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Classification of Quantum Tori with
Involution

Yoji Yoshii

Abstract. Quantum tori with graded involution appear as coordinate algebras of extended affine Lie
algebras of type Aj, C and BC. We classify them in the category of algebras with involution. From this,
we obtain precise information on the root systems of extended affine Lie algebras of type C.

Introduction

Let F be a field. A quantum torus Fg is a noncommutative analogue of the algebra of
Laurent polynomials over F, determined by a certain n x n matrix q. Quantum tori
appeared in several areas, e.g. quantum affine varieties [6], extended affine Lie alge-
bras [5] or quantum physics [7]. In noncommutative geometry or quantum physics,
a special type of quantum tori called a noncommutative torus is considered (see Re-
mark 1.0).

Our first purpose in this paper is to classify the graded involutions of quantum
tori. It is known [1] that the existence of a graded involution of Fg is equivalent to q
being elementary, i.e., all the entries of q are 1 or —1. We prove that for an elementary
q we have Fy = By, where

I-times

\ 1
hl,n:hX"'XhXIH,y and h:(

1 11> (Theorem 1.10)

(see Definition 1.4 for the notation x). Then we classify graded involutions 7 of the
elementary quantum torus Fp,,. We obtain that the algebra with involution (F,,, 7)
is isomorphic to

(Fuy,,,*);  (Fyy,,71) or (Fp,,7) (Theorem 2.7)

for three unique involutions *, 77 and 7,.

A quantum torus has a natural 7"-grading. For any graded involution the subset
of 7", consisting of the degrees in which homogeneous elements are fixed by the invo-
lution, is a so-called semilattice, studied in [1]. In Lemma 4.1 we determine the index,
an invariant of any semilattice [4], for each of the 3 involutions of Theorem 2.7. As a
result, the 3 semilattices are pairwise non-similar. Moreover, we introduce a natural
similarity invariant of semilattices called saturation number (Definition 4.2). Using
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this concept, we show that / in the three semilattices above is a similarity invariant.
This allows us to complete the classification of semilattices determined by quantum
tori with graded involution (Theorem 4.6).

Quantum tori with graded involution appear as coordinate algebras of extended
affine Lie algebras of type A, in [11], C in [2] and BC in [3]. Isomorphic coordi-
nate algebras give rise to isomorphic extended affine Lie algebras. Thus, our results
provide a finer classification of extended affine Lie algebras in the above types. Also,
we obtain more precise information on the difference between extended affine root
systems and the root systems of extended affine Lie algebras of type C, for r > 3 than
the one described in [2] (see Corollaries 5.4 and 5.5).

The organization of the paper is as follows. In Section 1 we define elementary
quantum tori and classify them. In Section 2 we classify (elementary) quantum tori
with involution. In Section 3 we review semilattices. In Section 4 we obtain the clas-
sification of semilattices determined by (elementary) quantum tori with involution.
In the final section extended affine root systems of type C are reviewed and the dif-
ference to the root systems of extended affine Lie algebras of type C is discussed.

This is part of my Ph.D. thesis, written at the University of Ottawa. I would like
to thank my supervisor, Professor Erhard Neher, for his encouragement and sugges-
tions.

1 Elementary Quantum Tori

We begin by recalling quantum tori (see [8]). An n x n matrix q = (g;;) over a
field F such that g;; = 1and q;; = qi;l is called a quantum data matrix or simply
a quantum matrix. (This notion should not be confused with the use of the word
“quantum matrix” in quantum algebra, see e.g. [9]. But in our argument, no confu-
sion will arise, and so we will simply call the q a quantum matrix.) The quantum torus
Fq = Fq[tlﬂ, ..., 1] determined by a quantum matrix q is defined as the associa-
tive algebra over F with 2n generators £, . . ., t!, and relations ity =t =1
and tjt; = gjjtitj forall 1 < i, j < n. Note that Fy is commutative if and only if
q = 1 where all the entries of 1 are 1. In this case, the quantum torus F; becomes the
algebra F[¢!, . .., tF!] of Laurent polynomials.

Remark 1.0 For F = G, if we assume that |g;;| = 1 for all i, j, then Cgq is a non-
commutative torus [10]. Let 6;; € R be such that g;; = ™% Then 8 = (6; i) is
an antisymmetric matrix over R. In noncommutative geometry or quantum physics,
one studies the C*-algebra completion of the quantum torus as defined above (see
e.g. [10] or [7]).

Let A = A, be the free abelian group of rank n. We give a A-grading of the quan-
tum torus Fq = Fy[t', ..., #,7] in the following way: For any basis {7, .. .,o,} of
A, we define the degree of

fo :=1t]" -ty fora=aoo1+---+a,0, € Aasa.

Then Fq = D,y Fta becomes a A-graded algebra. We call this grading the toral
A-grading of Fq determined by (oy,...,0,). Sometimes it is referred to as a
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(@1,...,04)-grading. Also, if we write Fq = @ ) (Fg)a or Fg = @Dyep Flas
we are assuming some toral A-grading of Fy. One can check that the multiplication
rule in Fg for q = (g;;) is the following: for 3 = B0y + - - - + 8,0, € A,

(1.1) tatp = [[ @ tass-

i<j

Lemma 1.2 If : Fy = @ cp Fla — Fy = @,y Fla is an isomorphism of
algebras, then there exists the induced group automorphism p of A such that p(Ft,) =
Ftpa) foralla € A.

Proof It is easily seen that the units of any quantum torus with toral grading are
nonzero homogeneous elements. Thus, since ¢(#y) is a unit for any o € A, there
exists p(a) € A such that ¢(Ftq) = Ftp), and the map p: A — A is well-defined.
It is straightforward to check that p is an automorphism of A. ]

For quantum matrices q and 7, we say that q is equivalent to 11 and denote this by
q = nif Fq = F,,. This is an equivalence relation. Note that q = 1 implies q = 1.

If Fq has a toral A-grading, the centre Z(Fg) of Fy is graded by some subgroup of A
which we call the grading subgroup of Z(Fg). If Fq and F,, each have toral A-gradings,
we write Fy =25 F, to mean that Fy and F,, are isomorphic as A-graded algebras.

Lemma 1.3 Let qand m = (nijh<i,j<n be quantum matrices, and let Fq respectively
F,, be the corresponding quantum tori. Then the following are equivalent:

(i) &, ie., Fq & F, as algebras,
q=mn q n g

(ii) for any toral grading of Fq, there exists a basis (o1, ...,0,) of A and nonzero
homogeneous elements x; € Fq of degree a; such that xjx; = n;jxx; for all 1 <
i<j<mn,

(iii) for any toral grading of Fg, there exists a toral grading of Fy, such that Fq =) Fy,.
In that case, the grading subgroups of the centres Z(Fy) and Z(Fy) coincide.

Proof We prove (i) = (ii) = (iii) = (i). Suppose that (i) holds, i.e., there exists
an isomorphism ¢ from Fg onto F,. Give a toral A-grading to Fq so that Fq =
@D oecr(Fg)a and a toral (1, .. ., €,)-grading to F, = Fn[tlil, ceey t;—Ll] so that F,, =
@D peca Fta- Then, by Lemma 1.2, there exists the induced automorphism p of A such
that go((Fq)a) = Ftpq foralla € A. Leto; := p~'(g;) and x; := ¢ '(t;) € (Fg)o,
fori=1,...,n Then (oy,...,0,)is abasis of A, and we have

xjxi = () () = @ (tit) = ¢ Hmijtit)) = mijxix;

forall1 < i < j < n. So (ii) holds. Suppose that (ii) holds. Since {(o,...,0,)
is a basis of A, one has Fy = @, Fxa where xq = x" ---x3" for ¢ = ooy +

acl
-+« + a0, Defineamap p: Fq — F, = F,,[tlﬂ, ... ,t;ﬂ] by ¢(xq) = to where
ta = 17" ---t3" for all @ € A. Then, since xjx; = 7;x;xj, ¢ is an isomorphism of
algebras. Moreover, ¢ is graded if we give the (o1, . . ., 0,,)-grading to F,,. Hence (iii)

holds. Finally, (iii) clearly implies (i). [ |
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For convenience, we use the following notation:

Definition 1.4 For square matrices Ay, ..., A, of sizes l;,i = 1,...,r, we define the
square matrix A; X --- X A, of sizel; +--- +1I, tobe

A1 1 1
1 A 1
A X XA = |1 1 A ,
1
1 1 A,

where 1’s are matrices of suitable sizes whose entries are all 1. Also, we write 1 = 1;
if 1 is a square matrix of size k.

Lemma 1.5

(1) Letq = (gij) be an nx n quantum matrix, o a permutationon {1, ...,n}, and put
4o = (gij) where Gi; = qo(i)o(j)- Then qQ = Q,. In particular, for a transposition
(ij) € S, we have q = qij).

(2) Letr, s and m be quantum matrices with s = 1. Then:

(i) rxs&sxr,

(i) rxs=rxn.
Proof For (1), let Fy = Fq[tlil, ceey tfltl], and so we have t;t; = g;;tit;. Hence the
generators f; 1= lo(;) satisty Ij; = to(j)toti) = dotiio(j)lotlo(j) = dotio(jlitj> and
>+1 e o
Fq=Fg (5, .. i7"

Thus we get q = G-

For (2), let r and s be the sizes of the matrices r and s, respectively, and let n := r+s
and Fryg = Foos[t5), ..o, 51,

(i) follows from (1): Take

o — 1 cee s s+l .o on
T \r+1 - on 1 - 1)

Thens X r = (r X 8),.

For (ii), we consider a toral (1, ...,&,)-grading of Fy,. Letr x 1) = (a;;). The
subalgebra of Fyx, generated by t=1,... ¢! can be identified with the quantum
torus Fy[tX!) ... tF1] with the (g,41,...,€,)-grading. By Lemma 1.3, our assump-
tion s & 7 implies that there exists a basis (611, ...,0,) of Ze,41 + -+ - + Ze, in
A such that x;x; = a;jx;x; forall r + 1 < i, j < n where x; is a nonzero element
of degree ;. Note that all x; := t1,...,x, := t, commute with all #,,1,...,%,, and

so all x;,...,x, commute with all x,,,,...,x,. Hence we get x;x; = a;;x;x; for all
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1 <1i,j < n.Since (€1,...,Er,Tps1,-..,0,) isa basis of A, we obtainr X s X r x n
by Lemma 1.3. ]

Definition 1.6 A quantum matrix € = (g;;) is called elementary if €;; = 1 or —1
for all 7, j. Note that € becomes a symmetric matrix. Also, the quantum torus F.
determined by an elementary quantum matrix € is called an elementary quantum
torus.

Note that any elementary quantum matrix is 1 if ch. F = 2. Thus our argument
will be trivial if ch. F = 2, and so for convenience we will assume that ch. F # 2 from
now on.

Example 1.7 Let
41 1 41 +1 k1 A1l
Fm, = Fm,[t7 .15 7,157 ] and  Fy, = Fy,[t7 .65 15 .t ]

be elementary quantum tori with an (e, &5, €3)-grading and an (e}, &;, €3, £4)-grad-
ing, respectively, where

1 -1 -1 -1
-1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 1

1 -1 -1
my=|—-1 1 -1 and my =
-1 -1 1

In F,, t; commutes with f,¢3 which has degree &, + €3, and in Fy,, f; commutes
with #,t3 and f,1, which has degree £, + €3 and €, + &,. Since (€1, €;,&; + €3) and
(e1,€2,€2 + €3, €, + £4) are bases of A3 and Ay, respectively, we have by Lemma 1.3,

1 -1 1 1
1 -1 1
—1 * ok
m; = [ -1 *x % and my & ,
1 * ok
1
1 * ok

and the #-parts of both matrices are some elementary matrices. Indeed in both alge-
bras, we have (f,13)t, = —t;(t213), and in F,,, (f2ta)t, = —ta(tats) and (£213) (f214) =
—(tat4)(1213). So we get

1 -1 1 1
-1 1 -1 -1

1 -1 1 -1

1 -1 -1 1

1 -1 1
m=[-1 1 -1 and my =
1 —1 1

In both algebras, #; and f, commute with #,(f,¢3) which has degree &, + &, + €3,
and in Fp,, t; and t, commutes with #; (t,t,) which has degree e, + &, + &4. Since
<€1, €,61 tex + €3> and <€1, €2,€1 + €, +€3,61+eEx+ €4> are bases OfA3 and Ay,
respectively, we have by Lemma 1.3,

1

* K ==
* X ==

1
1 1
1
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and the #-part is h by (t1£24)(t11213) = —(t11213)(t11214). Thus we have shown
mj3 = h1’3 and my = h2’4 =hxh

(see the definition of h;,, in Theorem 1.10). Note that we also have shown

+1  +1 j:l]

Fany =0 Fo [ug, uy 3 via 1] — ug, ty > Uy, titats — U3,

+1 +1 il] via

~ +1
Fm, ZA Faxnlug ,uy ,uz ,uy
I /= Uy, B > up, llals —— U3, filply — Uy,
for the (€1, &, €3)-grading of Fy,,, and the (€1, &, €3, £4)-grading of Fpxn.

In general, the centre Z(Fq) of a quantum torus Fgq is an algebra of Laurent poly-
nomials, and the grading group is given by

{aeA( 1" :lforall,BEA}
ij

(see [5] or [8]). For later use, we directly calculate the centre of F,, .

Lemma 18 Letl > 0andF,, = Fy, [ti), ..., tE"] be an elementary torus. Then the
centre Z(Fy,,) is equal to
+2 +2 1 +1
02l [T o S TR TR Sl B
the algebra of Laurent polynomials in the variables t1, . . . , 13, tais1, - - - , tn. Hence for a

(O1,...,0,)-grading of Fy, , the grading group of Z(Fy,,) is equal to

2Z0’1 + - +2Z0’2[+Z0’21+1 + - +Z0'n.

Proof It is clear that Z’ := F[tlﬂ, ceey tffz, tzﬂl, ceey tf,“] C Z(Fy,) =: Z. For the
other inclusion, if Z \ Z’ # @, there exists x := t]" - - - t;f’ € Z,wherek; = 0orl
but not all ; are 0. But then, for x; # 0, we have xt; = —tx where

k_{j+1 if j is odd

j—1 if jiseven,
i.e., x & Z, which is a contradiction. Hence Z = Z'. |

Note that hy, = 1 and so Z(Fp,,) = Fl&5 .. 8.

Lemma 1.9 Let e = (g;;) be an n x n elementary quantum matrix for n > 3. If
Ekp = Ekg = —1 for some distinct 1 < k,p,q < n, then there exists an elementary
quantum matrix 1 = (n;;) with

nij = €ij foralli,j7#q (ng=cegy=1),
Niq = €ipEiq foralli# q

such that e 2 m. In particular,
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(@) Mg = landn = ey for all i # g;
(b) ifk =2and p = 1, then my = €; for all i, i.e., the first rows of € and 1 are the

same.
_ +1 +1 : : : _ _
Proof Let F. = F.[t;,...,t;'] witha (o1,...,0,)-grading. Since e, = €y =
—1, we have t,ty = —txt, and t,tx = —txt,. Hence t; commutes with t,¢, which has
degree o), + o,. Let
Xy =y Xg—1 = g1, Xg = Eply, Xgal = lgany ey X 1= D

Then the relations between x; and x; for 1 < i, j < n determine an elementary
quantum matrix n = (n;;), i.e., xjx; = n;jx;x;. It is clear that n;; = ¢;; for all
i,j # q. Fori # q, we have x,x; = (t,t)t; = €;peigti(tpty) = €ip€igxixy. Hence
Nig = EipE€ig. Since

(O1y00 01,0 + 0y, 0415, Op)
is a basis of A, we get € = 1) by Lemma 1.3. (a) and (b) are clear now. [ |

Our first result is the following:

Theorem 1.10 Let € be an n x n elementary quantum matrix. Then there exists | > 0
such that € = h,,, where

I-times

——— 1 -1
h),=hx.--xhx1, 5 and h= 11 )

Also, there exists a (071, . . ., 0,)-grading of F. such that the grading group of the centre
Z(F.) is equal to
2001+ -+ 210y + Loy + - - + Loy,

Moreover, the number | is an isomorphism invariant of F.

Proof We prove this by induction on n. When n = 1, € has to be (1), and so the
statement is clear. Let n > 1, &€ = (g;;) and

Ni(e) :=|{i | e = —1,1 < i < n}|

where | | is the number of elements of a set. (We will use this notation only for k = 1
and 2.) If Ni(e) = 0, then € = (1) x &’ for an elementary quantum matrix &’ of size
n — 1. By induction, we have &’ 2 h;,,_; for some / > 0. Then, by Lemma 1.5 (2),
we get

€= (1) X 5/ = (1) X hl,n—l = hl,n—l X (1) - hl,n-

If N1(e) > 1, then by Lemma 1.9 (a) for k = 1, there exists an elementary quan-
tum matrix €’ such that e = €’ and N;(e’) = N;(e) — 1. Repeating this, we obtain
an elementary quantum matrix v such that € = v and N;(v) = 1, i.e., only one
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entry, say the (1ip)-entry, is —1 in the first row of v. If N1(g) = 1, we also put v = €.
Then, by Lemma 1.5 (1), we get

1 -1 1 1
—1
v e — () — 1 *
€ = Vi) =1 = (nij) = ,
1
i.e., m2 = 11 = —1, the other 7;; = 7;; = 1 and * is some elementary quantum

matrix of size n — 1.

If n = 2, we have 7 = h and we are done. We assume that n > 2. Note that
N>(m) > 1since m; = —1. If No() > 1, we can apply Lemma 1.9 (b) for any
g > 2 such that 1, = —1, and get an elementary quantum matrix 1’ such that
n = n', Ni(n') = Ni(n) = 1 and N,(n’) = Ny(n) — 1. Repeating this, we obtain
an elementary quantum matrix ¢ = (p;;) such that 9 = p, Ny(u) = No(p) = 1
and 1 = pp = —1. Also, if No(n) = 1, we put ) = . Thus we have n = p =
h x p' for an elementary quantum matrix g’ of size n — 2. By induction, we have
pn' = hy,, for some !’ > 0. Then, by Lemma 1.5 (2) (ii), we get p = h x p' =
hxhy, ,=h;, wherel=1'"+1,and hencee = n = pu = hy,.

The description of the centre follows from Lemma 1.3 and Lemma 1.8. For the
last statement, suppose that h;,, = hys ,. Then, by Lemma 1.3, Fy,, = Fy,, for some
toral gradings. Hence the grading groups of the centres of Fy, , and F,,  coincide,
which implies I = I’, by Lemma 1.8. Therefore, [ is an isomorphism invariant of F..

|

2 Elementary Quantum Tori with Graded Involution

From now on, we always consider a quantum torus as a toral A-graded algebra. Let
Fq = Fq[tlﬂ, ..., tF1] be the quantum torus determined by q = (gij), and let T be
a graded involution of Fg. Then we have 7(t;) = a;t; for somea; € F,i = 1,...,n.

Since t; = T%(t;) = a’t;, one gets a; = %1 forall 1 < i < n. Moreover, one has
aiajq,-jtjti = T(q,‘jt,‘l’j) = T(tjt,‘) = aiajt,-t]- = aiajqj,-tjti,

and hence qi;l = gji> i.e,, qij = £1forall 1 < i, j < n. Thus q has to be elementary.

Conversely, it is straightforward to check that for an elementary quantum tours
F. = Fs[tlﬂ, ...,tF'] and each (ay,...,a,), a; = %1, there exists a unique involu-
tion of F such that 7(¢;) = a;t; forall 1 < i < n. We call this 7 of type (ay, ..., a,),
denoted 7 = (ay, ..., a,). The graded involution of type (1, . .., 1) is called the main
involution, denoted *. Thus we have the following proposition, which is stated in [1]:

Proposition 2.1 Let Fq = Fq[tlﬂ, ..., t 5] be a quantum torus over F. Then there

exists a graded involution T of Fq if and only if q is elementary. In this case, T has type
(a1,...,a,), i.e, T(t;) = ait; wherea; = 1 or —1 forall 1 <i <n. [ |
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Recall the notion of isomorphism in the class of algebras with involution. Namely,
for algebras with involution (A, 7) and (B, p), an isomorphism of algebras with involu-
tion from (A, 7) onto (B, p) is an isomorphism f from A onto B satistying f7 = pf,
and in this case we denote this by (A, 7) 2 (B, p). Moreover, if A and B are A-graded
algebras, 7 and p are graded involutions and the f happens to be a graded isomor-
phism, we write (A, 7) 2, (B, p). Finally, the centre Z(A, T) of (A, T) is defined as

Z(A, 1) =Z(A)N{a € A | 7(a) = a},

where Z(A) is the centre of the algebra A.
One can prove the following lemmas similar to Lemmas 1.3 and 1.5. Since the
proofs can be done in the same manner, they will be left to the reader.

Lemma 2.2 Let (F,, ) and (F,, p) be elementary quantum tori with graded involu-

tion. Let 1 = (mij)1<i,j<n and p = (ay, .. ., a,). Then the following are equivalent:
@) (Fe,7) = (Fy, p)s
(i) for any toral grading of Fe, there exists a basis (o1, ...,0,) of A and nonzero

homogeneous elements x; € F, of degree a; such that x;x; = n;;x;xj and T(x;) =
aix; forall1 <i < j<mn,

(iii) for any toral grading of Fe, there exists a toral grading of Fy, such that (Fe,T) =)
(Fy, p). In that case, the grading subgroups of the centres Z(Fe,T) and Z(Fy, p)

coincide. [ |
For graded involutions 7 and p of type (ay,...,a,) and (b, ..., b;), respectively,
we denote the graded involution of type (a1, . ..,a,,b1,...,bs) by T X p.

Lemma 2.3 Let (Fy, 1), (Fs, p) and (Fy, p1) be elementary quantum tori with graded
involution. Assume that (Fs, p) = (Fy, p1). Then:

(i) (Fexs, ™ X p) = (Fsxr, p X T),
(i) (Fexs, ™ X p) & (FrxnaT X p1). u

We start to classify elementary tori with graded involution. Let 7 be a graded invo-
lution of an elementary quantum torus F.. Then, by Theorem 1.10 and Lemma 1.3,
we have Fe =, F,, for some [ > 0 and toral gradings, and hence (Fe, 7) =5 (Fp,,, p)
for some graded involution p of Fy,, . Thus it is enough to classify Fy,,, with graded in-
volutions. Besides the main involution * = (1, ..., 1), we define two specific graded
involutions of Fy,,, namely,

mn=,...,1,-1,1,...,1),
where only the 2] + 1 position is — 1, if n — 2] > 1,
m=(1,...,1,-1,-1,1,...,1),

where only the 2] — 1 and 2! positions are —1, if [ > 1.

Remark By Lemma 1.8, * and 7, fix the centre Z of Fy,, but 7, does not. It is easily
seen that the central closure Fy,, = Z ®z Fy,, is a simple algebra over Z, where Z is
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the field of fractions of Z. Let 7 = %, 7y or 7,. By the universal property of the central
closure Fh(m, the natural extension 7 of 7 defined by 7(z ® x) = 7(z) ® 7(x) is an
1

involution of Fh(m. Since ¥ and 7; fix Z, they are involutions of first kind, while 77
1
does not, and so it is an involution of second kind.

Example 2.4 Recall the two elementary quantum matrices ms and my defined in

Example 1.7. The isomorphisms m3; = h; 3 and m4 = h, 4 there give isomorphisms
of algebras with involution, namely,

(Fm37*) = (Fh17377-1) and (Fm47*) = (thﬁ”TZ)'

Like Lemma 1.8, we have the following lemma about the centres:

Lemma 2.5 Let Fy, = Fy,, [tlil, ..., 1] be an elementary torus. Then
2 +2 41 +1
Z(Fyy,y %) = Z(Fny,,, m2) = FI oo 5 5 s 5 by
+2 +2 +1
Z(Fhl,anl) :F[tl ’ t21+17t21+2""7tn ]

(For (Fy,,, 2), we are always assuming | > 1, but for the others, | can be 0.)
Hence for a (o, ...,0,)-grading of Fy,,, the grading groups of Z(Fy,,,*) and
Z(Fy,,, 2) are equal to

2001 + -+ 200y + Loy -+ Loy,
and the grading group of Z(Fy,,, T1) is equal to
200, + -+ - + 2oy + Loy + - - + Loy,

Proof From Lemma 1.8, we already knows the description of the centre Z(Fy,,) of
Fp,,- So only the fixed elements of Z(Fy,,) under each %, 71 and 7, have to be calcu-
lated. This easy exercise is left to the reader. ]

For the classification of elementary tori with graded involution, we use the follow-
ing:
Lemna 2.6 Let + be the main involution and Ty the graded involution of Fy,, defined
above. Then:

(i) (Fn,(1,=1)) = (Fy,(—1,1)) = (Fy, %),
(ii) (Fu, ( 1—1))%(1«12,T1

(i) (Fp,,, (—1,—1 —1)) & (Fy,,, 1),

(iv) (Fhyys (—1,-1,-1,-1)) = (Fy,,, %)

Proof Let Iy, = th,,,[tlﬂv ...,tF1] with an (ey,...,&,)-grading. Then we note
thatt; ---t; hasdegreee; +---+¢;.
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For (i), we have n = 2 and ] = 1. Let 7 = (1, —1). Then we have 7(¢;) = #; and
T(tg) = —H. Since (tltg)tl = —hh (tltg) and T(tltz) = ht, and since <€1, g1+ €2> isa
basis of Ay, we get (Fn,T) = (Fp, *) by Lemma 2.2. The case (—1, 1) can be proven
in the same way.

For (ii), we have n = 2 and [ = 0. Let 7 = (—1, —1). Then we have 7(¢t;) = —t;
and 7(t;) = —t,. Since (111,) = t1(h112) and 7(t112) = titp, and since (1,1 + &) is
a basis of A,, we get (Fy,, 7) = (Fy,,71) by Lemma 2.2.

For (iii), we have n = 3 and [ = 1. Let 7 = (—1,—1,—1). Then we have
T(t1) = —t1, T(t2) = —t, and 7(t3) = —t3. Since (Lr13)(t1t2t3) = —(t1t2t3)(f213),
t3(thiats) = (ht3)ts, t3(tat3) = (t3)ts, T(titats) = titats and T(tat;) = tat3, and
since (€, + € + €3,€, + €3,€3) is a basis of A3, we get (Fy,,,7) = (Fy,,,71) by

Lemma 2.2.
For (iv), we have n = 4 and [ = 2. Let 7 = (—1,—1,—1,—1). Then we have
T(tl) = —1y, T(tz) = —1, T(t3) = —13 and T(t4) = —1y. Put X1 = f1laty, Xy 1= fhly,

x3 1= tit3 and x4 := t1t314. Then one can check that x;x; = a;jx;x; where (a;;) = hy4
and 7(x;) = x; for 1 < i, j < 4. Also, one can check that

(e1+er+ey,er+Es,6+E3,6 +E3+Eg)

is a basis of A4. Hence by Lemma 2.2, we get (Fy,,, 7) & (Fh,,, *)- ]

Now we state one of our main theorems.

Theorem 2.7 Let T be an arbitrary graded involution of an elementary quantum torus
Fe. Let x be the main involution, and T\ and T, the graded involutions of Fy,, defined
above. Then (F¢, T) is graded isomorphic to exactly one of

(Fh]’"7 *)7 or
(Fhy,,T1) or
(Fhl’,, ) 7—2 )7

and for each of these | is an invariant of the isomorphism class. Moreover, we have

(i) (Fe,x) & (Fn,,1) =121

(i) (Fe,#) = (B m) = 1> 2

(i) (P 71) 2= (i, e ) for 1> 1;

(iv) (Fn,,,72) =n (Fu_,,_,xm,,*) for | > 2, where my and my are the elementary
quantum matrices defined in Example 1.7.

In particular, (F,T) is graded isomorphic to exactly one of (Fy,,,T1), (Fn,,,T2) or
(Fy, *) for some elementary quantum matrix n.

Proof We have (Fe,7) =\ (Fy,,, p) for some graded involution p of Fy,, as men-
tioned above. So we classify (Fy,,, p) for p = (ai,...,a,). Note that h;,, = hjy x
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1,_2. We consider (Fhw, (ai,..., a21)) and (Fl,,_z,, (Az41y« - - s an)) separately. By
Lemma 2.3 and Lemma 2.6 (i) and (iv), we have

~ (Fh a*) or
(P (a1, a)) = {(Fhw )
1219 s

and by Lemma 2.6 (ii),

o ) (Fi, %) or
(Fl,,_z,, (@21, - aan)) = {(FI,,ZU ).
Hence by Lemma 2.3, we get
(Fny,,» %), or
(Fay,p) & { T 7 o
(Fhy,,, 2), or

(P, (1,...,1,—-1,-1,-1,1,..., 1)),

and the last one is isomorphic to (Fy,,, 71) by Lemma 2.6 (iii). Hence, by Lemma 2.2,
we have obtained (F¢, T) =5 (Fp,,, *), (Fn,,, T1) Of (Fp,,, T2).

By Lemma 2.5, we know the grading groups of the centres Z(Fy,,, *), Z(Fy,,, T1)
and Z(Fy,,, 72), and hence by Lemma 2.2, [ is an invariant of the isomorphism classes.
Moreover, the grading groups of Z(F,,, *) and Z(Fy,,, 72), are the same but different
from the one of Z(Fy,,, 71). Thus, by Lemma 2.2, we get (Fy,,, *) % (Fp,,71) and
(Fhy,, 1) % (Fhy,,, T2). We postpone the proof of (Fy,,, *) 2 (Fn,,, 72) until Section 4
(right after the proof of Lemma 4.1).

(i) Suppose that (Fy,,,71) = (Fe, *). We have hy,, = 1, which forces € = 1, and
hence * is the identity map. This is a contradiction since 71 is not the identity map.
Therefore, we get (Fy,,, 71) 2 (Fe, *).

(ii) Suppose that (Fy,,,7) = (Fe,*). Let Fy,, = Fhl_”[tlﬂ, ey tnﬂ] with an
(€1, ..., €n)-grading. By Lemma 2.2, there exists a basis (p1, ..., p,) of A such that
a nonzero element x; € Fy,, of degree p; are fixed by 7, foralli = 1,...,n. Let
pi = apg; + -+ + ajug, for ajj € Z. Then one can take x; = £ ---£3. Since
m = (—1,—1, 1,...,1), we have, by the multiplication rule (1.1) of a quantum
torus,

T2(X,‘) — (71)051'1‘*'061'2’:?“1 . tséil — (71)ai1+ai2+ailai2xi =x;.

Hence o1 and «y, are both even for all i = 1,...,n. This implies that the deter-
minant of the matrix () is even. This is absurd since (p1,. .., p,) is a basis of A.
Therefore, we get (Fy,,, 2) & (Fe, *).

For (iii) and (iv), let Fy,, = Fy,, [tlﬂ, ceey tnil]. Let U be the subalgebra of (Fy,,, 71)
generated by tzizip tzil1 and t2i1+11’ and let V' be the subalgebra of (Fy,,, 2) generated
by tiiy t;ltiz, t;ﬁl and tzill. Then we have (U, 1|y) = (Fhm,ﬁ) 2 (Fm,,*) and
(U,nlv) = (Fn,,, 72) = (Fm,, *) (see Example 2.4). Therefore, by Lemma 2.3 we
obtain (iii) and (iv). [ |
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3 Semilattices

We review semilattices (see [1]). Let [E be a Euclidean space. A subset S of IE is called
a semilattice in [E if

(S1) 0€S,

(S2) S—28cCS,

(S3) Sspansl,

(S4) Sis discrete in E.

Also, a subset S of a free abelian group of finite rank is called a semilattice in A if (S1),
(S2) and

(S3)’ Sspans A.

If S is a semilattice in IE, then the group (S) generated by S is a lattice in E and S is
a semilattice in (S). Also, if S is a semilattice in A, then S can be considered as a
semilattice in some E. Note that 2§ is not a semilattice in (S), but a semilattice in E.
We define the rank of a semilattice S in E (resp. in A) as the dimension of [E (resp. the
rank of A). Two semilattices S and S’ in E (resp. in A) are said to be isomorphic if
there exists ¢ € GL(E) (resp. ¢ € Aut A, the group of automorphisms of A) so that
©(S) = §’, and denoted S = §’. Semilattices S and S’ in E are said to be similar if
there exists ¢ € GL(E) (resp. ¢ € Aut A) so that p(S+ o) = §’ for some o € S, and
we then write S ~ S’. The relations 2¢ and ~ are equivalence relations.

Example 3.1 Let F. = @, Fta be an elementary quantum torus. We fix a toral
(o1, ..,0,)-grading of F.. Let T be a graded involution of F,, and let

S(e,7):i={a e A|1(ta) = ta}-

Then S(g, 7) satisfies (S1) and (S2), and so S(e, 7) is a semilattice in some E. In [1,
p- 83], there is a description of S(e, 7) in terms of the coordinates of A relative to

the basis (o1,...,0,), namely, for a« = ajo1 +--- + a0, € A, € = (&) and
T = (ala-"aan)>
S(e,7) = {aEA‘ Zai+ Z aia; =0 modZ}
i€l, (i,))€Je

where I, = {i |a; = —1}and J. = {(i, j) | &;; = —1}.
Now, if S(g, 7) satisfies (S3)’, it is a semilattice in A. For example, S(e, *) is a
semilattice in A since o1, ..., 0, € S(g, *). Let

AD =270 + -+ 220, + Lo + - - + Loy,

Then one can see that

S(1,7) =AY and S(hy,,m)=A?,
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which are lattices, and so semilattices in some Euclidean space but not semilattices
in A.

If (Fe,7) & (Fer, 7'), then by Lemma 1.2, there exists the induced automorphism
p of A, and clearly we have p(S(e, 7)) = S(¢’, 7'). Therefore, by Theorem 2.7:

Corollary 3.2
AD, or
Se, 7)< AP or

S(m, x) as semilattices in A
for some elementary quantum matrix 1.

We will need the following fundamental property of semilattices, which is shown
in [1, I1.1.4].

Lemma 3.3 Suppose that S is a semilattice in a lattice A. Then
(3.4) 2ACSCA and 2A+SCS.

Conversely, any generating subset S of A satisfying (3.4) is a semilattice in A. ]
Suppose that S is a semilattice in a lattice A. Then, by (3.4) above, one can write

m
S= |_| (o; +2A) (disjoint union) for someo; € S.
i=0

We call the integer m + 1 the index of S and write it as I(S), though Azam first defined
the index as m (see [4, Definition 1.5, p. 3]). We have found our definition more
convenient. Let n := rank A. Then one can check that n + 1 < I(S) < 2". Azam
showed that the index is a similarity invariant (see [4, Lemma 1.7, p. 3]).

4 Classification of S(e, *)

Recall the notation S(e,7) = {& € A | 7(ta) = to} for a quantum torus (Fe, T)
with graded involution, where € is any elementary quantum matrix and 7 is any
graded involution (Example 3.1). Also, we defined the main involution * of F, for
any elementary quantum matrix €, and two special graded involutions 7; and 7, of
Fp,, for the special elementary quantum matrix h;, in Section 2. Note that n > 2/
and [ > 0. Also, 7 is defined when n > 2] and 7, is defined when [ > 1.

We will classify S(e, *) in this section. By Theorem 2.7, we already know that

S(hl,na *)
S(e,*) = § Sthyy, 1) (1>1)
Sthy,, ) (1=2).

For simplicity, we put
S(?’l, l) T) = S(hl,m 7).
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Let Fy,, = Fn,, (5. ..t witha (o, . .., 0,)-grading. Let
I(S(n,1,7)) == {(k1,...,ks) € {0,1}" | K101+ -+ Koy € S(n, 1, 7)}
={ (K1, k) €{0, 1} | T - tfm) =1t o157} and
I(S(n, 1, T)) -~ =1{0,1}"\ I(S(n, 1, T))

= {(k1,..., k) € {0,1}" ‘ T i) = =ttt}

So

(0) 2" = [{0,1}"| = | 1(S(n,1,7)) | + |I(S(n, 1, 7)) |.

We note that |I(S(n, l,T)) | is the index of the semilattice S(n, [, 7) in Aif S(n, I, 7) =
S(n, 1, %), S(n,l,7) for I > 1 or S(n,l,7) for I > 2. Thus, if |I(S(n,lo,*))
|I(S(n, 11,7'1))| and |I(S(n,lz,7'2))\ are all distinct for any Iy, [;,L, then the
S(n, 1, %), S(n,1,7) and S(n, 1, 7,) are pairwise non-similar. In fact, we can prove
the following:

>

Lemma 4.1 In the notation above, we have the index formulas
[I(S(n,1,%)| =2""+2""" (1>0),
|I(S(n,l, 71)) ‘ =2""1 (I>0andn > 2l
|1(S(n,1,m)) | =201 =217 (1>1).
In particular, for arbitrary ly,l; > 0 and I, > 1 such that n > 21y, 2L, and n > 21,
‘I(S(n,lo,*)) | > ‘I(S(n,ll,n)) ‘ > ’I(S(n, 12,7'2)) |
Proof For k = (ki,...,ky) € {0,1}"and t* := ¢ - - - 1)) £571) - - - £}, we have
(£5)F = (B0 ) (E59155) <+ (L) Y gl = (1) S g

Note that

Rai —
Li'ti, = Kaie

Kaim ti o Fif (Kair, Kai) = (0,0), (0,1) or (1,0)
—ty; i (Ryio1, ki) = (1, 1).

Hence, for

l:

- I—1 ifliseven
l if lis odd,

we obtain, by counting the pairs (kzi_1, k2i) = (1, 1),

_on __ Hn—2l I\ -1 I\.i-s AP,
|1(S(n,1,%)) | =2" 2 <<1>3 +<3>3 + +<i>3>

(1) _gn g1 iy

-1 —I-1
=2" 42"
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by comparing the binomial expansions of (3 + 1)! and (3 — 1)".
Next we show |I(S(n,l, m)) | =2""!forany ] > 0. Let Ay := {k € {0,1}" |
Kolp1 = 0} and A; := {n e {0,1}" | Kol41 = 1} so that

1(8n,1,m)) = (1801, 70)) N1 Ae) U (1(S(n L m)) M)

Note that 71(t241) = —ty41 and ;1 commutes with all ¢;, and so ‘ (I( S(n, 1, 7'1)) N

Ao) = ‘I(S(nf 1,l,*))| and (I(S(n,l,n)) ﬂAl) = |I(S(nf l,l,*))_‘.
Thus, by (0), we get

|I(S(n,l,7'1))| = |I(S(n— 1,l,*))| + |I(S(n— l,l,*))_| =21

Recall that 7, is defined only for I > 1, and so we can consider a partition of
{0, 1}" by the following four subsets By, k = 1,2, 3,4, namely,

By :={k € {0,1}" | Ka—1 = Ky =0},
By:={Kk€{0,1}"| k1 =1,k =0},
By:={k € {0,1}" | ka1 =0,y =1},

Byi={k €{0,1}" | k1 =k =1},

so that
4
1(S(n,1,m)) = |_|(I(S(n,l, 7)) ﬂBk).
k=1
Since T (ty—1) = —tay—1, T2(ta) = —ty and 7o (tz_1t) = —ty_1t2, and since 1,

ty and ty_ 1ty commute with all ¢; for i # 21—1, 21, we have ’ (I(S(n, I, 7'2)) ﬂBl) ‘ =

}I(S(n—Z,l— 1,*))| and‘(I(S(n,l,Tz)) ﬁBk)‘ = |I(S(n—2,l— 1,*))7| for
k = 2,3,4. Thus we get

[1(S(n,1,72)) | = [I(S(n—2,1—1,%) | +3|I(S(n—2,1—1,%)) |
=2""242|I(S(n—2,1—1,%)) | by(0)
=24 2(27 2 = 2P 42D by (0) and (1)
— g1 _pn—l-1 -
Thus, by the inequalities in Lemma 4.1, the three semilattices
S(n, 1, %), S(n,1,7) (I > 1) and S(n, I, 7,) (I > 2) are pairwise non-similar in A.

End of Proof of Theorem 2.7 If (Fy,,,*) = (Fy,,,72), then S(n,1, %) = S(n,1,7,)
as semilattices in A. Hence as a corollary of Lemma 4.1, we get (Fy,,, *) % (Fn,,, T2)
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for | > 2. That is, we get one of the assertions in Theorem 2.7 whose proof was
postponed there. ]

Moreover, by the index formulas in Lemma 4.1,
lis a similarity invariant for the semilattices S(n, [, ) and S(n, I, ) (I > 2) in A.

To show that [ is a similarity invariant for S(n,/, 1), we would like to have a new
similarity invariant since the index of S(#, I/, 1) is constant for I > 1. Thus we define
the following:

Definition 4.2 Let S be a semilattice in a lattice A. Fory € S,if vy + o € S for all
o € S, then « is called a saturated element of S. We denote the subset of saturated
elements of S by X(S). Then 3(S) is a subgroup of A containing 2A. We define the
saturation number s = $(8S) of S as

[A/2(S)| = 2°.
Lemma 4.3

(1) X(S) = X(S + o) for any semilattice S in A and any o € S.
(ii) The saturation number is a similarity invariant.

Proof (i) Lety € X(S). Theny — o € Sforany o € S, and so 3(S) C S + 0.
Moreover, for the semilattice S+ o andany p+ o € S+ o0, wehavey+ p+0 € S+0o
since v+ p € S. Hence 3(S) C X(S+ o) forany o € S. Since —20 € S, we have
—0o € S+ 0. Hence X(S + o) C X(S), which shows (i).

(ii) By (i), we have s(S) = s(S + o) for any 0 € S. Hence we only need to
show that the saturation number is an isomorphism invariant. Suppose p(S) = §’
for some p € Aut A. Then one can easily see that p(Z(S)) = X(S’). Therefore,
[A/Z(S)| = }A/p(E(S)) | = |A/X(8")), i.e., s is an isomorphism invariant. [ |

Remark One can easily show that 3(S) = (), _(S + o).

ocS

Corollary 4.4 Letl > 1. Then E(S(n, I, 7'1)) = AP and hence l is a similarity
invariant for the semilattices S(n, I, 7y) in A.

Proof Recall our notation S(n,I,71) = Sthy,,7) = {a € A | ni(ta) = ta}
for the quantum torus Fy,, = Fp,, (... ¢ with a (o,...,0,)-grading. By
Lemma 2.5, the grading group of the centre Z(Fy,,, 7)) is equal to A®*V. Thus it
is clear from this that E(S(n, I 7'1)) D AP For the other inclusion, suppose
E(S(n,l, 7'1)) \ ACHD £ o Then there exists k := k10 + --- + Ky101 €
E(S(n, I 7'1)) , where k; = 0 or 1 but notall 5y, ..., Ky are 0. Then for x; # 0 with
j < 2I, we have oy € S(n, 1, 1) where

k_{j+1 if j is odd

j—1 if jiseven,
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and Kk + o & S(n, 1, 7) since Ty (17" - - - 52 ) = tptt - O = 1 - 5 g
This is a contradiction. Hence Z(S(n, I, 7'1)) = A@HD_ Thus 5(5(11, 1, 7'1)) =2l+1,
and hence ! is a similarity invariant by Lemma 4.3. ]
Remarks 4.5

(i) One can also check that E(S(n, I, *)) = E(S(n, I, 7'2)) =A@ So this is an-
other reason why [/ is a similarity invariant for S(n, [, ) or S(n, I, 7).

(i) S(n,l, ) for I > 1 give us [5] semilattices in A which have the same index but
are not similar, where [5] is the greatest integer less than or equal to .

We summarize the results about the semilattices above as a theorem.

Theorem 4.6 Let S(e, *) be the semilattice in A defined in Example 3.1. Then S(e, )
is isomorphic to

Sthyu, %) (1>0), or

Sthyu,m) (1> 1),0r

Sthyu,m) (1> 2),

and any two of these three semilattices are not similar. Moreover, for each of these l is a
similarity invariant.
In particular, the number of similarity classes of S(e, ) is

3(4] ifn>4
2 ifn=2,3
1 ifn=1.
n n

Proof We only need to show the last statement. Since I < [5] , there are [5} +1

similarity classes from S(hy,,, *) forn > 1, [%] classes from S(hy,, 71) forn > 2 and
[g} — 1 classes from S(hy,, 72) for n > 4. Summing them up, we get the results. W
Remark 4.7 The number of similarity classes of semilattices in A is at least 2" — n,
which is bigger than the number above if n > 3. Thus if # is not too small, one can

say that the semilattices S(e, *) are far from exhausting all semilattices in A.

5 Extended Affine Root Systems of Type C

We review the description of extended affine root systems of type C, for r > 3 fol-
lowing [1, p. 34]. Let A be a lattice and S be a semilattice in a Euclidean space [ so
that

(5.1) S+2ACS and A+SCA.

Then an extended affine root system R of type C, (r > 3) contains an irreducible root
system A = Ay, LI Ay of type C,, where Ay, (resp. Ay) is the set of short (resp. long)
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roots, so that

(5.2) R:R(A,S):ALI(|_|(u+A)>I_|(|_|(u+S)).

}LEA,-), NEAIX

The rank of the lattice A is called the nullity of R.

If (A,S) and (A’,S’) are pairs of a lattice and a semilattice in [ satisfying (5.1),
we say that (A, S) and (A’,S’) are isomorphic, written (A,S) = (A’,S’), if there
exists ¢ € GL(E) such that o(A) = A’ and p(S) = S’. Also, we say that (A, S)
and (A’,S’) are similar, written (A,S) ~ (A’,S’), if there exists A € S such that
(A,S+ ) =2 (A',S’). Note that (A,S + \) is a pair of a lattice and a semilattice
satisfying (5.1) (see [1, Definition 4.8, p. 45]). The relations 22 and ~ are equivalence
relations. It is shown in [1, Theorem 3.1, p. 39] that the root systems R(A, S) and
R(A’,S’) are isomorphic if and only if (A, S) ~ (A’,S’).

In general, (5.1) implies that 2A C S C A, and so 2A C (S) C A. Thus we have

|A/(S)| =2", where0 <t <n.

The integer t = (A, S) is called the twist number of the pair (A, S). The twist number
is a similarity invariant of the pair (see [1, Definition 4.11, p. 46]), and so the twist
number is an isomorphism invariant of the root system R(A, S).

Example 5.3 Let A be a lattice with basis {o1,...,0,}. Then the pair (A,A®)
satisfies (5.1) with twist number t, where A*) is defined in Example 3.1. Moreover,
for any semilattice S” in Zg 41 +- - -+ Zoy,, the pair (A, 270 +- - - +270,+S’) satisfies
(5.1) with twist number ¢ [1, Proposition 4.17, p. 47].

The root systems of extended affine Lie algebras are extended affine root systems.
However, it was conjectured in [1] that an extended affine root system is not neces-
sarily the root system of an extended affine Lie algebra. Allison and Gao have shown
in [2] that the twist numbers of root systems of extended affine Lie algebras of type
C, (r > 3) do not exceed 3. Precisely, they showed that such a root system R is given
by

R(A, S(e, T)) ifr >4,
where S(e, 7) is the semilattice of (F., 7) for any elementary quantum matrix € and
any graded involution 7 defined in Example 3.1 and A is a toral grading of F.. If
r = 3, then
R(A,S(e, 7)) or R(A, A,
where the second one comes from the octonion torus with standard involution (see
[2, List 6.1, p. 46, and Proposition 4.25, p. 20]). Then they calculated the twist num-

ber of (A, S(e, T)) , and showed that such numbers do not exceed 2 (see [2, Theo-
rem 6.2 (b), p. 46]). This fact also follows from our Corollary 3.2. Namely, we have

(A, AD), or
(A,S(E,T)) =~ (A, AP, or
(A, S(n,*))
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for some elementary quantum matrix 7, and so
£(A,S(,¥) =0, tA,AV)=1 and #(A,A?)=

Note that in general, even if t = t(A,S) = 1, 2 or 3, there are many non-isomorphic
semilattices S with the same twist number if # is not too small, as we suggested in
Example 5.3. In fact, if n > 5, then there are at least two non-isomorphic semilattices
S (exactly two if t = 3). However, in the pairs arising from root systems of extended
affine Lie algebras, there is only one, up to isomorphism, in each case, i.e., AW for
t=1,A® fort =2and A® fort = 3.

As a corollary of Theorem 4.6, we get:

Corollary 5.4 Let R = R(A, S) be the root system of an extended affine Lie algebra of
type C, (r > 3). Then ifr > 4, R is isomorphic to

R(A,S(hy,, %) (1>0), or
R(A,S(hy,, 7)) (1>0), or
R(A,Shy,, ) (I1>1),

and if r = 3, R is isomorphic to

R(A,S(hy,, %)) (1=>0), or
R(A,S(hy,,71)) (1>0), or

(A, S(h[’n,Tz)) (I>1), or
R(A,A®).

Any two of these root systems are not isomorphic. Moreover, for each of these | is an
isomorphic invariant.
In particular, the number of isomorphism classes of R for r > 4 (resp. r = 3) is

3[2] +2(3[2] +3) ifn>4
4 (5) ifn=3
4(4) ifn=2
2(2) ifn=1.

Finally, by Remark 4.7, we have:

Corollary 5.5 Let r > 3. Let R; be the set of isomorphism classes of root systems of
type C, with nullity n and twist number t, and let LR, be the subset of R, consisting of
isomorphism classes of the root systems of extended affine Lie algebras of type C, with
nullity n and twist number t. Then LR, = & for allt > 3. Moreover, fort =0, 1,2 or
3, LR, is a proper subset of R, if n > 5.
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