
ROOT-GRADED LIE ALGEBRAS

WITH COMPATIBLE GRADINGS
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Abstract. Lie algebras graded by a finite irreducible reduced root system ∆ will be

generalized as predivision ∆G-graded Lie algebras for an abelian group G. In this paper

such algebras are classified, up to central extensions, when ∆ = Al for l ≥ 3, D or E,
and G = Zn.

Introduction

The concept of a Lie algebra over a field F of characteristic 0 graded by a finite
irreducible reduced root system ∆ or a ∆-graded Lie algebra was introduced by
Berman and Moody [3]). It is a Lie algebra L together with a finite dimensional split
simple Lie algebra g, a split Cartan subalgebra h of g and the root system ∆, so that
g has the root space decomposition g = h ⊕

(
⊕µ∈∆ gµ

)
with h = g0, satisfying the

following three conditions:

(i) L contains g as a subalgebra
(ii) L = ⊕µ∈∆∪{0} Lµ, where Lµ = {x ∈ L | [h, x] = µ(h)x for all h ∈ h}; and
(iii) L0 =

∑
µ∈∆ [Lµ, L−µ].

The subalgebra g = (g, h) is called the grading subalgebra of L.

Berman and Moody classified ∆-graded Lie algebras, up to central extensions,
when ∆ has type Al, l ≥ 2, D or E in [3], and then Benkart and Zelmanov completed
the classification for the other types in [5] (see also [7] for the classification of ∆-
graded Lie algebras over rings where ∆ is not necessarily finite there, using Jordan
methods).

Let us explain the case ∆ = Al, l ≥ 3, in order to describe our motivation of
this paper. By [3], an Al-graded Lie algebra covers psll+1(A) for a unital associative
algebra A (see Definition 2.9). Then Berman, Gao and Krylyuk showed in [4] that the
core of an extended affine Lie algebra of type Al for l ≥ 3 is an Al-graded Lie algebra
and covers sll+1(Cq) where Cq = Cq[t±1 , . . . , t±n ] is a certain Zn-graded associative
algebra called, a quantum torus over C (see §2 below). The Lie algebra L = sll+1(Cq)
is not only graded by Al but also graded by Zn, and the Zn-grading L = ⊕α∈Zn Lα

Typeset by AMS-TEX

1



is compatible with the Al-grading L = ⊕µ∈∆∪{0} Lµ in the sense that

L =
⊕

µ∈∆∪{0}

⊕

α∈Zn

Lα
µ where Lα

µ = Lµ ∩ Lα.

We will call such a double grading a compatible AlZn-grading (see Definition 2.6 for
the general definition). Moreover, let {hµ ∈ h | µ ∈ ∆} be the set of coroots where h
is the Cartan subalgebra of diagonal matrices in the grading subalgebra g = sll+1(C).
Then L has the following two properties:

(1) for any µ ∈ ∆ and any 0 6= x ∈ Lα
µ , there exists y ∈ L−α

−µ such that [x, y] = hµ;
(2) dimC Lα

µ = 1 for all µ ∈ ∆ and α ∈ Zn.

The property (1) will be called division (see Definition 2.6 for the general definition).
Our interest is to describe such Lie algebras without the property (2), namely, division
AlZn-graded Lie algebras. One of the main results of the paper which is contained
in Proposition 2.13 is the following:

Result 1. Let l ≥ 3. Then any division AlZn-graded Lie algebra covers psll+1(P )
where P is a division Zn-graded associative algebra (i.e., all nonzero homogeneous
elements are invertible).

A division Zn-graded associative algebra over a field F can be considered as a
crossed product algebra D ∗Zn for an associative division algebra D over F (see §1).
Our next interest is to describe D ∗ Zn as a natural generalization of the algebra
F [t±1

1 , . . . , t±1
n ] of Laurent polynomials or a quantum torus Fq.

A triple (D, ϕ, q) is called a division Zn-grading triple if

(1) D is an associative division algebra;
(2) ϕ = (ϕ1, . . . , ϕn) is an n-tuple of automorphisms ϕi of D; and
(3) q = (qij) is an n × n matrix over D satisfying, for all 1 ≤ i < j < k ≤ n,

qii = 1 and q−1
ji = qij ,

ϕjϕi = I(qij)ϕiϕj ,

ϕk(qij) = qjkϕj(qik)qijϕi(qkj)qki,

where I(qij) is the inner automorphism of D determined by qij , i.e.,

I(qij)(d) = qijdq−1
ij for d ∈ D.

We will show that D∗Zn can be considered as a generalization of the ring D[t±1
1 , . . . , t±1

n ]
of Laurent polynomials over D in n-variables in the following sense:

D[t±1
1 , . . . , t±1

n ] = ⊕α∈Zn Dtα is a Zn-graded algebra, where tα = tα1
1 · · · tαn

n for
α = (α1, . . . , αn) ∈ Zn, and the multiplication rule is determined by

tit
−1
i = t−1

i ti = 1, tid = dti and tjti = titj for all d ∈ D and i, j.
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Result 2. For any division Zn-grading triple (D,ϕ,q), there exists a division Zn-
graded associative algebra Dϕ,q = Dϕ,q[t±1

1 , . . . , t±1
n ] such that Dϕ,q = ⊕α∈Zn Dtα

has the same Zn-grading as D[t±1
1 , . . . , t±1

n ] above, and the multiplication rule is de-
termined by

tit
−1
i = t−1

i ti = 1, tid = ϕi(d)ti and tjti = qijtitj for all d ∈ D and i, j.

Conversely, any division Zn-graded associative algebra is isomorphic to Dϕ,q for some
division Zn-grading triple (D,ϕ,q) (see Theorem 3.3 for more precise statements).

Consequently, one gets that any division Al-Zn-graded Lie algebra for l ≥ 3 covers
psll+1(Dϕ,q). We will also classify division ∆Zn-graded Lie algebras when ∆ = D
or E, which is simpler than the case A. Moreover, our concept “division” can be
generalized as “predivision” (see Definition 2.6). Result 1 and 2 above will be proved
in this more general set-up.

The organization of the paper is as follows. In §1 we review basic concepts of
graded algebras and crossed product algebras. In §2 we observe some properties of
∆G-graded Lie algebras. Then predivision or division ∆G-graded Lie algebras are
defined. After describing some examples of them, we classify predivision ∆G-graded
Lie algebras for ∆ = Al (l ≥ 3), D and E types. In §3 we classify crossed product
algebras R ∗ Zn. Finally in §4 we give a summary of our results.

Result 2 above is part of my Ph.D thesis, written at the University of Ottawa. I
would like to thank my supervisor, Professor Erhard Neher, for his encouragement
and suggestions.

§ 1 Basic Concepts

For any group G and any G-graded algebra L = ⊕g∈G Lg, we denote

supp L := {g ∈ G | Lg 6= (0)}.

Then we have L = ⊕g∈G′ Lg where G′ = 〈suppL〉 is the subgroup of G generated by
supp L. Because of this, we will in the following always assume

(1.1) G = 〈suppL〉.

Whenever a class of algebras has a notion of invertibility, one can make the follow-
ing definition:

Definition 1.2. Let G be a group. A G-graded algebra P = ⊕g∈G Pg is called a
predivision G-graded algebra if Pg contains an invertible element for all g ∈ suppP .
Also, P is called a division G-graded algebra if all nonzero homogeneous elements are
invertible.

One can easily check that if P is associative, then supp P = G and P is strongly
graded, i.e., PgPh = Pgh for all g, h ∈ G. This is not true if P is a Jordan algebra
(see [9]). Predivision G-graded associative algebras are realized as crossed product
algebras, which we recall here:
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Definition 1.3. Let R be a unital associative algebra over a field F and G a group.
Let R ∗ G be the free left R-module with basis G = {g | g ∈ G}, a copy of G. Define
a multiplication on R ∗ G by linear extension of

(rg)(sh) = rσg(s)τ(g, h)gh,

for r, s ∈ R and g, h ∈ G, where

(action) σ : G −→ AutF (R), the group of F -automorphisms of R,

(twisting) τ : G × G −→ U(R), the group of units of R,

are arbitrary maps and σg := σ(g). This R ∗ G = (R,G, σ, τ ) is called a crossed
product algebra over F if this multiplication is associative. It is easily seen that this
is in fact an algebra over F . If there is no action or twisting, that is, if σg = id and
τ(g, h) = 1 for all g, h ∈ G, then R ∗ G = R[G] is the ordinary group algebra. If the
action is trivial, then R ∗ G =: Rt[G] is called a twisted group algebra. Finally, if the
twisting is trivial, then R ∗ G =: RG is called a skew group algebra.

Remark 1.4. If a crossed product algebra R ∗ G is commutative, then the action is
clearly trivial, and so R ∗ G = Rt[G].

The following lemma characterizes σ and τ (see [8], Lemma 1.1 p.2). We denote
by I(d) the inner automorphism determined by d ∈ U(R), i.e., I(d)(r) = drd−1 for
r ∈ R.

1.5. The associativity of R ∗ G is equivalent to the following two conditions: for all
g, h, k ∈ G,

(i) σgσh = I
(
τ(g, h)

)
σgh,

(ii) σg

(
τ(h, k)

)
τ (g, hk) = τ (g, h)τ (gh, k).

Remark 1.6. If R is commutative, then the action σ : G −→ AutF (R) becomes a
group homomorphism by condition (i) in 1.5. So the action is really a “group action”
in usual sense. Also, for a skew group algebra RG, the action becomes a group
homomorphism for the same reason. Conversely, any group action G −→ AutF (R)
defines a skew group algebra RG.

If d : G −→ U(R) assigns to each element g ∈ G a unit dg, then G̃ = {dgg | g ∈ G}
yields another R-basis for R ∗ G so that R ∗ G is a crossed product algebra for the
new basis. One calls this a diagonal change of basis ([8], p.3). Any crossed product
algebra has an identity element. It is of the form 1 = ue for some unit u in R where
e is the identity element of G ([8], Exercise 2 p.9). We can and will assume that
1 = e, via a diagonal change of basis, and so τ(g, e) = τ(e, g) = 1 for all g ∈ G. The
embedding of R into R ∗ G is then given by r 7→ re. Also, we have ([8], p.3)

(1.7) rg is invertible if and only if r ∈ U(R).
4



Now, it is clear that a crossed product algebra R ∗ G = ⊕g∈G Rg is a predivision
G-graded associative algebra. Conversely, suppose that A = ⊕g∈G Ag is a predivision
G-graded associative algebra over F . Then we have A = ⊕g∈G Rxg where R = Ae

and an invertible element xg ∈ Ag, which exists since A is predivision graded and
supp A = G. Moreover, for h ∈ G, we have xgxh = xgxh(xgh)−1xgh. So we can put
τ(g, h) := xgxh(xgh)−1 ∈ U(R). Then we have xgxh = τ(g, h)xgh. Also, let I(xg) be
the inner automorphism determined by xg and let σg := I(xg) |R. Then, σg is clearly
an F -automorphism of R and for r, r′ ∈ R,

(rxg)(r
′xh) = r(xgr

′x−1
g )xgxh = rσg(r′)xgxh = rσg(r

′)τ(g, h)xgh.

Hence A is a crossed product algebra R ∗ G determined by these σ and τ . So the
two concepts, a crossed product algebra R ∗ G and a predivision G-graded associa-
tive algebra, coincide (see [8], Exercise 2 p.18). In particular, a division G-graded
associative algebra is a crossed product algebra R ∗ G where R is a division algebra.

By Remark 1.4, a predivision G-graded commutative associative algebra Z =
⊕g∈G Zg (G is necessarily abelian) is a twisted group algebra Kt[G] where K := Ze.
Moreover (see [8], Exercise 6 p.10):

1.8. If the abelian group G is free, then Z is a group algebra K[G]. In particular,
when G = Zn, Z is the algebra K[z±1

1 , . . . , z±1
n ] of Laurent polynomials for invertible

elements zi ∈ Zεi , i = 1, . . . , n, where {ε1, . . . , εn} is a basis of Zn.

§ 2 Predivision ∆G-graded Lie algebras

In this section F is a field of characteristic 0 and ∆ is a finite irreducible reduced
root system. We have defined a ∆-graded Lie algebra L = ⊕µ∈∆∪{0} Lµ over F in
Introduction. We note that the centre Z(L) of L is contained in L0.

A homomorphism (resp. an isomorphism) ϕ : L −→ L′ of ∆-graded Lie algebras
L = (L, g, h) and L′ = (L′, g′, h′), which have the same type ∆, is called a ∆-
homomorphism (resp. an ∆-isomorphism) if ϕ(g) = g′ and ϕ(h) = h′ (cf. Definition
1.20 in [3]). Then one can check that ϕ(Lα) ⊂ L′

α for all α ∈ ∆, and so ϕ(L0) ⊂ L′
0.

In other words, a ∆-homomorphism is graded.
Recall that a cover L̃ = (L̃, π) of a Lie algebra L is an epimorphism π : L̃ −→ L

of Lie algebras so that L̃ is perfect, i.e., L̃ = [L̃, L̃], and ker π is contained in the

centre of L̃. If π : L̃ −→ L is a cover of a ∆-graded Lie algebra L, then there exists
a ∆-grading of L̃ such that π is a ∆-homomorphism (see Proposition 1.24 in [3]).

However, it is not known whether or not, for ∆-graded Lie algebras L̃ and L, any
cover L̃ −→ L is a ∆-homomorphism. Thus we define the following:

Definition 2.1. For ∆-graded Lie algebras L̃ and L, if π : L̃ −→ L is a cover and
a ∆-homomorphism, L̃ = (L̃, π) is called a ∆-cover of L. Also, for ∆-graded Lie

algebras L and L′, if there exist a ∆-graded Lie algebra L̃ and maps π : L̃ −→ L and
π′ : L̃ −→ L′ such that (L̃, π) and (L̃, π′) are both ∆-covers, we say that L and L′

are ∆-isogeneous.
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Example 2.2. Let L = (L, g, h) be a ∆-graded Lie algebra with its centre Z(L).
Then, for any subspace V of Z(L), L/V = (L/V, g + V, h + V ) is a ∆-graded Lie
algebra, and the canonical epimorphism L −→ L/V is a ∆-cover. In particular, L
and L/V are ∆-isogeneous.

We will show that if L and L′ are ∆-isogeneous, then L/Z(L) and L′/Z(L′) are
∆-isomorphic, i.e., there exists a ∆-isomorphism between them.

Lemma 2.3. Let π : L̃ −→ L be a ∆-cover and c : L −→ L/Z(L) the canonical

epimorphism. Then we have Z(L̃) = π−1
(
Z(L)

)
, and hence ker c ◦ π = Z(L̃).

Proof. It is clear that Z(L̃) ⊂ π−1
(
Z(L)

)
. For the other inclusion, let x ∈ π−1

(
Z(L)

)
.

Then x ∈ L̃0, and so for any α ∈ ∆, one has [x, L̃α] ⊂ L̃α. On the other hand, we

have [x, L̃α] ⊂ ker π ⊂ Z(L̃) ⊂ L̃0. Hence [x, L̃α] = (0) and we get x ∈ Z(L̃). ¤

Corollary 2.4. Suppose that L and L′ are ∆-isogeneous. Then L/Z(L) and L′/Z(L′)
are ∆-isomorphic.

Proof. By our assumption, there exists a ∆-graded Lie algebra L̃ = (L̃, g̃, h̃) such

that π : L̃ = (L, g, h) −→ L and π′ : L̃ −→ L′ = (L′, g′, h′) are both ∆-covers. Let
c : L −→ L/Z(L) and c′ : L′ −→ L′/Z(L′) be the canonical epimorphisms. Then, by

Lemma 2.3, we have ker c ◦ π = Z(L̃) = ker c′ ◦ π′. Hence there exists the induced
isomorphism

ϕ : L/Z(L) =
(
L/Z(L), g + Z(L), h + Z(L)

)

−→L′/Z(L′) =
(
L′/Z(L′), g′ + Z(L′), h′ + Z(L′)

)

such that ϕ◦c◦π = c′ ◦π′. In particular, ϕ
(
g+Z(L)

)
= ϕ◦c◦π(g̃) = c′ ◦π′(g̃) = g′+

Z(L′) and similarly ϕ
(
h +Z(L)

)
= h′ +Z(L′). Therefore, ϕ is a ∆-isomorphism. ¤

Remark 2.5. Any ∆-graded Lie algebra is perfect. Also, any perfect Lie algebra L,
we have Z

(
L/Z(L)

)
= (0). Indeed, it is enough to show that if x ∈ L satisfies

[x, L] ⊂ Z(L), then x ∈ Z(L). Since [x, L] =
[
x, [L, L]

]
⊂

[
[x, L], L

]
+

[
L, [x, L] = (0),

we get x ∈ Z(L).
Now we define new concepts.

Definition 2.6. Let L = (L, g, h) = ⊕µ∈∆∪{0} Lµ be a ∆-graded Lie algebra over F .
Let G be an abelian group. We say that L admits a compatible G-grading or simply
L is a ∆G-graded Lie algebra if

L = ⊕g∈G Lg is a G-graded Lie algebra such that g ⊂ L0.

As a consequence, Lg is a h-module for all g ∈ G via the adjoint action. Hence we
have Lg = ⊕µ∈∆∪{0} Lg

µ where Lg
µ = Lµ∩Lg (see [6] Proposition 1, p.92). Therefore,

Lµ = ⊕g∈G Lg
µ and

L =
⊕

µ∈∆∪{0}

⊕

g∈G

Lg
µ.
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Remark 2.7. (i) The compatible G-grading is completely determined by Lg
µ for all

µ ∈ ∆ and g ∈ G since Lg
0 =

∑
µ∈∆

∑
g=h+k [Lh

µ, Lk
−µ].

(ii) Let suppLµ := {g ∈ G | Lg
µ 6= (0)}. Then we have

suppL ⊂
⋃

µ∈∆

(supp Lµ + suppLµ),

where supp L = {g ∈ G | Lg 6= (0)} as defined in the beginning of §1.
Let Z(L) be the centre of L and let

{hµ ∈ h | µ ∈ ∆}

be the set of coroots. Then a ∆G-graded Lie algebra L is called predivision if

(pd) for any µ ∈ ∆ and any Lg
µ 6= (0), there exist x ∈ Lg

µ and y ∈ L−g
−µ such that

[x, y] ≡ hµ modulo Z(L);

and division if

(d) for any µ ∈ ∆ and any 0 6= x ∈ Lg
µ, there exists y ∈ L−g

−µ such that [x, y] ≡ hµ

modulo Z(L).

Note that (d) implies (pd), i.e., ‘division’ =⇒ ‘predivision’. If dimF Lg
µ ≤ 1 for all

µ ∈ ∆ and g ∈ G, then two concepts, ‘predivision’ and ‘division’, coincide.

Example 2.8. (a) A ∆-graded Lie algebra is a predivision ∆G0-graded for the trivial
group G0 = {0}.

(b) The core of an extended affine Lie algebra of reduced type ∆ with nullity n is
a division ∆Λ-graded Lie algebra over C, where Λ is a free abelian group of rank n.
Indeed, it is known that such a core L is a ∆-graded Lie algebra over C and has a
Λ-grading, say

L =
⊕

µ∈∆∪{0}

⊕

δ∈Λ

Lµ+δ,

where Λ is defined as the group generated by isotropic roots δ in a vector space, which
turns out to be a lattice of rank n, and so suppL of the Λ-grading of L is equal to Λ
(see for the details in [2]). Also, the grading subalgebra g is contained in ⊕µ∈∆∪{0} Lµ

(Lµ = Lµ+0) so that the Λ-grading L = ⊕δ∈Λ Lδ, where Lδ := ⊕µ∈∆∪{0} Lµ+δ, is
compatible. Thus L is a ∆Λ-graded Lie algebra.

We recall one of the basic properties of extended affine Lie algebras (see [1]): For
any µ ∈ ∆, δ ∈ Λ and any 0 6= eµ+δ ∈ Lµ+δ, there exist some fµ+δ ∈ L−µ−δ and
hµ+δ ∈ L0 (= L0+0) such that 〈eµ+δ, fµ+δ, hµ+δ〉 is an sl2-triplet, and in particular
[eµ+δ, fµ+δ] = hµ+δ.

One can check that hµ − hµ+δ ∈ Z(L) for all coroots hµ = hµ+0 of g. Therefore L
is a division ∆Λ-graded Lie algebra. We note that dimC Lµ+δ ≤ 1 for all µ ∈ ∆ and
δ ∈ Λ, which is also one of the basic properties of extended affine Lie algebras.
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(c) Let Z = ⊕g∈G Zg be a G-graded commutative associative algebra over F and
let g = h ⊕

(
⊕µ∈∆ gµ

)
be a finite dimensional split simple Lie algebra over F of

type ∆ with the set {hµ ∈ h | µ ∈ ∆} of coroots. Then L := g ⊗F Z is a ∆G-graded
Lie algebra. In fact, L = ⊕µ∈∆∪{0} (gµ ⊗F Z) for g0 = h is a ∆-graded Lie algebra
with grading subalgebra g = g ⊗ 1. We put Lg := g ⊗F Zg for all g ∈ G. Then
supp L = suppZ and L = ⊕g∈G Lg is a G-graded Lie algebra with g ⊂ L0, i.e,
compatible. Hence L is a ∆G-graded Lie algebra. We call the compatible G-grading
of L = g ⊗F Z the natural compatible G-grading from the G-grading of Z.

Suppose that Z = ⊕g∈G Kg is a crossed product commutative algebra over F . Let

e ∈ gµ and f ∈ g−µ such that [e, f ] = hµ. Then e ⊗ g ∈ Lg
µ, f ⊗ g−1 ∈ L−g

−µ and

[e ⊗ g, f ⊗ g−1] = [e, f ] ⊗ g g−1 = hµ ⊗ 1 = hµ

for all g ∈ G, and so L is a predivision ∆G-graded Lie algebra over F . Note that
Z(L) = (0). Also, if K is a field, then L is a division ∆G-graded Lie algebra.

Suppose that L̃ = (L̃, g̃, h̃) = ⊕g∈G L̃g is a ∆G-graded Lie algebra and that

π : L̃ −→ L is a cover of a Lie algebra L. Then L =
(
L, π(g̃), π(h̃)

)
becomes a

∆-graded Lie algebra so that (L̃, π) is a ∆-cover of L. Moreover, if ker π is G-graded,

then L admits the induced compatible G-grading L = ⊕g∈G π(L̃g). In particular, the

centre Z(L̃) is always G-graded, L̃/Z(L̃) is a ∆G-graded Lie algebra.

Definition 2.9. Let P be a unital associative algebra over F and let gll+1(P ) be the
Lie algebra consisting of all (l + 1) × (l + 1) matrices over P under the commutator
product (l ≥ 1). Let eij(a) ∈ gll+1(P ) whose (i, j)-entry is a and the other entries
are all 0. We define sll+1(P ) as the subalgebra of gll+1(P ) generated by eij(a) for

all a ∈ P and 1 ≤ i 6= j ≤ l + 1. The centre Z
(
sll+1(P )

)
of sll+1(P ) consists of∑l+1

i=1 eii(a) for a ∈ [P, P ] ∩ Z(P ) where [P, P ] is the span of all commutators in P

and Z(P ) is the centre of P . We define psll+1(P ) as sll+1(P )/Z
(
sll+1(P )

)
.

It is well-known that sll+1(P ) is an Al-graded Lie algebra (see [3]): Denote {eij(b) | b ∈
B} by eij(B) for any subset B ⊂ P . Let

sll+1(F ) = h ⊕
⊕

1≤i 6=j≤l+1

eij(F1) ⊂ sll+1(P ),

be the split simple Lie algebra over F of type Al where h is the Cartan subalgebra
consisting of diagonal matrices of sll+1(F ). Let εi : h −→ F be the projection onto
the (i, j)-entry for i = 1, . . . , l + 1, and ∆ := {εi − εj | i 6= j}, which is a root system
of type Al. Then

sll+1(P ) = L0 ⊕
( ⊕

εi−εj∈∆

eij(P )

)
,
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where L0 =
∑

εi−εj∈∆ [eij(P ), eji(P )], is an Al-graded Lie algebra with grading

subalgebra sll+1(F ). Let Z := Z
(
sll+1(P )

)
. We can and will identify sll+1(F ) + Z

with sll+1(F ) and eij(P ) + Z with eij(P ), and so

psll+1(P ) = (L0/Z) ⊕
( ⊕

εi−εj∈∆

eij(P )

)

is also an Al-graded Lie algebra with the same grading subalgebra sll+1(F ).

Example 2.10. Let sll+1(P ) be the Al-graded Lie algebra over F with grading
subalgebra sll+1(F ) described above. If P = ⊕g∈G Pg is a G-graded algebra, then
sll+1(P ) admits a compatible G-grading. Indeed, let

sll+1(P )g :=
{ ∑

i,j

eij(Pg) |
∑

i,j

eij(Pg) ⊂ sll+1(P )
}
.

Then sll+1(P ) = ⊕g∈G sll+1(P )g, and it is a G-graded Lie algebra with sll+1(F ) ⊂ L0,
i.e., compatible. Note that supp

(
sll+1(P )

)
⊃ suppP , and so

〈
supp

(
sll+1(P )

)〉
= G.

Also, psll+1(P ) admits the induced compatible G-grading. We call the compatible
G-grading of sll+1(P ) or psll+1(P ), i.e.,

sll+1(P )g
εi−εj

= eij(Pg) = psll+1(P )g
εi−εj

for all εi − εj ∈ ∆ and g ∈ G,

the natural compatible G-grading from the G-grading of P .
If P = ⊕g∈G Rg is a crossed product algebra, then

[eij(g), eji(g
−1)] = eii(1) − ejj(1) = [eij(1), eji(1)] = hεi−εj

for all g ∈ G. Thus sll+1(P ) and psll+1(P ) with the natural compatible G-gradings
from the G-grading of P are predivision AlG-graded Lie algebras over F . Also, if R
is a division algebra, then the AlG-graded Lie algebras sll+1(P ) and psll+1(P ) are
division.

For any associative algebra P , one can define a new product, p · q = 1
2
(pq + qp) for

all p, q ∈ P . Then P+ := (P, ·) is a Jordan algebra.

Lemma 2.11. (i) Suppose that the Al-graded Lie algebra psll+1(P ) described above
admits a predivision (resp. division) compatible G-grading. Then if l ≥ 2, P is
a predivision (resp. division) G-graded algebra, and the G-grading of psll+1(P ) is
natural from the G-grading of P .

If l = 1, then P+ is a predivision (resp. division) G-graded Jordan algebra.
(ii) Suppose that the ∆-graded Lie algebra g ⊗F Z described in Example 2.8(c)

admits a predivision (resp. division) compatible G-grading. Then Z is a predivision
9



(resp. division) G-graded algebra, and the G-grading of g ⊗F Z is natural from the
G-grading of Z.

Proof. (i): By our assumption, psll+1(P ) = psll+1(P )0 ⊕
(
⊕εi−εj∈∆ eij(P )

)
admits

a predivision (resp. division) compatible G-grading, say

psll+1(P ) = psll+1(P )0 ⊕
(
⊕εi−εj∈∆ ⊕g∈G eij(P )g

)
.

Let
P ij

g := {p ∈ P | eij(p) ∈ eij(P )g}.
We claim that P ij

g = P rs
g for all εr − εs ∈ ∆. If l = 1, then ∆ = {ε1 − ε2, ε2 − ε1}.

For p ∈ P 12
g , we have

[[e12(p), e21(1)], e21(1)] = −2e21(p) ∈ e21(P )g

since e21(1) ∈ e21(P )0. Thus p ∈ P 21
g and we get P 12

g ⊂ P 21
g . The other inclusion can

be obtained by the similar way. Hence the claim holds for l = 1.
In general, it is well-known that for any distinct α, β ∈ ∆ = Al, l ≥ 2, D or E,

there exists a sequence α1, . . . , αt ∈ ∆ so that α1 = α, αt = β and αi+1 −αi ∈ ∆ for
i = 1, . . . , t − 1.

Now, for l ≥ 2, it is enough to show that P ij
g ⊂ P rs

g . Let p ∈ P ij
g . We apply the

above for α = εi − εj and β = εr − εs. For p ∈ P ij
g ,

[··[[eij(p), eα2(1)], eα3(1)], . . . , eαt(1)] = ±eαt(p) = ±ers(p) ∈ ers(P )g

since eαi(1) ∈ L0
αi

. Hence p ∈ P rs
g and our claim is settled.

Thus one can write Pg = P ij
g and P = ⊕g∈G Pg. Since, for p ∈ Pg and q ∈ Ph

(g, h ∈ G),

[eij(p), ejk(q)] = eik(pq) ∈ eik(P )g+h if l ≥ 2 and i 6= k,

[e12(p), e21(1)], e12(q)] = e12(pq + qp) ∈ e12(P )g+h if l = 1,

we have pq ∈ Pg+h if l ≥ 2 and pq + qp ∈ Pg+h if l = 1. Also, one can see that
supp L ⊂ supp P + supp P (see Remark 2.7), and so 〈supp P 〉 ⊃ 〈supp L〉 = G,
whence 〈supp P 〉 = G. Therefore, P is a G-graded algebra if l ≥ 2 and P+ is a
G-graded Jordan algebra if l = 1. Note that eij(P )g = eij(Pg) for all εi − εj ∈ ∆ and
g ∈ G, and hence the G-grading for l ≥ 2 is natural (see Remark 2.7).

By (pd), for any εi − εj ∈ ∆ and any g ∈ suppP , there exist eij(p) ∈ eij(Pg) and
eji(q) ∈ ejk(P−g) such that

[eij(p), eji(q)] = [eij(1), eji(1)] + z for some z ∈ Z
(
sll+1(P )

)
.

Hence eii(pq)− ejj(qp) = eii(1)− ejj(1) +
∑l+1

k=1 ekk(a) for some a ∈ P , and so a = 0
and pq = qp = 1, i.e., p is invertible. Also, p is invertible in P ⇔ p is invertible in
P+. Therefore, P = ⊕g∈G Pg is a predivision G-graded associative algebra if l ≥ 2,
and P+ = ⊕g∈G Pg is a predivision G-graded Jordan algebra if l = 1. The statement
for ‘division’ can be shown in the same manner.

(ii): Let Zg := {z ∈ Z | g ⊗ z ⊂ (g ⊗F Z)g}. Then Z = ⊕g∈G Zg becomes a
G-graded algebra. The rest can be shown in the same manner. ¤
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Definition 2.12. For ∆G-graded Lie algebras L̃ = ⊕g∈G L̃g and L = ⊕g∈G Lg, if

∆-cover π : L̃ −→ L satisfies Lg = π(L̃g) for all g ∈ G, then L̃ = (L̃, π) is called
a ∆G-cover of L. Also, for ∆G-graded Lie algebras L and L′, if there exist a ∆G-
graded Lie algebra L̃ and maps π : L̃ −→ L and π′ : L̃ −→ L′ such that (L̃, π) and

(L̃, π′) are both ∆G-covers, we say that L and L′ are ∆G-isogeneous.

It is clear that if L̃ is a ∆G-cover of L, then

L̃ is is predivision (resp. division) ⇐⇒ L is predivision (resp. division).

Also, by Corollary 2.4, if L and L′ are ∆G-isogeneous, then L/Z(L) and L′/Z(L′) are
∆G-isomorphic, i.e., there exists a ∆-isomorphism which is also G-graded between
them. In particular, L̃/Z(L̃) and L/Z(L) above are ∆G-isomorphic.

Proposition 2.13. (i) Let l ≥ 3. Then a predivision (resp. division) AlG-graded
Lie algebra L over F is an AlG-cover of psll+1(P ) admitting the natural compatible
G-grading from the G-grading of a predivision (resp. division) G-graded associative
algebra P over F . Hence L/Z(L) and psll+1(P ) are ∆G-isomorphic.

(ii) Let ∆ = D or E and let g be a finite dimensional split simple Lie algebra L over
F of type ∆. Then a predivision (resp. division) ∆G-graded Lie algebra over F is a
∆G-cover of g ⊗F Z admitting the natural compatible G-grading from the G-grading
of a predivision (resp. division) G-graded commutative associative algebra Z over F .
Hence L/Z(L) and g⊗F Z are ∆G-isomorphic.

Proof. For (i), let L be a predivision AlG-graded Lie algebra over F . Berman and
Moody showed in [3] that L is Al-isogeneous to

(
sll+1(P ), sll+1(F )

)
(the Steinberg

Lie algebra stl+1(P ) serves as an Al-cover of L and sll+1(P )). Hence, by Corollary
2.4, L/Z(L) is Al-isomorphic to psll+1(P ). Thus

(
psll+1(P ), sll+1(F )

)
admits a com-

patible G-grading via the Al-isomorphism from the compatible G-grading of L/Z(L)
induced by the compatible G-grading of L. Therefore, the statement follows from
Lemma 2.11.

(ii): Let L be a predivision ∆G-graded Lie algebra over F . Berman and Moody
showed in [3] that L is a ∆-cover of g⊗F Z. Thus the statement follows from Lemma
2.11. ¤

In this paper we classify predivision ∆Zn-graded Lie algebras for ∆ = Al, l ≥ 3,
D or E, up to central extensions. By Proposition 2.13, our work is to classify crossed
product algebras R ∗Zn. We determine such algebras as a generalization of quantum
tori. Namely, let q = (qij) be an n × n matrix over F such that

qii = 1 and qji = q−1
ij .

The quantum torus Fq = Fq[t±1
1 , . . . , t±1

n ] determined by q is defined as the associative

algebra over F with 2n generators t±1
1 , . . . , t±1

n , and relations

tit
−1
i = t−1

i ti = 1 and tjti = qijtitj
11



for all 1 ≤ i, j ≤ n. Quantum tori are characterized as predivision Zn-graded asso-
ciative algebras whose homogeneous spaces are all 1-dimensional (see [4]). Note that
Fq is commutative ⇐⇒ q = 1 whose entries are all 1, i.e., F1 = F [t±1

1 , . . . , t±1
n ] is the

algebra of Laurent polynomials. Also, a quantum torus is a twisted group algebra
F t[Zn].

§ 3 Classification of R ∗ Zn

Throughout this section F is an arbitrary field and G is an arbitrary group. For
a G-graded algebra S = ⊕g∈G Sg over F in general, we denote by GrAutF (S) the
group of graded automorphisms of S, i.e.,

GrAutF (S) := {σ ∈ AutF (S) | σ(Sg) = Sg for all g ∈ G}.

Lemma 3.1. Let R ∗ G = (R,G, σ, τ) be a crossed product algebra over F and (R ∗
G) ∗M = (R ∗G, M, η, ξ) a crossed product algebra over F for a group M , an action
η and a twisting ξ. Suppose that η(M ) ⊂ GrAutF (R ∗ G) and that ξ(m, l) ∈ U(R)
for all m, l ∈ M . Then, (R ∗ G) ∗ M is a crossed product algebra R ∗ (G × M ) =(
R, (G × M), σ′, τ ′) over F for some action σ′ and twisting τ ′.

Proof. We have

(R ∗ G) ∗ M = ⊕m∈M (R ∗ G)m = ⊕m∈M (⊕g∈G Rg)m = ⊕(g,m)∈G×M Rgm

as free R-modules. We define ηm = η(m) |R1 an F -automorphism of R for every
m ∈ M . Also for h ∈ G, h is a unit in R ∗ G (see 1.6). Since ηm is a graded

automorphism of R∗G by our first assumption, ηm(h) = dm,hh for some dm,h ∈ U(R).

Therefore, for rgm ∈ Rgm and shl ∈ Rhl, we have

(rgm)(shl) = rgηm(sh)ml

= rgηm(s)ηm(h)ξ(m, l)ml

= rgηm(s)dm,hhξ(m, l)ml

= rgηm(s)dm,hσh

(
ξ(m, l)

)
hml (by our second assumption)

= rσgηm(s)σg(dm,h)σgh

(
ξ(m, l)

)
ghml

= rσgηm(s)σg(dm,h)σgh

(
ξ(m, l)

)
τ(g, h)gh ml.

Thus we have the action

σ′ : G ×M −→ AutFR by σ′
(g,m) = σgηm,

and the twisting τ ′ : (G × M) × (G × M ) −→ U(R) by

τ ′((g, m), (h, l)
)
= σg(dm,h)σgh

(
ξ(m, l)

)
τ (g, h).

12



Since the crossed product algebra (R ∗ G) ∗ M is associative, we get

(R ∗ G) ∗ M = R ∗ (G × M) = (R,G × M,σ′, τ ′). ¤

A triple (R,ϕ,q) where R is a unital associative algebra over F ,

ϕ = (ϕ1, . . . , ϕn)

is an n-tuple of F -automorphisms ϕi of R, and q = (qij) is an n × n matrix over R
satisfying, for all 1 ≤ i < j < k ≤ n,

qii = 1 and q−1
ji = qij ,(G1)

ϕjϕi = I(qij)ϕiϕj ,(G2)

ϕk(qij) = qjkϕj(qik)qijϕi(qkj)qki,(G3)

is called a Zn-grading triple, and a division Zn-grading triple if R is a division algebra.
For a Zn-grading triple, we introduce several notations and prove some identities.

Notations.

(N1) εi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn,

i.e., the i-th coordinate is 1 and the others are 0.

(N2) q
(m)
ij :=





qijϕi(qij)ϕ
2
i (qij) · · ·ϕm−1

i (qij) =
∏m−1

l=0 ϕl
i(qij), if m > 0

1, if m = 0

ϕ−1
i (qji)ϕ

−2
i (qji) · · ·ϕm

i (qji) =
∏m

l=−1 ϕl
i(qji), if m < 0,

and q
−(m)
ij := (q

(m)
ij )−1.

For α = (α1, . . . , αn),β = (β1, . . . , βn) ∈ Zn and k = 0, 1, 2, . . . , n,

(N3) ϕ(α)k :=

{
id, if k = 0, 1

ϕα1
1 · · ·ϕαk−1

k−1 , if k > 1,

and ϕα := ϕα1
1 · · ·ϕαn

n .

(N4) qεj ,α :=

j−1∏

i=1

ϕ(α)i(q
(αi)
ij ) with α0 = q0j = 1.

(N5) q(m)
εj ,α :=





∏0
l=m−1 ϕl

j(qεj ,α), if m > 0

1, if m = 0
∏−1

l=m ϕl
j(q

−1
εj ,α), if m < 0.

(N6) qα,β :=
1∏

j=n

ϕ(α)j (q
(αj)
εj ,β).
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Lemma 3.2. For m ∈ Z and α = (α1, . . . , αn) ∈ Zn, we have

ϕ−m
i (q

−(m)
ij ) = q

(−m)
ij ,(1)

ϕjϕ
m
i = I(q

(m)
ij )ϕm

i ϕj ,(2)

ϕjϕ
(α)i =

{
I
(∏i−1

l=1 ϕ(α)l(q
(αl)
lj )

)
ϕ(α)iϕj for j ≥ i,

I
( ∏j−1

l=1 ϕ(α)l(q
(αl)
lj )

)
ϕ(α+εj)i for j < i,

(3)

q
(m+1)
ij = qijϕi(q

(m)
ij ) and q

−(m+1)
ij = ϕi(q

−(m)
ij )qji,(4)

ϕk(q
(m)
ij ) = qjkϕj(q

(m)
ik )q

(m)
ij ϕm

i (qkj)q
−(m)
ik .(5)

Proof. For (1), we have from (N2),

q
−(m)
ij =





ϕm−1
i (qji) · · ·ϕi(qji)qji =

∏1
l=m−1 ϕl

i(qji), if m > 0

1, if m = 0

ϕm
i (qij) · · ·ϕ−2

i (qij)ϕ
−1
i (qij) =

∏−1
l=m ϕl

i(qij), if m < 0.

So we get

ϕ−m
i (q

−(m)
ij ) =





ϕ−1
i (qji) · · ·ϕ−m

i (qji) =
∏−m

l=−1 ϕl
i(qji), if m > 0

1, if m = 0

qijϕi(qij) · · ·ϕ−m−1
i (qij) =

∏−m−1
l=1 ϕl

i(qij), if m < 0,

which is exactly q
(−m)
ij .

For (2), the case m = 0 is clear. Assume that m > 0. Put q := qij for simplicity.
Then we have

ϕjϕ
m
i = ϕjϕ

m−1
i ϕi

= I(q(m−1))ϕm−1
i ϕjϕi by induction on m

= I(q(m−1))ϕm−1
i I(q)ϕiϕj by (G2)

= I(q(m−1))I
(
ϕm−1

i (q)
)
ϕm

i ϕj

= I(q(m))ϕm
i ϕj .

Also, (ϕjϕ
m
i )−1 = (I(q

(m)
ij )ϕm

i ϕj)
−1 for m > 0, and so

ϕ−m
i ϕ−1

j = ϕ−1
j ϕ−m

i (I(q
−(m)
ij ) = ϕ−1

j I
(
ϕ−m

i (q
−(m)
ij )

)
ϕ−m

i = ϕ−1
j I(q

(−m)
ij )ϕ−m

i ,

by (1). Hence we get ϕjϕ
−m
i = I(q

(−m)
ij )ϕ−m

i ϕj , and (2) holds for all m ∈ Z.
14



For (3), when j ≥ i, using (2), we have

ϕjϕ
(α)i

i = ϕjϕ
α1
1 · · ·ϕαi−1

i−1

= I(q
(α1)
1j )ϕα1

1 ϕjϕ
α2
2 · · ·ϕαi−1

i−1

= I(q
(α1)
1j )ϕα1

1 I(q
(α2)
2j )ϕα2

2 ϕjϕ
α3
3 · · ·ϕαi−1

i−1

· · · · · ·

= I(q
(α1)
1j )ϕα1

1 I(q
(α2)
2j )ϕα2

2 I(q
(α3)
3j )ϕα3

3 · · · I(q(αi−1)
i−1,j )ϕ

αi−1

i−1 ϕj

= I(

i−1∏

l=1

ϕ(α)l(q
(αl)
lj ))ϕ(α)iϕj . (Note ϕ(α)0 = id when i = 1)

When j < i, we have

ϕjϕ
(α)i

i = ϕjϕ
α1
1 · · ·ϕαi−1

i−1

= I(q
(α1)
1j )ϕα1

1 ϕjϕ
α2
2 · · ·ϕαj

j · · ·ϕαi−1

i−1

· · · · · ·

= I(q
(α1)
1j )ϕα1

1 · · · I(q(αj−1)
j−1,j )ϕ

αj−1

j−1 I(q
(αj)
jj )ϕ

αj

j ϕj · · ·ϕ
αi−1

i−1

= I(q
(α1)
1j )ϕα1

1 · · · I(q(αj−1)
j−1,j )ϕ

αj−1

j−1 ϕαj+1 · · ·ϕαi−1

i−1

= I(

j−1∏

l=1

ϕ(α)l(q
(αl)
lj ))ϕ(α+εj)i . (Note ϕ(α)0 = id when j = 1)

For the first formula of (4), the case m = 0 is clear. We put q := qij , p := q−1 and
ϕ := ϕi for simplicity. For m > 0, we have

q(m+1) = qϕ(q)ϕ2(q) · · ·ϕm(q)

= qϕ
(
qϕ(q) · · ·ϕm−1(q)

)
= qϕ(q(m)).

For m = −1, we have q(−1+1) = 1, while qϕ(q(−1)) = qϕϕ−1(p) = 1. For m < −1, we
have

q(m+1) = ϕ−1(p)ϕ−2(p) · · ·ϕm+1(p)

= qpϕ−1(p)ϕ−2(p) · · ·ϕm+1(p)

= qϕ
(
ϕ−1(p)ϕ−2(p) · · ·ϕm(p)

)
= qϕ(q(m)).

The second formula follows from the first since q
−(m+1)
ij = (q

(m+1)
ij )−1.
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For (5), the case m = 0 is clear. Assume that m > 0. Then we have

ϕk(q
(m)
ij )

=ϕk(qij)ϕkϕi(q
(m−1)
ij ) by (3)

=ϕk(qij)qikϕiϕk(q
(m−1)
ij )qki by (G2)

=qjkϕj(qik)qijϕi(qkj)qkiqikϕi

(
qjkϕj(q

(m−1)
ik )q

(m−1)
ij ϕm−1

i (qkj)(q
−(m−1)
ik )

)
qki

by (G3) and induction on m

=qjkϕj(qik)qijϕiϕj(q
(m−1)
ik )ϕi(q

(m−1)
ij )ϕm

i (qkj)ϕi(q
−(m−1)
ik )qki

=qjkϕj(qik)qijqjiϕjϕi(q
(m−1)
ik )qijϕi(q

(m−1)
ij )ϕm

i (qkj)ϕi(q
−(m)
ik )

by (G2) and (3)

=qjkϕj(qik)ϕjϕi(q
(m−1)
ik )ϕi(q

(m)
ij )ϕm

i (qkj)ϕi(q
−(m)
ik ) by (3)

=qjkϕj(q
(m)
ik )q

(m)
ij ϕm

i (qkj)q
−(m)
ik by (3).

Also, one has
(
ϕk(q

(m)
ij )

)−1
=

(
qjkϕj(q

(m)
ik )q

(m)
ij ϕm

i (qkj)q
−(m)
ik

)−1
for m > 0, and so

ϕk(q
−(m)
ji ) = q

(m)
ik ϕm

i (qjk)q
−(m)
ij ϕj(q

−(m)
ik )qkj . Applying ϕ−m

i in both hands, we get

ϕ−m
i ϕk(q

−(m)
ij ) = ϕ−m

i

(
q
(m)
ik ϕm

i (qjk)q
−(m)
ij ϕj(q

−(m)
ik )qkj

)

= ϕ−m
i (q

(m)
ik )qjkq

(−m)
ij ϕ−m

i ϕj(q
−(m)
ik )ϕ−m

i (qkj) by (1).

Then, by (1) and (2), we have

I(q
−(−m)
ik )ϕk(q

(−m)
ij ) = q

−(−m)
ik qjkq

(−m)
ij I(q

−(−m)
ij )ϕj(q

(−m)
ik )ϕ−m

i (qkj),

and we obtain

ϕk(q
(−m)
ij ) = qjkϕj(q

(−m)
ik )q

(−m)
ij ϕ−m

i (qkj)q
−(−m)
ik for m > 0.

Hence, (5) holds for all m ∈ Z. ¤

Now we are ready to state our theorem.

Theorem 3.3. Let (R,ϕ,q) be a Zn-grading triple and let Rϕ,q := ⊕α∈Zn Rtα be a
free left R-module with basis {tα | α ∈ Zn}. Then there exists a unique associative
multiplication on Rϕ,q such that, for ti := tεi, i = 1, . . . , n, α = (α1, . . . , αn) and
r ∈ R,

(3.4) tα = tα1
1 · · · tαn

n , tit
−1
i = t−1

i ti = 1, tir = ϕi(r)ti and tjti = qijtitj .
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Moreover, for rtα, r′tβ ∈ Rϕ,q, we have

rtαr′tβ = rϕα(r′)qα,βtα+β ,

where ϕα and qα,β are defined in (N3) and (N6). In particular, Rϕ,q is a crossed
product algebra R ∗ Zn with

(action) σ : Zn −→ AutF (R) by σ(α) = ϕα

(twisting) τ : Zn × Zn −→ U(R) by τ(α,β) = qα,β.

Conversely, for any crossed product algebra R∗Zn, there exists a Zn-grading triple
(R, ϕ, q) such that R ∗ Zn = Rϕ,q.

Proof. We first consider a crossed product algebra R ∗ Z. Let t := 1 ∈ R ∗ Z. Then,
tm is a unit in Rm for all m ∈ Z. Using the diagonal basis change, one can take an
R-basis {tm | m ∈ Z}. So we have tmtl = tm+l for all m, l ∈ Z. Hence, R ∗Z = RZ is
a skew group algebra. Let ψ be the action of 1, i.e., t(r1) = ψ (r)t for r ∈ R. (Note
that 1 = 0.) Then the action of m is ψ m, i.e.,

tm(r1) = ψ m(r)tm.

Conversely, it is clear that any F -automorphism ψ of R determines a skew group
algebra RZ by the action m 7→ ψ m (see Remark 1.3). We denote this RZ by R[t; ψ ].

Let R(1) := R[t1; ψ 1] where ψ 1 = ϕ1. Let ψ 2 be a graded F -automorphism ψ 2 of
R(1) and R(2) := R(1)[t2; ψ 2]. Then, by Lemma 3.1, we get R(2) = (RZ)Z = R ∗ Z2.
Repeating this process n times, one can construct R ∗ Zn inductively. Namely, for a
crossed product algebra R(k−1) = R ∗Zk−1, if we specify an F -graded automorphism
ψ k of R(k−1), then

R(k) := R(k−1)[tk; ψ k] = R ∗ Zk,

and we obtain R(n) = R ∗Zn. Thus, our task is to specify ψ k on R(k−1) and to show
that ψ k is a graded F -automorphism where k ≥ 2. We note that

{tα1
1 · · · tαk−1

k−1 | (α1, . . . , αk−1) ∈ Zk−1}
is a basis of the free R-module R(k−1). For convenience, we put

t(α)k = tα1
1 · · · tαk−1

k−1 ,

and define an F -linear transformation ψ k on R(k−1) by

ψ k(rt(α)k) = ϕk(r)

[ k−1∏

i=1

ϕ(α)i(q
(αi)
ik )

]
t(α)k for r ∈ R,

which is clearly graded. If ψ k(rt(α)k) = 0, then ϕk(r) = 0, and hence r = 0, and so
ψ k is injective. Since

ψ k

(
ϕ−1

k

(
r

[ k−1∏

i=1

ϕ(α)i(q
(αi)
ik )

]−1)
t(α)k

)
= rt(α)k ,

ψ k is surjective. Therefore, ψ k is an F -linear graded isomorphism on R(k−1). So it
remains to prove that ψ k is a homomorphism. For this purpose, we use a well-known
fact.
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3.5. Let A and B be unital associative algebras over F and f a F -linear map from
A into B. Let {ti}i∈I be a generating set of the F -algebra A. Then, f is a homomor-
phism if and only if f (tiy) = f (ti)f (y) for all i ∈ I and y ∈ A. Moreover, if {t±1

i }i∈I

is a generating set of A, then f is a homomorphism if and only if f (tiy) = f(ti)f(y)
and f(t−1

i ) = f (ti)
−1 for all i ∈ I and y ∈ A.

We have a generating set R ∪ {t±1
1 , . . . , t±1

k−1} of R(k−1) over F , and

ψ k(t−1
j ) = q

(−1)
jk t−1

j = ϕ−1
j (qkj)t

−1
j

= (tjϕ
−1
j (qjk))−1 = (qjktj)

−1 = ψ k(tj)
−1.

So, by 3.5, we only need to show that, for all r, r′ ∈ R and 1 ≤ j ≤ k − 1,

ψ k(rr′t(α)k) = ψ k(r) ψ k(r′t(α)k),(A)

ψ k(tjrt
(α)k) = ψ k(tj) ψ k(rt(α)k ).(B)

For (A), we have

ψ k(rr′t(α)k) = ϕk(rr′)
k−1∏

i=1

ϕ(α)i(q
(αi)
ik )t(α)k

= ϕk(r)ϕk(r′)

k−1∏

i=1

ϕ(α)i(d
(αi)
ik )t(α)k

= ψ k(r) ψ k(r′t(α)k).

For (B), we first note that there is the embedding of R(j) into R(k−1) for 1 ≤ j ≤ k−1,
and so

tjt
(α)j = ψ j(t

(α)j )tj = ϕj(r)

j−1∏

i=1

ϕ(α)i(q
(αi)
ij )t(α)j tj .

Thus we have

ψ k(tjrt
(α)k) = ψ k(ϕj(r)tjt

(α)k)

= ψ k(ϕj(r)(ψ j(t
(α)j )t

αj+1
j · · · tαk−1

k−1 )

= ψ k(ϕj(r)

j−1∏

i=1

ϕ(α)i(q
(αi)
ij )t(α+εj)k )

= ϕkϕj(r)

j−1∏

i=1

ϕkϕ(α)i(q
(αi)
ij )

k−1∏

i=1

ϕ(α+εj)i(q
(αi+δij)
ik )t(α+εj)k

: = ABCt(α+εj)k ,
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where A = ϕkϕj(r), B =
∏j−1

i=1 ϕkϕ(α)i(q
(αi)
ij ) and C =

∏k−1
i=1 ϕ(α+εj)i(q

(αi+δij)
ik ).

First of all, we have

A = ϕkϕj(r) = qjkϕjϕk(r)qkj by (G2).

Secondly, by Lemma 3.3(2) and (4), we have

ϕkϕ(α)i(q
(αi)
ij )

=

[ i−1∏

l=1

ϕ(α)l(q
(αl)
lk )

]
ϕ(α)iϕk(q

(αi)
ij )

[ i−1∏

l=1

ϕ(α)l(d
(αl)
lk )

]−1

=

[ i−1∏

l=1

ϕ(α)l(q
(αl)
lk )

]
ϕ(α)i

(
qjkϕj(q

(αi)
ik )q

(αi)
ij ϕαi

i (qkj)q
−(αi)
ik

)[ i−1∏

l=1

ϕ(α)l(q
(αl)
lk )

]−1

.

Note that

ϕ(α)i(q
−(αi)
ki )

[ i−1∏

l=1

ϕ(α)l(q
(αl)
lk )

]−1

=

[ i∏

l=1

ϕ(α)l(q
(αl)
lk )

]−1

and ϕ(α)iϕαi
i (qkj) = ϕ(α)i+1(qkj).

So we have

(
ϕkϕ(α)i(q

(αi)
ij )

)(
ϕkϕ(α)i+1(q

(αi+1)
i+1,j )

)
=

[ i−1∏

l=1

ϕ(α)l(q
(αl)
lk )

]
ϕ(α)i

(
qjkϕj(q

(αi)
ik )q

(αi)
ij

)

× ϕ(α)i+1
(
ϕj(q

(αi+1)
i+1,k )q

(αi+1)
i+1,j

)[ i∏

l=1

ϕ(α)l(q
(αl)
lk )

]−1

.

Thus, after cancellations, we get

B =

j−1∏

i=1

ϕkϕ(α)i(q
(αi)
ij )

= qjk

[ j−1∏

i=1

ϕ(α)i
(
ϕj(q

(αi)
ik )q

(αi)
ij

)]
ϕ(α)j (qkj)

[ j−1∏

i=1

ϕ(α)i(q
(αi)
ik )

]−1

.

Thirdly, we have

C =

k−1∏

i=1

ϕ(α+εj)i(q
(αi+δij)
ik )

=

[ j−1∏

i=1

ϕ(α)i(q
(αi)
ik )

]
ϕ(α)j (q

(αj+1)
jk )

k−1∏

i=j+1

ϕ(α+εj)i(q
(αi)
ik )

=

[ j−1∏

i=1

ϕ(α)i(q
(αi)
ik )

]
ϕ(α)j

(
qjkϕj(q

(αj)
jk )

) k−1∏

i=j+1

ϕ(α+εj)i(q
(αi)
ik ),
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by Lemma 3.2(4). Consequently, after cancellations and notifying qii = 1, we obtain

ψ k(tjrt
(α)k) = ABCt(α+εj)k

= qjkϕjϕk(r)

j∏

i=1

ϕ(α)i
(
ϕj(q

(αi)
ik )q

(αi)
ij

) k−1∏

i=j+1

ϕ(α+εj)i(q
(αi)
ik )t(α+εj)k .(∗)

On the other hand, we have

ψ k(tj) ψ k(rt(α)k) = qjktjϕk(r)

k−1∏

i=1

ϕ(α)i(q
(αi)
ik )t(α)k

= qjkϕj

[
ϕk(r)

k−1∏

i=1

ϕ(α)i(q
(αi)
ik )

]
tjt

(α)k

= qjkϕjϕk(r)
k−1∏

i=1

ϕjϕ
(α)i(q

(αi)
ik )

j−1∏

l=1

ϕ(α)l(q
(αl)
lj )t(α+εj)k .

We rewrite D :=
∏k−1

i=1 ϕjϕ
(α)i(q

(αi)
ik ). To find an expression for D, we use the

following lemma:

Lemma 3.6. Let A be a unital associative algebra, a0 = 1, a1, . . . , ak ∈ A units and
b1, . . . , bk ∈ A. Then we have

k∏

i=1

(
I
( i−1∏

l=1

al

)
(bi)

)
=

k∏

i=1

aibi

( k−1∏

l=1

al

)−1
.(1)

k∏

i=j+1

(
I
( j−1∏

l=1

al

)
(bi)

)
= I

( j−1∏

l=1

al

)( k∏

i=j+1

bi

)
.(2)

Proof. (1) is straightforward and (2) is obvious. ¤

By Lemma 3.2(3), we have, for i < j,

ϕjϕ
(α)i(q

(αi)
ik ) = I

( i−1∏

l=1

ϕ(α)l(q
(αl)
lj )

)(
ϕ(α)iϕj(q

(αi)
ik )

)
.

So, by Lemma 3.6(1), we get

j∏

i=1

ϕjϕ
(α)i(q

(αi)
ik ) =

j∏

i=1

ϕ(α)i
(
ϕj(q

(αi)
ik )(q

(αi)
ij )

)[ j−1∏

l=1

ϕ(α)l(q
(αl)
lj )

]−1

.
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By Lemma 3.2(3), we have, for j < i,

ϕjϕ
(α)i(q

(αi)
ik ) = I

( j−1∏

l=1

ϕ(α)l(q
(αl)
lj )

)(
ϕ(α+εj)i(q

(αi)
ik )

)
.

So, by Lemma 3.6(2), we get

k−1∏

i=j+1

ϕjϕ
(α)i(q

(αi)
ik ) = I

( j−1∏

l=1

ϕ(α)l(q
(αl)
lj )

)( k−1∏

i=j+1

ϕ(α+εj)i(q
(αi)
ik )

)
.

Hence we get

D =

k−1∏

i=1

ϕjϕ
(α)i(q

(αi)
ik )

=

j∏

i=1

ϕ(α)i
(
ϕj(q

(αi)
ik )q

(αi)
ij

) k−1∏

i=j+1

ϕ(α+εj)i(q
(αi)
ik )t(α+εj)k

[ j−1∏

l=1

ϕ(α)l(q
(αl)
lj )

]−1

.

Consequently, we obtain

ψ k(tj)ψ k(rt(α)k)

= qjkϕjϕk(r)

j∏

i=1

ϕ(α)i
(
ϕj(q

(αi)
ik )q

(αi)
ij

) k−1∏

i=j+1

ϕ(α+εj)i(q
(αi)
ik )t(α+εj)k ,

which is exactly (∗). Hence we have shown (B) and constructed a crossed product
algebra R ∗ Zk = R(k) for k = 1, . . . , n from (R,ϕ,q).

Let us put Rϕ,q := R(n) = ⊕α∈Zn Rtα where α = (α1, . . . , αn) ∈ Zn and tα =
tα1
1 · · · tαn

n . Since ψ k |R= ϕk for k = 1, . . . , n, we have tir = ϕi(r)ti. Also, we have
tjti = ψ j(ti)tj = qijtitj for 1 ≤ i < j ≤ n, and so tjti = qijtitj for all 1 ≤ i, j ≤ n.
Hence, our Rϕ,q satisfies (3.4). The uniqueness of the multiplication on Rϕ,q is clear

since R ∪ {t±1
1 , . . . , t±1

n } is a generating set of Rϕ,q.

Now, one can easily check that ψ
αj

j (t(β)j ) = q
(αj)
εj ,βt(β)j . So for rtα, r′tβ ∈ Rϕ,q, we

get

rtαr′tβ = rϕα(r′)tαtβ

= rϕα(r′)t(α)ntαn
n t(β)ntβn

n

= rϕα(r′)t(α)n ψ αn
n (t(β)n)tαn+βn

n

= rϕα(r′)t(α)nq
(αn)
εn,βt(β)ntαn+βn

n

= rϕα(r′)ϕ(α)n(q
(αn)
εn,β)t(α)nt(β)ntαn+βn

n

· · · · · ·

= rϕα(r′)ϕ(α)n(r
(αn)
εn,β) · · ·ϕ(α)2(q

(α2)
ε2,β)tα1+β1

1 · · · tαn+βn
n

= rϕα(r′)qα,βtα+β.
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Conversely, for any crossed product algebra R ∗ Zn = (R, Zn, τ, σ) = ⊕α∈Zn Rα,
we take a new R-basis {tα | α ∈ Zn} of R ∗ Zn where tα = ε1

α1 · · · εn
αn . We set

qij := τ(εj , εi) for 1 ≤ i ≤ j ≤ n, qji := q−1
ij and ϕi := σεi . Note that τ (εi, εj) = 1.

Then one can check that the triple (R,ϕ,q) is a Zn-grading triple:
(G1) is clear. Let ti := εi for i = 1, . . . , n. Then, for i ≤ j and r ∈ R, we have

tjtir = ϕjϕi(r)tjti = ϕjϕi(r)qijtitj and tjtir = qijtitjr = qijϕiϕj(r)titj . Hence,
ϕjϕi(r)qij = qijϕiϕj(r), i.e., (G2) holds. For i ≤ j ≤ k, we have tktjti = tkqijtitj =
ϕk(qij)qiktitktj = ϕk(qij)qikϕi(qjk)titjtk and tktjti = qjktjtkti = qjkϕj(qik)tjtitk =
qjkϕj(qik)qijtitjtk. Hence, ϕk(qij)qikϕi(qjk) = qjkϕj(qik)qij , i.e., (G3) holds.

Finally, it is clear that R ∗ Zn = ⊕α∈Zn Rtα satisfies (3.4). Therefore, we obtain
R ∗ Zn = Rϕ,q . ¤

Thus the following is clear:

Corollary 3.7. Let (D,ϕ,q) be a division Zn-grading triple. Then, Dϕ,q is a di-
vision Zn-graded algebra. Conversely, for any division Zn-graded algebra A, there
exists a division Zn-grading triple (D, ϕ,q) such that A = Dϕ,q.

Remark. What we have shown in Theorem 3.3 can be written in the following way:
Let B := {ε1, . . . , εn} and C := {(εj , εi) | 1 ≤ i < j ≤ n}. Suppose that maps

σ : B −→ AutF (R) and τ : C −→ U(R)

satisfy

σεj σεi = I
(
τ (εj , εi)

)
σεiσεj and(a)

σεk

(
τ(εj , εi)

)
τ(εk, εi)σεi

(
τ (εk, εj)

)
= τ(εk, εj)σεj

(
τ(εk, εi)

)
τ (εj , εi)(b)

for all 1 ≤ i < j < k ≤ n. Then there exist unique action σ̃ : Zn −→ AutF (R) and
twisting τ̃ : Zn × Zn −→ U(R) such that σ̃ |B= σ, τ̃ |C= τ and

(c) τ̃ (α1ε1 + · · · + αiεi, αjεj + · · · + αnεn) = 1 for all 1 ≤ i ≤ j ≤ n.

Conversely, for any crossed product algebra R ∗ Zn, we can use the diagonal basis
change so that the action and twisting satisfy (a), (b) and (c).

In a certain situation, the condition (G3) of a Zn-grading triple is not needed. We
use the notation [a, b] = aba−1b−1 for a, b ∈ U(R).

Lemma 3.8. Let R be a unital associative algebra over F , ϕ =
(
I(d1), . . . , I(dn)

)
an

n-tuple of inner automorphisms ϕi of R for some d1, . . . , dn ∈ U(R) and q = (qij) an
n × n matrix over F . Suppose that a triple (R,ϕ,q) satisfies (G1) and (G2). Then,
(R, ϕ, q) is a Zn-grading triple.

Proof. We only need to check (G3). By (G1) and (G2), we have, for all 1 ≤ i, j ≤ n,
I(dj)I(di) = I(qij)I(di)I(dj). So for all r ∈ R, djdird

−1
i d−1

j = qijdidjrd
−1
j d−1

i qji and
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hence rd−1
i d−1

j qijdidj = d−1
i d−1

j qijdidjr, i.e., d−1
i d−1

j qijdidj =: cij is in the centre of

R. Note that c−1
ji = cij . Thus we have

qij = cij [dj , di].

Using this identity, we get (G3): for all 1 ≤ i < j < k ≤ n,

qjkϕj(qik)qijϕi(qkj)qki

=cjk[dk, dj ]djcik[dk, di]d
−1
j cij[dj , di]dickj [dj , dk]d−1

i cki[di, dk]

=dkcij [dj , di]d
−1
k = ϕk(qij). ¤

By this lemma, if R is a finite dimensional central simple associative algebra, the
defining identities of a Zn-grading triple are just (G1) and (G2).

Remark 3.9. (1) For a Zn-grading triple (R,ϕ,q), if ϕ = 1 := (id, . . . , id), then the
crossed product algebra R1,q has the trivial action by Theorem 3.3. So, R1,q = Rt[Zn]
is a twisted group algebra.

(2) For a Zn-grading triple (R,ϕ,q), if q = 1n = 1 :=




1 · · · 1
...

. . .
...

1 · · · 1


, then a

crossed product algebra Rϕ,1 has the trivial twisting by Theorem 3.3. So, Rϕ,1 = RZn

is a skew group algebra.

(3) By (G2), (R,ϕ,1) is a Zn-grading triple if and only if

(∗) ϕjϕi = ϕiϕj for all i, j.

Finally, we give some examples.

Example. (1) Let Fq be an arbitrary quantum torus and R an arbitrary associative
algebra. Then it is easy to see that R ⊗F Fq is a predivision Zn-graded associative
algebra (division Zn-graded if R is a division algebra) and is isomorphic to R1,q. Note
also if R is a field, then this example becomes a quantum torus over R. Conversely,
for a division Zn-grading triple (D, ϕ, q), if ϕ = 1, then I(qij) = id for all qij , by
(G2). Hence qij is in the centre of D, say K, and we can show that D1,q

∼= D⊗K Kq .
Therefore, Dϕ,q is a tensor product with D and some quantum torus if and only if
ϕ = 1.

(2) Let Q = 〈i, j〉 be a quaternion algebra over a field, where i and j are the
standard generators, ϕ = ϕ3 =

(
I(i), I(j), I(ij)

)
and 1 = 13. Then one can easily

check (∗) in Remark 3.9(3), and hence Qϕ,1 is a predivision Z3-graded associative
algebra.
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(3) Let K = Q(ζ5) be a cyclotomic extension of Q (the field of rational numbers)
where ζ := ζ5 is a primitive 5th root of unity, and ϕ the automorphism of K defined
by ϕ(ζ) = ζ2. Let ϕ = (ϕ, ϕ2, ϕ3) and

q =




1 ζ ζ2

ζ−1 1 ζ−1

ζ3 ζ 1


 .

Then one can easily check that (K,ϕ,q) is a division Z3-grading triple, and hence
Kϕ,q is a division Z3-graded associative algebra over Q.

(4) Let H = 〈i, j〉 be Hamilton’s quaternion over R (the field of real numbers),
i.e., the unique quaternion division algebra over R. Put k := ij. Let ϕ =

(
I(d1),

I(d2), I(d3)
)

where d1 = 1 + i, d2 = 1 + j and d3 = 1 + k. We put qij = 2[dj , di] for

1 ≤ i < j ≤ 3, qji = q−1
ij and qii = 1. Then, (H, ϕ, q) satisfies (G1) and (G2), and

q =




1 1 − i + j − k 1 − i + j + k
(1 − i + j − k)−1 1 1 − i − j + k
(1 − i + j + k)−1 (1 − i − j + k)−1 1


 .

By Lemma 3.8, this is a division Z3-grading triple and hence Hϕ,q is a division Z3-
graded associative algebra over R.

§ 4 Conclusion

By 1.8, Example 2.8(c), Example 2.10, Proposition 2.13, Theorem 3.3 and Corol-
lary 3.7, one can summarize our results as follows:

Corollary. (i) Any predivision (resp. division) AlZn-graded Lie algebra over F for
l ≥ 3 is an AlZn-cover of psll+1(Rϕ,q) for some (resp. division) Zn-grading triple
(R, ϕ, q). Conversely, any psll+1(Rϕ,q) for l ≥ 1 is a predivision (resp. division)
AlZn-graded Lie algebra.

(ii) Any predivision (resp. division) ∆Zn-graded Lie algebra over F for ∆ = D or
E is a ∆Zn-cover of g ⊗F K[z±1 , . . . , z±n ] where g is a finite dimensional split simple
Lie algebra over F of type D or E and K is a unital commutative associative algebra
over F (resp. K is a field extension of F ). Conversely, for any finite dimensional
split simple Lie algebra g over F of any type ∆, g⊗F K[z±1 , . . . , z±n ] is a predivision
(resp. division) ∆Zn-graded Lie algebra.
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