
Theorem 1. Let f1, . . . , fm, g ∈ R[x], which are mutually coprime, and deg g < deg(f1 · · · fm).
Then there exist ai ∈ R[x] for i = 1, . . . , m with deg ai < deg fi so that

g

f1 · · · fm
=

a1

f1
+ · · ·+ am

fm
.

Proof. If m = 1, the statement is clear. Assume m > 1 and let h = f1 · · · fm−1. Then, h,
fm and g are still mutually coprime. By a well-known property of R[x] (or more generally
in a principal ideal domain), the coprimeness of h and fm implies that there exists some
a, b ∈ R[x] such that ah + bfm = g. Let am be the residue of a by fm, i.e., a = fmq + am

for some q ∈ R[x] with deg am < deg fm, and let b′ be the residue of b by h, i.e., b = hp + b′

for some p ∈ R[x] with deg b′ < deg h. Then we have (fmq + am)h + (hp + b′)fm = g, and
so g = fmqh + amh + hpfm + b′fm = f1 · · · fmq + amh + f1 · · · fmp + b′fm = amh + b′fm,
comparing the degrees. Dividing by f1 · · · fm, we get

g

f1 · · · fm
=

b′

f1 · · · fm−1
+

am

fm
.

Applying for the induction on m, we get the required expression. �

Theorem 2. Let f, g ∈ R[x] with deg g < mdeg f for some m > 0. Then there exist
ai ∈ R[x] for i = 1, . . . , m with deg ai < deg f so that

g

fm
=

a1

f
+

a2

f2
+ · · ·+ am

fm
.

Proof. Let n = deg f . By Division Theorem, we have

g = fm−1a1 + r1, deg a1 < n, deg r1 < n(m− 1)

r1 = fm−2a2 + r2, deg a2 < n, deg r2 < n(m− 2)
· · · · · · · · ·

rm−3 = f2am−2 + rm−2, deg am−2 < n, deg rm−2 < 2n

rm−2 = fam−1 + rm−1, deg am−1 < n, deg rm−1 < n.

Let am := rm−1. Then

g = fm−1a1 + fm−2a2 + · · ·+ f2am−2 + fam−1 + am.

Dividing both sides by fm, we get the required expression. �

Remark 1. If deg g = 0, i.e., g is constant in Theorem 2, the expression does not produce
anything, i.e., a1 = a2 = · · · = am−1 = 0 and am = 1. However, there is a nontrivial
decomposition into its partial fractions. For example,

1
(1 + x)2

=
1

1 + x
− x

(1 + x)2
.

Remark 2. Of course, R[x] can be F [x] for any field F in the two theorems above, or more
generally, it can be a euclidean domain.
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