of the form, and

$$-: V \longrightarrow V/V^0$$

the canonical surjection. Note that $\overline{\mathfrak{R}}$ is a finite irreducible root system.

For $\bar{\alpha} \in \overline{\mathfrak{R}}$, let $\dot{\alpha} \in V$ be an inverse image of $\bar{\alpha}$, i.e., $\overline{\dot{\alpha}} = \bar{\alpha}$. Let

$$S_{\dot{\alpha}} := \{ s \in V^0 \mid \dot{\alpha} + s \in \mathfrak{R} \}.$$

Then we have

$$\sigma_{\dot{\alpha}+s}(\dot{\alpha}+s) = \dot{\alpha}+s - \langle \dot{\alpha}+s, \dot{\alpha}+s \rangle (\dot{\alpha}+s) = -\dot{\alpha}-s \in \mathfrak{R}.$$

Thus $-s \in S_{-\dot{\alpha}}$, and so $-S_{\dot{\alpha}} \subset S_{-\dot{\alpha}}$. Similarly, we have $-S_{-\dot{\alpha}} \subset S_{\dot{\alpha}}$, and hence

$$-S_{\dot{\alpha}} = S_{-\dot{\alpha}}.\tag{5}$$

Also, we have

$$\sigma_{\dot{\alpha}+t}(\dot{\alpha}+s) = \dot{\alpha}+s-\langle \dot{\alpha}+s, \dot{\alpha}+t\rangle(\dot{\alpha}+t) = -\dot{\alpha}+s-2t \in \mathfrak{R},$$

and hence $s-2t \in S_{-\dot{\alpha}}$ for all $s,t \in S_{\dot{\alpha}}$. Thus $S_{\dot{\alpha}}-2S_{\dot{\alpha}} \subset S_{-\dot{\alpha}}$, and by (5), we get

$$2S_{\dot{\alpha}} - S_{\dot{\alpha}} \subset S_{\dot{\alpha}}$$

for all $\alpha \in \mathfrak{R}$. Thus, $S_{\dot{\alpha}}$ is a reflection space of V^0 . We note that if we take $\dot{\alpha} \in \mathfrak{R}$, e.g. $\dot{\alpha} = \alpha$, then $0 \in S_{\dot{\alpha}}$, and so $S_{\dot{\alpha}}$ is a pointed reflection space (see Lemma 2).

Reflection spaces are important not only for root systems but also for Lie algebras. Let us give one simple example. Let F be a field of characteristic $\neq 2$.

Let $\{e, f, h\}$ be a standard basis of the Lie algebra $sl_2(F)$ so that [e, f] = h, [h, e] = 2e and [h, f] = -2f, having the root system $\{\pm \alpha\}$ relative to Fh, i.e., α is the linear form of Fh such that $\alpha(h) = 2$. Let

$$L := \text{sl}_2(F[t^{\pm 1}]) = \text{sl}_2(F) \otimes F[t^{\pm 1}]$$

be the loop algebra, which is a $(\mathbb{Z}\alpha \times \mathbb{Z})$ -graded Lie algebra, defining

$$L_{\alpha}^{n} = Fe \otimes t^{n}, \quad L_{-\alpha}^{n} = Ff \otimes t^{n} \quad \text{and} \quad L_{0}^{n} = Fh \otimes t^{n}$$

for all $n \in \mathbb{Z}$, and all the other homogeneous spaces are 0, i.e., $L_{k\alpha}^n = 0$ for $k \neq \pm 1, 0$. Let

$$M := (e \otimes t^r F[t^{\pm p}]) \oplus (f \otimes t^{-r} F[t^{\pm p}]) \oplus (h \otimes F[t^{\pm p}])$$

be the homogeneous subalgebra of L generated by $e \otimes t^r$, $f \otimes t^{-r}$ and $h \otimes t^{\pm p}$ for $p, r \in \mathbb{Z}$. Let

$$S_{\pm\alpha} := \operatorname{supp}_{+\alpha} M = \{ n \in \mathbb{Z} \mid M \cap L_{+\alpha}^n \neq 0 \}$$

be subsets of \mathbb{Z} . For $m, k \in S_{\alpha}$, since

$$[e \otimes t^m, [e \otimes t^m, f \otimes t^{-k}]] \neq 0,$$

we have $2m - k \in S_{\alpha}$. Thus S_{α} is a reflection space of \mathbb{Z} . Similarly, $S_{-\alpha}$ is a reflection space of \mathbb{Z} . Moreover, one can easily see that

$$S_{\alpha} = p\mathbb{Z} + r$$
 and $S_{-\alpha} = p\mathbb{Z} - r$.

Thus reflection spaces naturally appear in supports of graded subalgebras of a loop algebra (see [Y3] for more general examples).

References

- [A] S. Azam, Extended affine root systems, J. Lie Theory, no. 2, 12 (2002), 515–527.
- [A-P] B. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. 126 (1997), no. 603.
- [AF] B. Allison and J. Faulkner, *Isotopy for extended affine Lie algebras and Lie tori*, Prog. Math., **288** (2008), 3-43.
- [LN] O. Loos, E. Neher, Reflections systems and partial root systems, Forum Math., Vol 23(2), 349–411 (2011).
- [M] M. Macdonald, Affine root systems and Dedekind's η -functions, J. Invent. Math., **15** (1972), 91–143.
- [MY] J. Morita and Y. Yoshii, Locally extended affine Lie algebras, J. Algebra 301 (2006), 59–81.
- [N] K. Naoi, Multiloop Lie algebras and the construction of extended affine Lie algebras,
 J. Algebra 323 (2010), 2103–2129.
- [NY] E. Neher, Y. Yoshii, Derivations and invariant forms of alternative or Jordan G-tori Trans. Amer. Math. Soc. **355**(3) (2002), 1079–1108.
- [S] K. Saito, Extended affine root systems 1 (Coxeter transformations), RIMS., Kyoto Uviv. 21 (1985), 75–179.
- [Y1] Y. Yoshii, Root systems extended by an abelian group and their Lie algebras, J. Lie Theory **14(2)** (2004), 371–394.
- [Y2] Y. Yoshii, Locally extended affine root systems, Proc. on Quantum Affine Algebras, Extended Affine Lie Algebras and Applications, Contemp. Math., 508 (2010), 285–302.
- [Y3] Y. Yoshii, General Lie tori from Naoi tori, preprint.