ROOT-GRADED LIE ALGEBRAS
WITH COMPATIBLE GRADINGS

YOJI YOSHI

Abstract. Lie algebras graded by a finite irreducible reduced root system \(\Delta \) will be generalized as predivision \(\Delta G \)-graded Lie algebras for an abelian group \(G \). In this paper such algebras are classified, up to central extensions, when \(\Delta = A_l \) for \(l \geq 3 \), \(D \) or \(E \), and \(G = \mathbb{Z}^n \).

Introduction

The concept of a Lie algebra over a field \(F \) of characteristic 0 graded by a finite irreducible reduced root system \(\Delta \) or a \(\Delta \)-graded Lie algebra was introduced by Berman and Moody [3]). It is a Lie algebra \(L \) together with a finite dimensional split simple Lie algebra \(\mathfrak{g} \), a split Cartan subalgebra \(\mathfrak{h} \) of \(\mathfrak{g} \) and the root system \(\Delta \), so that \(\mathfrak{g} \) has the root space decomposition \(\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\mu \in \Delta} \mathfrak{g}_\mu \) with \(\mathfrak{h} = \mathfrak{g}_0 \), satisfying the following three conditions:

(i) \(L \) contains \(\mathfrak{g} \) as a subalgebra
(ii) \(L = \bigoplus_{\mu \in \Delta \cup \{0\}} L_\mu \), where \(L_\mu = \{ x \in L \mid [h, x] = \mu(h)x \text{ for all } h \in \mathfrak{h} \} \); and
(iii) \(L_0 = \sum_{\mu \in \Delta} [L_\mu, L_{-\mu}] \).

The subalgebra \(\mathfrak{g} = (\mathfrak{g}, \mathfrak{h}) \) is called the grading subalgebra of \(L \).

Berman and Moody classified \(\Delta \)-graded Lie algebras, up to central extensions, when \(\Delta \) has type \(A_l \), \(l \geq 2 \), \(D \) or \(E \) in [3], and then Benkart and Zelmanov completed the classification for the other types in [5] (see also [7] for the classification of \(\Delta \)-graded Lie algebras over rings where \(\Delta \) is not necessarily finite there, using Jordan methods).

Let us explain the case \(\Delta = A_l \), \(l \geq 3 \), in order to describe our motivation of this paper. By [3], an \(A_l \)-graded Lie algebra covers \(\text{psl}_{l+1}(A) \) for a unital associative algebra \(A \) (see Definition 2.9). Then Berman, Gao and Krylyuk showed in [4] that the core of an extended affine Lie algebra of type \(A_l \) for \(l \geq 3 \) is an \(A_l \)-graded Lie algebra and covers \(\text{sl}_{l+1}(\mathbb{C}_q) \) where \(\mathbb{C}_q = \mathbb{C}_q[t_1^\pm, \ldots, t_n^\pm] \) is a certain \(\mathbb{Z}^n \)-graded associative algebra called, a quantum torus over \(\mathbb{C} \) (see §2 below). The Lie algebra \(L = \text{sl}_{l+1}(\mathbb{C}_q) \) is not only graded by \(A_l \) but also graded by \(\mathbb{Z}^n \), and the \(\mathbb{Z}^n \)-grading \(L = \bigoplus_{\alpha \in \mathbb{Z}^n} L^\alpha \)
is compatible with the A_l-grading $L = \bigoplus_{\mu \in \Delta \cup \{0\}} L_\mu$ in the sense that

$$L = \bigoplus_{\mu \in \Delta \cup \{0\}} \bigoplus_{\alpha \in \mathbb{Z}^n} L_\mu^{\alpha} \quad \text{where} \quad L_\mu^{\alpha} = L_\mu \cap L^{\alpha}.$$

We will call such a double grading a \textit{compatible $A_l\mathbb{Z}^n$-grading} (see Definition 2.6 for the general definition). Moreover, let $\{h_\mu \in \mathfrak{h} \mid \mu \in \Delta\}$ be the set of coroots where \mathfrak{h} is the Cartan subalgebra of diagonal matrices in the grading subalgebra $\mathfrak{g} = sl_{l+1}(\mathbb{C})$. Then L has the following two properties:

1. for any $\mu \in \Delta$ and any $0 \neq x \in L_\mu^{\alpha}$, there exists $y \in L_{-\mu}^{\alpha}$ such that $[x, y] = h_\mu$;
2. $\dim_{\mathbb{C}} L_\mu^{\alpha} = 1$ for all $\mu \in \Delta$ and $\alpha \in \mathbb{Z}^n$.

The property 1 will be called \textit{division} (see Definition 2.6 for the general definition). Our interest is to describe such Lie algebras without the property (2), namely, division $A_l\mathbb{Z}^n$-graded Lie algebras. One of the main results of the paper which is contained in Proposition 2.13 is the following:

\textbf{Result 1.} Let $l \geq 3$. Then any division $A_l\mathbb{Z}^n$-graded Lie algebra covers $\text{psl}_{l+1}(P)$ where P is a division \mathbb{Z}^n-graded associative algebra (i.e., all nonzero homogeneous elements are invertible).

A division \mathbb{Z}^n-graded associative algebra over a field F can be considered as a crossed product algebra $D \ast \mathbb{Z}^n$ for an associative division algebra D over F (see §1). Our next interest is to describe $D \ast \mathbb{Z}^n$ as a natural generalization of the algebra $F[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ of Laurent polynomials or a quantum torus F_q.

A triple (D, φ, q) is called a \textit{division \mathbb{Z}^n-grading triple} if

1. D is an associative division algebra;
2. $\varphi = (\varphi_1, \ldots, \varphi_n)$ is an n-tuple of automorphisms φ_i of D; and
3. $q = (q_{ij})$ is an $n \times n$ matrix over D satisfying, for all $1 \leq i < j < k \leq n$,

$$q_{ii} = 1 \quad \text{and} \quad q_{ji}^{-1} = q_{ij},$$

$$\varphi_j \varphi_i = I(q_{ij}) \varphi_i \varphi_j,$$

$$\varphi_k(q_{ij}) = q_{jk} \varphi_j(q_{ik}) q_{ij} \varphi_i(q_{kj}) q_{ki};$$

where $I(q_{ij})$ is the inner automorphism of D determined by q_{ij}, i.e.,

$$I(q_{ij})(d) = q_{ij} d q_{ij}^{-1} \quad \text{for} \quad d \in D.$$

We will show that $D \ast \mathbb{Z}^n$ can be considered as a generalization of the ring $D[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ of Laurent polynomials over D in n-variables in the following sense:

$D[t_1^{\pm 1}, \ldots, t_n^{\pm 1}] = \bigoplus_{\alpha \in \mathbb{Z}^n} D_{\alpha}$ is a \mathbb{Z}^n-graded algebra, where $t_\alpha = t_1^{\alpha_1} \cdots t_n^{\alpha_n}$ for $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n$, and the multiplication rule is determined by

$$t_it_i^{-1} = t_i^{-1}t_i = 1, \quad t_id = dt_i \quad \text{and} \quad t_jt_i = t_it_j \quad \text{for all} \quad d \in D \quad \text{and} \quad i, j.$$
Result 2. For any division \mathbb{Z}^n-grading triple (D, φ, q), there exists a division \mathbb{Z}^n-graded associative algebra $D_{\varphi, q} = D_{\varphi, q}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ such that $D_{\varphi, q} = \oplus_{\alpha \in \mathbb{Z}^n} D t_\alpha$ has the same \mathbb{Z}^n-grading as $D[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ above, and the multiplication rule is determined by

$$t_i t_{i}^{-1} t_i = 1, \quad t_i d = \varphi_i(d) t_i \quad \text{and} \quad t_j t_i = q_{ij} t_i t_j \quad \text{for all } d \in D \text{ and } i, j.$$

Conversely, any division \mathbb{Z}^n-graded associative algebra is isomorphic to $D_{\varphi, q}$ for some division \mathbb{Z}^n-grading triple (D, φ, q) (see Theorem 3.3 for more precise statements).

Consequently, one gets that any division A_l-\mathbb{Z}^n-graded Lie algebra for $l \geq 3$ covers $psl_{l+1}(D_{\varphi, q})$. We will also classify division $\Delta \mathbb{Z}^n$-graded Lie algebras when $\Delta = D$ or E, which is simpler than the case A. Moreover, our concept “division” can be generalized as “predivision” (see Definition 2.6). Result 1 and 2 above will be proved in this more general set-up.

The organization of the paper is as follows. In §1 we review basic concepts of graded algebras and crossed product algebras. In §2 we observe some properties of ΔG-graded Lie algebras. Then predivision or division ΔG-graded Lie algebras are defined. After describing some examples of them, we classify predivision ΔG-graded Lie algebras for $\Delta = A_l (l \geq 3)$, D and E types. In §3 we classify crossed product algebras $R \ast \mathbb{Z}^n$. Finally in §4 we give a summary of our results.

Result 2 above is part of my Ph.D thesis, written at the University of Ottawa. I would like to thank my supervisor, Professor Erhard Neher, for his encouragement and suggestions.

§ 1 Basic Concepts

For any group G and any G-graded algebra $L = \oplus_{g \in G} L_g$, we denote

$$\text{supp } L := \{g \in G \mid L_g \neq (0)\}.$$

Then we have $L = \oplus_{g \in G'} L_g$ where $G' = \langle \text{supp } L \rangle$ is the subgroup of G generated by $\text{supp } L$. Because of this, we will in the following always assume

$$G = \langle \text{supp } L \rangle. \quad (1.1)$$

Whenever a class of algebras has a notion of invertibility, one can make the following definition:

Definition 1.2. Let G be a group. A G-graded algebra $P = \oplus_{g \in G} P_g$ is called a predivision G-graded algebra if P_g contains an invertible element for all $g \in \text{supp } P$. Also, P is called a division G-graded algebra if all nonzero homogeneous elements are invertible.

One can easily check that if P is associative, then $\text{supp } P = G$ and P is strongly graded, i.e., $P_g P_h = P_{gh}$ for all $g, h \in G$. This is not true if P is a Jordan algebra (see [9]). Predivision G-graded associative algebras are realized as crossed product algebras, which we recall here:
Definition 1.3. Let \(R \) be a unital associative algebra over a field \(F \) and \(G \) a group. Let \(R \ast G \) be the free left \(R \)-module with basis \(G = \{ g \mid g \in G \} \), a copy of \(G \). Define a multiplication on \(R \ast G \) by linear extension of
\[
(r \bar{g})(s \bar{h}) = r \sigma_g(s) \tau(g,h) \bar{gh},
\]
for \(r, s \in R \) and \(g, h \in G \), where

- (action) \(\sigma : G \to \text{Aut}_F(R) \), the group of \(F \)-automorphisms of \(R \),
- (twisting) \(\tau : G \times G \to U(R) \), the group of units of \(R \),

are arbitrary maps and \(\sigma_g := \sigma(g) \). This \(R \ast G = (R,G,\sigma,\tau) \) is called a *crossed product algebra over \(F \)* if this multiplication is associative. It is easily seen that this is in fact an algebra over \(F \). If there is no action or twisting, that is, if \(\sigma_g = \text{id} \) and \(\tau(g,h) = 1 \) for all \(g, h \in G \), then \(R \ast G = R[G] \) is the ordinary group algebra. If the action is trivial, then \(R \ast G =: R^t[G] \) is called a *twisted group algebra*. Finally, if the twisting is trivial, then \(R \ast G =: RG \) is called a *skew group algebra*.

Remark 1.4. If a crossed product algebra \(R \ast G \) is commutative, then the action is clearly trivial, and so \(R \ast G = R^t[G] \).

The following lemma characterizes \(\sigma \) and \(\tau \) (see [8], Lemma 1.1 p.2). We denote by \(I(d) \) the inner automorphism determined by \(d \in U(R) \), i.e., \(I(d)(r) = drd^{-1} \) for \(r \in R \).

1.5. The associativity of \(R \ast G \) is equivalent to the following two conditions: for all \(g, h, k \in G \),

(i) \(\sigma_g \sigma_h = I(\tau(g,h)) \sigma_{gh} \),
(ii) \(\sigma_g(\tau(h,k)) \tau(g,hk) = \tau(g,h) \tau(gh,k) \).

Remark 1.6. If \(R \) is commutative, then the action \(\sigma : G \to \text{Aut}_F(R) \) becomes a group homomorphism by condition (i) in 1.5. So the action is really a “group action” in usual sense. Also, for a skew group algebra \(RG \), the action becomes a group homomorphism for the same reason. Conversely, any group action \(G \to \text{Aut}_F(R) \) defines a skew group algebra \(RG \).

If \(d : G \to U(R) \) assigns to each element \(g \in G \) a unit \(d_g \), then \(\hat{G} = \{ d_g \bar{g} \mid g \in G \} \) yields another \(R \)-basis for \(R \ast G \) so that \(R \ast G \) is a crossed product algebra for the new basis. One calls this a *diagonal change of basis* ([8], p.3). Any crossed product algebra has an identity element. It is of the form \(1 = u \bar{e} \) for some unit \(u \) in \(R \) where \(e \) is the identity element of \(G \) ([8], Exercise 2 p.9). We can and will assume that \(1 = \bar{e} \), via a diagonal change of basis, and so \(\tau(g,e) = \tau(e,g) = 1 \) for all \(g \in G \). The embedding of \(R \) into \(R \ast G \) is then given by \(r \mapsto r \bar{e} \). Also, we have ([8], p.3)

\[
(1.7) \quad r \bar{g} \quad \text{is invertible if and only if} \quad r \in U(R).
\]
Now, it is clear that a crossed product algebra \(R \ast G = \oplus_{g \in G} Rg \) is a predivision \(G \)-graded associative algebra. Conversely, suppose that \(A = \oplus_{g \in G} A_g \) is a predivision \(G \)-graded associative algebra over \(F \). Then we have \(A = \oplus_{g \in G} Rg \) where \(R = A_k \) and an invertible element \(x_g \in A_g \), which exists since \(A \) is predivision graded and supp \(A = G \). Moreover, for \(h \in G \), we have \(x_g x_h = x_g x_h (x_g h)^{-1} x_g h \). So we can put \(\tau(g, h) := x_g x_h (x_g h)^{-1} \in U(R) \). Then we have \(x_g x_h = \tau(g, h) x_g h \). Also, let \(I(x_g) \) be the inner automorphism determined by \(x_g \) and let \(\sigma_g := I(x_g) \mid_R \). Then, \(\sigma_g \) is clearly an \(F \)-automorphism of \(R \) and for \(r, r' \in R \),
\[
(rx_g)(r' x_h) = r(x_g r' x_g^{-1}) x_g x_h = r \sigma_g(r') x_g x_h = r \sigma_g(r' \tau(g, h) x_g h).
\]
Hence \(A \) is a crossed product algebra \(R \ast G \) determined by these \(\sigma \) and \(\tau \). So the two concepts, a crossed product algebra \(R \ast G \) and a predivision \(G \)-graded associative algebra, coincide (see [8], Exercise 2 p.18). In particular, a division \(G \)-graded associative algebra is a crossed product algebra \(R \ast G \) where \(R \) is a division algebra.

By Remark 1.4, a predivision \(G \)-graded commutative associative algebra \(Z = \oplus_{g \in G} Z_g \) \((G \text{ is necessarily abelian})\) is a twisted group algebra \(K^G[G] \) where \(K := Z_e \). Moreover (see [8], Exercise 6 p.10):

1.8. If the abelian group \(G \) is free, then \(Z \) is a group algebra \(K^G[G] \). In particular, when \(G = \mathbb{Z}^n \), \(Z \) is the algebra \(K[z_{1,1}^\pm, \ldots , z_{n,1}^\pm] \) of Laurent polynomials for invertible elements \(z_i \in Z_{\varepsilon_i} \), \(i = 1, \ldots , n \), where \(\{\varepsilon_1, \ldots , \varepsilon_n\} \) is a basis of \(\mathbb{Z}^n \).

§ 2 Predivision \(\Delta \)-graded Lie algebras

In this section \(F \) is a field of characteristic 0 and \(\Delta \) is a finite irreducible reduced root system. We have defined a \(\Delta \)-graded Lie algebra \(L = \oplus_{\mu \in \Delta \cup \{0\}} L_{\mu} \) over \(F \) in Introduction. We note that the centre \(Z(L) \) of \(L \) is contained in \(L_0 \).

A homomorphism (resp. an isomorphism) \(\varphi : L \longrightarrow L' \) of \(\Delta \)-graded Lie algebras \(L = (L, \mathfrak{g}, \mathfrak{h}) \) and \(L' = (L', \mathfrak{g}', \mathfrak{h}') \), which have the same type \(\Delta \), is called a \(\Delta \)-homomorphism (resp. an \(\Delta \)-isomorphism) if \(\varphi(\mathfrak{g}) = \mathfrak{g}' \) and \(\varphi(\mathfrak{h}) = \mathfrak{h}' \) (cf. Definition 1.20 in [3]). Then one can check that \(\varphi(L_\alpha) \subset L'_\alpha \) for all \(\alpha \in \Delta \), and so \(\varphi(L_0) \subset L'_0 \). In other words, a \(\Delta \)-homomorphism is graded.

Recall that a cover \(\hat{L} = (\hat{L}, \pi) \) of a Lie algebra \(L \) is an epimorphism \(\pi : \hat{L} \longrightarrow L \) of Lie algebras so that \(\hat{L} \) is perfect, i.e., \(\hat{L} = [\hat{L}, \hat{L}] \), and ker \(\pi \) is contained in the centre of \(\hat{L} \). If \(\pi : \hat{L} \longrightarrow L \) is a cover of a \(\Delta \)-graded Lie algebra \(L \), then there exists a \(\Delta \)-grading of \(\hat{L} \) such that \(\pi \) is a \(\Delta \)-homomorphism (see Proposition 1.24 in [3]). However, it is not known whether or not, for \(\Delta \)-graded Lie algebras \(\hat{L} \) and \(L \), any cover \(\hat{L} \longrightarrow L \) is a \(\Delta \)-homomorphism. Thus we define the following:

Definition 2.1. For \(\Delta \)-graded Lie algebras \(\hat{L} \) and \(L \), if \(\pi : \hat{L} \longrightarrow L \) is a cover and a \(\Delta \)-homomorphism, \(\hat{L} = (\hat{L}, \pi) \) is called a \(\Delta \)-cover of \(L \). Also, for \(\Delta \)-graded Lie algebras \(L \) and \(L' \), if there exist a \(\Delta \)-graded Lie algebra \(\hat{L} \) and maps \(\pi : \hat{L} \longrightarrow L \) and \(\pi' : \hat{L} \longrightarrow L' \) such that \((\hat{L}, \pi)\) and \((\hat{L}, \pi')\) are both \(\Delta \)-covers, we say that \(L \) and \(L' \) are \(\Delta \)-isogeneous.
Example 2.2. Let $L = (L, \mathfrak{g}, \mathfrak{h})$ be a Δ-graded Lie algebra with its centre $Z(L)$. Then, for any subspace V of $Z(L)$, $L/V = (L/V, \mathfrak{g} + V, \mathfrak{h} + V)$ is a Δ-graded Lie algebra, and the canonical epimorphism $L \twoheadrightarrow L/V$ is a Δ-cover. In particular, L and L/V are Δ-isogeneous.

We will show that if L and L' are Δ-isogeneous, then $L/Z(L)$ and $L'/Z(L')$ are Δ-isomorphic, i.e., there exists a Δ-isomorphism between them.

Lemma 2.3. Let $\pi : \tilde{L} \twoheadrightarrow L$ be a Δ-cover and $c : L \twoheadrightarrow L/Z(L)$ the canonical epimorphism. Then we have $Z(\tilde{L}) = \pi^{-1}(Z(L))$, and hence $\ker c \circ \pi = Z(\tilde{L})$.

Proof. It is clear that $Z(\tilde{L}) \subset \pi^{-1}(Z(L))$. For the other inclusion, let $x \in \pi^{-1}(Z(L))$. Then $x \in \tilde{L}_0$, and so for any $\alpha \in \Delta$, one has $[x, \tilde{L}_\alpha] \subset \tilde{L}_\alpha$. On the other hand, we have $[x, \tilde{L}_\alpha] \subset \ker \pi \subset Z(L) \subset \tilde{L}_0$. Hence $[x, \tilde{L}_\alpha] = (0)$ and we get $x \in Z(\tilde{L})$. \hfill \qed

Corollary 2.4. Suppose that L and L' are Δ-isogeneous. Then $L/Z(L)$ and $L'/Z(L')$ are Δ-isomorphic.

Proof. By our assumption, there exists a Δ-graded Lie algebra $\tilde{L} = (\tilde{L}, \mathfrak{g}, \mathfrak{h})$ such that $\pi : \tilde{L} = (L, \mathfrak{g}, \mathfrak{h}) \twoheadrightarrow L$ and $\pi' : \tilde{L} \twoheadrightarrow L' = (L', \mathfrak{g}', \mathfrak{h}')$ are both Δ-covers. Let $c : L \twoheadrightarrow L/Z(L)$ and $c' : L' \twoheadrightarrow L'/Z(L')$ be the canonical epimorphisms. Then, by Lemma 2.3, we have $\ker c \circ \pi = Z(\tilde{L}) = \ker c' \circ \pi'$. Hence there exists the induced isomorphism

$$\varphi : L/Z(L) = (L/Z(L), \mathfrak{g} + Z(L), \mathfrak{h} + Z(L)) \twoheadrightarrow L'/Z(L') = (L'/Z(L'), \mathfrak{g}' + Z(L'), \mathfrak{h}' + Z(L'))$$

such that $\varphi \circ c \circ \pi = c' \circ \pi'$. In particular, $\varphi(\mathfrak{g} + Z(L)) = \varphi \circ c \circ \pi(\mathfrak{g}) = c' \circ \pi'(\mathfrak{g}) = \mathfrak{g}' + Z(L')$ and similarly $\varphi(\mathfrak{h} + Z(L)) = \mathfrak{h}' + Z(L')$. Therefore, φ is a Δ-isomorphism. \hfill \qed

Remark 2.5. Any Δ-graded Lie algebra is perfect. Also, any perfect Lie algebra L, we have $Z(L/Z(L)) = (0)$. Indeed, it is enough to show that if $x \in L$ satisfies $[x, L] \subset Z(L)$, then $x \in Z(L)$. Since $[x, L] = [x, [L, L]] \subset [[x, L], L] + [L, [x, L]] = (0)$, we get $x \in Z(L)$.

Now we define new concepts.

Definition 2.6. Let $L = (L, \mathfrak{g}, \mathfrak{h}) = \bigoplus_{\mu \in \Delta \cup \{0\}} L_\mu$ be a Δ-graded Lie algebra over F. Let G be an abelian group. We say that L admits a compatible G-grading or simply L is a ΔG-graded Lie algebra if

$$L = \bigoplus_{g \in G} L^g$$

is a G-graded Lie algebra such that $\mathfrak{g} \subset L^0$.

As a consequence, L^g is a \mathfrak{h}-module for all $g \in G$ via the adjoint action. Hence we have $L^g = \bigoplus_{\mu \in \Delta \cup \{0\}} L^g_\mu$ where $L^g_\mu = L_\mu \cap L^g$ (see [6] Proposition 1, p.92). Therefore, $L_\mu = \bigoplus_{g \in G} L^g_\mu$ and

$$L = \bigoplus_{\mu \in \Delta \cup \{0\}} \bigoplus_{g \in G} L^g_\mu.$$
Remark 2.7. (i) The compatible G-grading is completely determined by L^g_μ for all $\mu \in \Delta$ and $g \in G$ since $L^g_\mu = \sum_{\mu \in \Delta} \sum_{g=h+k} [L^h_\mu, L^k_{-\mu}]$.

(ii) Let $\text{supp} L_\mu := \{g \in G \mid L^g_\mu \neq (0)\}$. Then we have

$$\text{supp} L \subset \bigcup_{\mu \in \Delta} (\text{supp} L_\mu + \text{supp} L_{-\mu}),$$

where $\text{supp} L = \{g \in G \mid L^g \neq (0)\}$ as defined in the beginning of §1.

Let $Z(L)$ be the centre of L and let

$$\{h_\mu \in \mathfrak{h} \mid \mu \in \Delta\}$$

be the set of coroots. Then a ΔG-graded Lie algebra L is called predivision if

(pd) for any $\mu \in \Delta$ and any $L^g_\mu \neq (0)$, there exist $x \in L^g_\mu$ and $y \in L^{-g}_{-\mu}$ such that $[x, y] \equiv h_\mu$ modulo $Z(L)$;

and division if

(d) for any $\mu \in \Delta$ and any $0 \neq x \in L^g_\mu$, there exists $y \in L^{-g}_{-\mu}$ such that $[x, y] \equiv h_\mu$ modulo $Z(L)$.

Note that (d) implies (pd), i.e., ‘division’ \implies ‘predivision’. If $\dim_F L^g_\mu \leq 1$ for all $\mu \in \Delta$ and $g \in G$, then the two concepts, ‘predivision’ and ‘division’, coincide.

Example 2.8. (a) A Δ-graded Lie algebra is a predivision ΔG_0-graded for the trivial group $G_0 = \{0\}$.

(b) The core of an extended affine Lie algebra of reduced type Δ with nullity n is a division $\Delta \Lambda$-graded Lie algebra over \mathbb{C}, where Λ is a free abelian group of rank n. Indeed, it is known that such a core L is a Δ-graded Lie algebra over \mathbb{C} and has a Λ-grading, say

$$L = \bigoplus_{\mu \in \Delta \cup \{0\}} \bigoplus_{\delta \in \Lambda} L_{\mu+\delta},$$

where Λ is defined as the group generated by isotropic roots δ in a vector space, which turns out to be a lattice of rank n, and so $\text{supp} L$ of the Λ-grading of L is equal to Λ (see for the details in [2]). Also, the grading subalgebra \mathfrak{g} is contained in $\bigoplus_{\mu \in \Delta \cup \{0\}} L_{\mu}$ ($L_{\mu} = L_{\mu+0}$) so that the Λ-grading $L = \bigoplus_{\delta \in \Lambda} L^\delta$, where $L^\delta := \bigoplus_{\mu \in \Delta \cup \{0\}} L_{\mu+\delta}$, is compatible. Thus L is a $\Delta \Lambda$-graded Lie algebra.

We recall one of the basic properties of extended affine Lie algebras (see [1]): For any $\mu \in \Delta$, $\delta \in \Lambda$ and any $0 \neq e_{\mu+\delta} \in L_{\mu+\delta}$, there exist some $f_{\mu+\delta} \in L_{-\mu-\delta}$ and $h_{\mu+\delta} \in L_0$ ($= L_{0+0}$) such that $\langle e_{\mu+\delta}, f_{\mu+\delta}, h_{\mu+\delta} \rangle$ is an sl_2-triplet, and in particular $[e_{\mu+\delta}, f_{\mu+\delta}] = h_{\mu+\delta}$.

One can check that $h_\mu - h_{\mu+\delta} \in Z(L)$ for all coroots $h_\mu = h_{\mu+0}$ of \mathfrak{g}. Therefore L is a division $\Delta \Lambda$-graded Lie algebra. We note that $\dim C L_{\mu+\delta} \leq 1$ for all $\mu \in \Delta$ and $\delta \in \Lambda$, which is also one of the basic properties of extended affine Lie algebras.
(c) Let $Z = \bigoplus_{g \in G} Z_g$ be a G-graded commutative associative algebra over F and let $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\mu \in \Delta} \mathfrak{g}_{\mu}$ be a finite dimensional split simple Lie algebra over F of type Δ with the set $\{h_\mu \in \mathfrak{h} \mid \mu \in \Delta\}$ of coroots. Then $L := \mathfrak{g} \otimes_F Z$ is a ΔG-graded Lie algebra. In fact, $L = \bigoplus_{\mu \in \Delta \cup \{0\}} (\mathfrak{g}_\mu \otimes_F Z)$ for $\mathfrak{g}_0 = \mathfrak{h}$ is a Δ-graded Lie algebra with grading subalgebra $\mathfrak{g} = \mathfrak{g} \otimes 1$. We put $L^g := \mathfrak{g} \otimes_F Z_g$ for all $g \in G$. Then $\text{supp} L = \text{supp} Z$ and $L = \bigoplus_{g \in G} L^g$ is a G-graded Lie algebra with $\mathfrak{g} \subset L^0$, i.e., compatible. Hence L is a ΔG-graded Lie algebra. We call the compatible G-grading of $L = \mathfrak{g} \otimes_F Z$ the natural compatible G-grading from the G-grading of Z.

Suppose that $Z = \bigoplus_{g \in G} K\overline{g}$ is a crossed product commutative algebra over F. Let $e \in \mathfrak{g}_\mu$ and $f \in \mathfrak{g}_{-\mu}$ such that $[e, f] = h_\mu$. Then $e \otimes \overline{g} \in L^{\mu}$, $f \otimes \overline{g}^{-1} \in L^{-\mu}$ and

$$[e \otimes \overline{g}, f \otimes \overline{g}^{-1}] = [e, f] \otimes \overline{g} \overline{g}^{-1} = h_\mu \otimes 1 = h_\mu$$

for all $g \in G$, and so L is a predivision ΔG-graded Lie algebra over F. Note that $Z(L) = (0)$. Also, if K is a field, then L is a division ΔG-graded Lie algebra.

Suppose that $\overline{L} = (\overline{L}, \overline{\mathfrak{g}}, \overline{\mathfrak{h}}) = \bigoplus_{g \in G} \overline{L}^g$ is a ΔG-graded Lie algebra and that $\pi : \overline{L} \longrightarrow L$ is a cover of a Lie algebra L. Then $L = \bigl(L, \pi(\mathfrak{g}), \pi(\mathfrak{h}) \bigr)$ becomes a Δ-graded Lie algebra so that (\overline{L}, π) is a Δ-cover of L. Moreover, if $\text{ker} \pi$ is G-graded, then L admits the induced compatible G-grading $L = \bigoplus_{g \in G} \pi(\overline{L}^g)$. In particular, the centre $Z(\overline{L})$ is always G-graded, $\overline{L}/Z(\overline{L})$ is a ΔG-graded Lie algebra.

Definition 2.9. Let P be a unital associative algebra over F and let $\mathfrak{gl}_{l+1}(P)$ be the Lie algebra consisting of all $(l + 1) \times (l + 1)$ matrices over P under the commutator product $(l \geq 1)$. Let $e_{ij}(a) \in \mathfrak{gl}_{l+1}(P)$ whose (i, j)-entry is a and the other entries are all 0. We define $sl_{l+1}(P)$ as the subalgebra of $\mathfrak{gl}_{l+1}(P)$ generated by $e_{ij}(a)$ for all $a \in P$ and $1 \leq i \not= j \leq l + 1$. The centre $Z(sl_{l+1}(P))$ of $sl_{l+1}(P)$ consists of $\sum_{i=1}^{l+1} e_{ii}(a)$ for $a \in [P, P] \cap Z(P)$ where $[P, P]$ is the span of all commutators in P and $Z(P)$ is the centre of P. We define $psl_{l+1}(P)$ as $sl_{l+1}(P)/Z(sl_{l+1}(P))$.

It is well-known that $sl_{l+1}(P)$ is an A_l-graded Lie algebra (see [3]): Denote $\{e_{ij}(b) \mid b \in B\}$ by $e_{ij}(B)$ for any subset $B \subset P$. Let

$$sl_{l+1}(F) = \mathfrak{h} \oplus \bigoplus_{1 \leq i \not= j \leq l+1} e_{ij}(F1) \subset sl_{l+1}(P),$$

be the split simple Lie algebra over F of type A_l where \mathfrak{h} is the Cartan subalgebra consisting of diagonal matrices of $sl_{l+1}(F)$. Let $\varepsilon_i : \mathfrak{h} \longrightarrow F$ be the projection onto the (i, j)-entry for $i = 1, \ldots, l + 1$, and $\Delta := \{\varepsilon_i - \varepsilon_j \mid i \not= j\}$, which is a root system of type A_l. Then

$$sl_{l+1}(P) = L_0 \oplus \bigg(\bigoplus_{\varepsilon_i - \varepsilon_j \in \Delta} e_{ij}(P) \bigg).$$
where \(L_0 = \sum_{\varepsilon_i - \varepsilon_j \in \Delta} [e_{ij}(P), e_{ji}(P)] \), is an \(A_l \)-graded Lie algebra with grading subalgebra \(sl_{l+1}(F) \). Let \(Z := Z(sl_{l+1}(P)) \). We can and will identify \(sl_{l+1}(F) + Z \) with \(sl_{l+1}(F) \) and \(e_{ij}(P) + Z \) with \(e_{ij}(P) \), and so

\[
psl_{l+1}(P) = (L_0/Z) \oplus \left(\bigoplus_{\varepsilon_i - \varepsilon_j \in \Delta} e_{ij}(P) \right)
\]

is also an \(A_l \)-graded Lie algebra with the same grading subalgebra \(sl_{l+1}(F) \).

Example 2.10. Let \(sl_{l+1}(P) \) be the \(A_l \)-graded Lie algebra over \(F \) with grading subalgebra \(sl_{l+1}(F) \) described above. If \(P = \bigoplus_{g \in G} P_g \) is a \(G \)-graded algebra, then \(sl_{l+1}(P) \) admits a compatible \(G \)-grading. Indeed, let

\[
sl_{l+1}(P)^g := \left\{ \sum_{i,j} e_{ij}(P_g) \mid \sum_{i,j} e_{ij}(P_g) \subset sl_{l+1}(P) \right\}.
\]

Then \(sl_{l+1}(P) = \bigoplus_{g \in G} sl_{l+1}(P)^g \), and it is a \(G \)-graded Lie algebra with \(sl_{l+1}(F) \subset L^0 \), i.e., compatible. Note that \(\text{supp} \left(sl_{l+1}(P) \right) \supset \text{supp} \, P \), and so \(\langle \text{supp} \left(sl_{l+1}(P) \right) \rangle = G \). Also, \(psl_{l+1}(P) \) admits the induced compatible \(G \)-grading. We call the compatible \(G \)-grading of \(sl_{l+1}(P) \) or \(psl_{l+1}(P) \), i.e.,

\[
sl_{l+1}(P)^g_{\varepsilon_i - \varepsilon_j} = e_{ij}(P_g) = psl_{l+1}(P)^g_{\varepsilon_i - \varepsilon_j} \quad \text{for all } \varepsilon_i - \varepsilon_j \in \Delta \text{ and } g \in G,
\]

the natural compatible \(G \)-grading from the \(G \)-grading of \(P \).

If \(P = \bigoplus_{g \in G} Rg \) is a crossed product algebra, then

\[
[e_{ij}(\overline{g}), e_{ji}(\overline{g}^{-1})] = e_{ii}(1) - e_{jj}(1) = [e_{ij}(1), e_{ji}(1)] = h_{\varepsilon_i - \varepsilon_j}
\]

for all \(g \in G \). Thus \(sl_{l+1}(P) \) and \(psl_{l+1}(P) \) with the natural compatible \(G \)-gradings from the \(G \)-grading of \(P \) are predvision \(A_l \)-graded Lie algebras over \(F \). Also, if \(R \) is a division algebra, then the \(A_l \)-graded Lie algebras \(sl_{l+1}(P) \) and \(psl_{l+1}(P) \) are division.

For any associative algebra \(P \), one can define a new product, \(p \cdot q = \frac{1}{2}(pq + qp) \) for all \(p, q \in P \). Then \(P^+ : = (P, \cdot) \) is a Jordan algebra.

Lemma 2.11. (i) Suppose that the \(A_l \)-graded Lie algebra \(psl_{l+1}(P) \) described above admits a predvision (resp. division) compatible \(G \)-grading. Then if \(l \geq 2 \), \(P \) is a predvision (resp. division) \(G \)-graded algebra, and the \(G \)-grading of \(psl_{l+1}(P) \) is natural from the \(G \)-grading of \(P \).

If \(l = 1 \), then \(P^+ \) is a predvision (resp. division) \(G \)-graded Jordan algebra.

(ii) Suppose that the \(\Delta \)-graded Lie algebra \(g \otimes_F Z \) described in Example 2.8(c) admits a predvision (resp. division) compatible \(G \)-grading. Then \(Z \) is a predvision
(resp. division) G-graded algebra, and the G-grading of $g \otimes_F Z$ is natural from the G-grading of Z.

Proof. (i): By our assumption, $psl_{l+1}(P) = psl_{l+1}(P)_0 \oplus (\oplus_{\varepsilon_i-\varepsilon_j \in \Delta} e_{ij}(P))$ admits a predivision (resp. division) compatible G-grading, say

$$psl_{l+1}(P) = psl_{l+1}(P)_0 \oplus (\oplus_{\varepsilon_i-\varepsilon_j \in \Delta} \oplus g \in G e_{ij}(P)^g).$$

Let

$$P'_{ij} := \{ p \in P \mid e_{ij}(p) \in e_{ij}(P)^g \}.$$

We claim that $P'_{ij} = P_{g}^r$ for all $\varepsilon_r - \varepsilon_s \in \Delta$. If $l = 1$, then $\Delta = \{ \varepsilon_1 - \varepsilon_2, \varepsilon_2 - \varepsilon_1 \}$. For $p \in P^1_{g}$, we have

$$[[e_{12}(p), e_{21}(1)], e_{21}(1)] = -2e_{21}(p) \in e_{21}(P)^g$$

since $e_{21}(1) \in e_{21}(P)^0$. Thus $p \in P^1_{g}$ and we get $P^1_{g} \subset P^1_{g}$. The other inclusion can be obtained by the similar way. Hence the claim holds for $l = 1$.

In general, it is well-known that for any distinct $\alpha, \beta \in \Delta = A_l$, $l \geq 2$, D or E, there exists a sequence $\alpha_1, \ldots, \alpha_t \in \Delta$ so that $\alpha_1 = \alpha$, $\alpha_t = \beta$ and $\alpha_{i+1} - \alpha_i \in \Delta$ for $i = 1, \ldots, t - 1$.

Now, for $l \geq 2$, it is enough to show that $P'_{ij} \subset P_{g}^r$. Let $p \in P'_{ij}$. We apply the above for $\alpha = \varepsilon_i - \varepsilon_j$ and $\beta = \varepsilon_r - \varepsilon_s$. For $p \in P'_{ij}$,

$$\cdots[[e_{ij}(p), e_{\alpha_1}(1)], e_{\alpha_2}(1)], \ldots, e_{\alpha_t}(1)] = \pm e_{\alpha_t}(p) = \pm e_{r_s}(p) \in e_{r_s}(P)^g$$

since $e_{\alpha_i}(1) \in L_{\alpha_i}$. Hence $p \in P_{g}^r$ and our claim is settled.

Thus one can write $P_g = P_{g}^r$ and $P = \oplus g \in G P_g$. Since, for $p \in P_g$ and $q \in P_h$ ($g, h \in G$),

$$[e_{ij}(p), e_{jk}(q)] = e_{ik}(pq) \in e_{ik}(P)^{g+h} \quad \text{if } l \geq 2 \text{ and } i \neq k,$$

$$[e_{12}(p), e_{21}(1), e_{12}(q)] = e_{12}(pq + qp) \in e_{12}(P)^{g+h} \quad \text{if } l = 1,$$

we have $pq \in P_{g+h}$ if $l \geq 2$ and $pq + qp \in P_{g+h}$ if $l = 1$. Also, one can see that $\text{supp} L \subset \text{supp} P + \text{supp} P$ (see Remark 2.7), and so $(\text{supp} P) \supset (\text{supp} L) = G$, whence $(\text{supp} P) = G$. Therefore, P is a G-graded algebra if $l \geq 2$ and P^+ is a G-graded Jordan algebra if $l = 1$. Note that $e_{ij}(P)^g = e_{ij}(P_g)$ for all $\varepsilon_i - \varepsilon_j \in \Delta$ and $g \in G$, and hence the G-grading for $l \geq 2$ is natural (see Remark 2.7).

By (pd), for any $\varepsilon_i - \varepsilon_j \in \Delta$ and any $g \in \text{supp} P$, there exist $e_{ij}(p) \in e_{ij}(P_g)$ and $e_{ji}(q) \in e_{jk}(P_{-g})$ such that

$$[e_{ij}(p), e_{ji}(q)] = [e_{ij}(1), e_{ji}(1)] + z \quad \text{for some } z \in Z(sl_{l+1}(P)).$$

Hence $e_{ii}(pq) - e_{jj}(qp) = e_{ii}(1) - e_{jj}(1) + \sum_{k=1}^{l+1} e_{kk}(a)$ for some $a \in P$, and so $a = 0$ and $pq = qp = 1$, i.e., p is invertible. Also, p is invertible in $P \iff p$ is invertible in P^+. Therefore, $P = \oplus g \in G P_g$ is a predivision G-graded associatative algebra if $l \geq 2$, and $P^+ = \oplus g \in G P_g$ is a predivision G-graded Jordan algebra if $l = 1$. The statement for ‘division’ can be shown in the same manner.

(ii): Let $Z_g := \{ z \in Z \mid g \otimes z \subset (g \otimes_P Z)^g \}$. Then $Z = \oplus g \in G Z_g$ becomes a G-graded algebra. The rest can be shown in the same manner. □
Definition 2.12. For Δ-graded Lie algebras $\tilde{L} = \oplus_{g \in G} \tilde{L}^g$ and $L = \oplus_{g \in G} L^g$, if Δ-cover $\pi : \tilde{L} \rightarrow L$ satisfies $L^g = \pi(\tilde{L}^g)$ for all $g \in G$, then $\tilde{L} = (\tilde{L}, \pi)$ is called a ΔG-cover of L. Also, for Δ-graded Lie algebras L and L', if there exist a Δ-graded Lie algebra \tilde{L} and maps $\pi : \tilde{L} \rightarrow L$ and $\pi' : \tilde{L} \rightarrow L'$ such that (\tilde{L}, π) and (\tilde{L}, π') are both Δ-covers, we say that L and L' are Δ-isogeneous.

It is clear that if \tilde{L} is a Δ-cover of L, then

$$\tilde{L} \text{ is is predivision (resp. division)} \iff L \text{ is predivision (resp. division).}$$

Also, by Corollary 2.4, if L and L' are Δ-isogeneous, then $L/Z(L)$ and $L'/Z(L')$ are Δ-isomorphic, i.e., there exists a Δ-isomorphism which is also G-graded between them. In particular, $\tilde{L}/Z(\tilde{L})$ and $L/Z(L)$ above are Δ-isomorphic.

Proposition 2.13. (i) Let $l \geq 3$. Then a predivision (resp. division) A_l-G-graded Lie algebra L over F is an A_l-G-cover of $\text{psl}_{l+1}(P)$ admitting the natural compatible G-grading from the G-grading of a predivision (resp. division) G-graded associative algebra P over F. Hence $L/Z(L)$ and $\text{psl}_{l+1}(P)$ are Δ-isomorphic.

(ii) Let $\Delta = D$ or E and let \mathfrak{g} be a finite dimensional split simple Lie algebra L over F of type Δ. Then a predivision (resp. division) Δ-G-graded Lie algebra over F is a Δ-cover of $\mathfrak{g} \otimes_F Z$ admitting the natural compatible G-grading from the G-grading of a predivision (resp. division) G-graded commutative associative algebra Z over F. Hence $L/Z(L)$ and $\mathfrak{g} \otimes_F Z$ are Δ-isomorphic.

Proof. For (i), let L be a predivision A_l-G-graded Lie algebra over F. Berman and Moody showed in [3] that L is A_l-isogeneous to $(\text{sl}_{l+1}(P), \text{sl}_{l+1}(F))$ (the Steinberg Lie algebra $\text{st}_{l+1}(P)$ serves as an A_l-cover of L and $\text{sl}_{l+1}(F)$). Hence, by Corollary 2.4, $L/Z(L)$ is A_l-isomorphic to $\text{psl}_{l+1}(P)$. Thus $(\text{psl}_{l+1}(P), \text{sl}_{l+1}(F))$ admits a compatible G-grading via the A_l-isomorphism from the compatible G-grading of $L/Z(L)$ induced by the compatible G-grading of L. Therefore, the statement follows from Lemma 2.11.

(ii): Let L be a predivision Δ-G-graded Lie algebra over F. Berman and Moody showed in [3] that L is a Δ-cover of $\mathfrak{g} \otimes_F Z$. Thus the statement follows from Lemma 2.11.

In this paper we classify predivision ΔZ^n-graded Lie algebras for $\Delta = A_l$, $l \geq 3$, D or E, up to central extensions. By Proposition 2.13, our work is to classify crossed product algebras $R \ast Z^n$. We determine such algebras as a generalization of quantum tori. Namely, let $\mathfrak{q} = (q_{ij})$ be an $n \times n$ matrix over F such that

$$q_{ii} = 1 \text{ and } q_{ij}^{-1} = q_{ij}.$$

The quantum torus $F_\mathfrak{q} = F_\mathfrak{q}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ determined by \mathfrak{q} is defined as the associative algebra over F with $2n$ generators $t_1^{\pm 1}, \ldots, t_n^{\pm 1}$, and relations

$$t_i t_i^{-1} = t_i^{-1} t_i = 1 \text{ and } t_j t_i = q_{ij} t_i t_j$$
for all \(1 \leq i, j \leq n\). Quantum tori are characterized as predivision \(\mathbb{Z}^n\)-graded associative algebras whose homogeneous spaces are all 1-dimensional (see [4]). Note that \(F_q\) is commutative \(\iff q = 1\) whose entries are all 1, i.e., \(F_1 = F[\{t_1, \ldots, t_n\}]\) is the algebra of Laurent polynomials. Also, a quantum torus is a twisted group algebra \(F^\tau[\mathbb{Z}^n]\).

\[\text{§ 3 Classification of } R \ast \mathbb{Z}^n \]

Throughout this section \(F\) is an arbitrary field and \(G\) is an arbitrary group. For a \(G\)-graded algebra \(S = \bigoplus_{g \in G} S_g \) over \(F\) in general, we denote by \(\text{GrAut}_F(S)\) the group of graded automorphisms of \(S\), i.e.,

\[\text{GrAut}_F(S) := \{ \sigma \in \text{Aut}_F(S) \mid \sigma(S_g) = S_g \text{ for all } g \in G \}. \]

Lemma 3.1. Let \((R \ast G) \ast M = (R \ast G, M, \eta, \xi)\) be a crossed product algebra over \(F\) and \((R \ast G) \ast M = (R \ast G, M, \eta, \xi)\) a crossed product algebra over \(F\) for a group \(M\), an action \(\eta\) and a twisting \(\xi\). Suppose that \(\eta(M) \subset \text{GrAut}_F(R \ast G)\) and that \(\xi(m, l) \in U(R)\) for all \(m, l \in M\). Then, \((R \ast G) \ast M\) is a crossed product algebra \(R \ast (G \times M) = (R, (G \times M), \sigma', \tau')\) over \(F\) for some action \(\sigma'\) and twisting \(\tau'\).

Proof. We have

\[(R \ast G) \ast M = \bigoplus_{m \in M} (R \ast G) \overline{m} = \bigoplus_{m \in M} \left(\bigoplus_{g \in G} R \overline{g} \right) \overline{m} = \bigoplus_{(g, m) \in G \times M} R \overline{g m} \]
as free \(R\)-modules. We define \(\eta_m = \eta(m) \mid R_1\) an \(F\)-automorphism of \(R\) for every \(m \in M\). Also for \(h \in G, \overline{h}\) is a unit in \((R \ast G)\) (see 1.6). Since \(\eta_m\) is a graded automorphism of \(R \ast G\) by our first assumption, \(\eta_m(\overline{h}) = d_{m,h} \overline{h}\) for some \(d_{m,h} \in U(R)\). Therefore, for \(r \overline{g m} \in R \overline{g m}\) and \(s \overline{h l} \in R \overline{h l}\), we have

\[(r \overline{g m})(s \overline{h l}) = r \overline{g \eta_m(s) \eta_m(\overline{h}) \xi(m,l) \overline{m l}} \]

\[= r \overline{g \eta_m(s) \eta_m(\overline{h}) \xi(m,l) \overline{m l}} \]

\[= r \overline{g \eta_m(s) \eta_m(\overline{h}) \xi(m,l) \overline{m l}} \]

\[= r \overline{g \eta_m(s) \eta_m(\overline{h}) \xi(m,l) \overline{m l}} \]

\[= r \overline{g \eta_m(s) \eta_m(\overline{h}) \xi(m,l) \overline{m l}} \]

Thus we have the action

\[\sigma' : G \times M \longrightarrow \text{Aut}_F R \text{ by } \sigma'_{(g, m)} = \sigma_g \eta_m, \]

and the twisting \(\tau' : (G \times M) \times (G \times M) \longrightarrow U(R)\) by

\[\tau'(\langle g, m \rangle, \langle h, l \rangle) = \sigma_g(d_{m,h}) \sigma_g(\xi(m,l)) \tau(g, h). \]
Since the crossed product algebra \((R \ast G) \ast M\) is associative, we get
\[
(R \ast G) \ast M = R \ast (G \times M) = (R, G \times M, \sigma', \tau').
\]

A triple \((R, \varphi, q)\) where \(R\) is a unital associative algebra over \(F\),
\[
\varphi = (\varphi_1, \ldots, \varphi_n)
\]
is an \(n\)-tuple of \(F\)-automorphisms \(\varphi_i\) of \(R\), and \(q = (q_{ij})\) is an \(n \times n\) matrix over \(R\) satisfying, for all \(1 \leq i < j < k \leq n\),
\begin{align*}
(G1) & \quad q_{ii} = 1 \quad \text{and} \quad q_{ji}^{-1} = q_{ij}, \\
(G2) & \quad \varphi_j \varphi_i = I(q_{ij}) \varphi_i \varphi_j, \\
(G3) & \quad \varphi_k(q_{ij}) = q_{jk} \varphi_j(q_{kk}) \varphi_i(q_{kj}) q_{ki},
\end{align*}
is called a \(\mathbb{Z}^n\)-grading triple, and a division \(\mathbb{Z}^n\)-grading triple if \(R\) is a division algebra.

For a \(\mathbb{Z}^n\)-grading triple, we introduce several notations and prove some identities.

Notations.
\begin{align*}
(N1) & \quad \varepsilon_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{Z}^n, \\
& \quad \text{i.e., the } i\text{-th coordinate is 1 and the others are 0.} \\
(N2) & \quad q_{ij}^{(m)} := \begin{cases} q_{ij} \varphi_i(q_{ij}) \varphi_i^2(q_{ij}) \cdots \varphi_i^{m-1}(q_{ij}) = \prod_{l=0}^{m-1} \varphi_i^l(q_{ij}), & \text{if } m > 0 \\ 1, & \text{if } m = 0 \\ \varphi_i^{-1}(q_{ji}) \varphi_i^{-2}(q_{ji}) \cdots \varphi_i^{m}(q_{ji}) = \prod_{l=1}^{m} \varphi_i^l(q_{ji}), & \text{if } m < 0, \end{cases} \\
& \quad \text{and } q_{ij}^{-(m)} := (q_{ij}^{(m)})^{-1}. \\
(N3) & \quad \varphi^{(\alpha)}_k := \begin{cases} \text{id}, & \text{if } k = 0, 1 \\
\varphi_1^{\alpha_1} \cdots \varphi_{k-1}^{\alpha_{k-1}}, & \text{if } k > 1, \end{cases} \\
& \quad \text{and } \varphi^{\alpha} := \varphi_1^{\alpha_1} \cdots \varphi_n^{\alpha_n}. \\
(N4) & \quad q_{\varepsilon_j, \alpha} := \prod_{i=1}^{j-1} \varphi^{(\alpha)^i}(q_{ij}^{(\alpha_i)^i}) \quad \text{with } \alpha_0 = q_{0j} = 1. \\
(N5) & \quad q_{\varepsilon_j, \alpha}^{(m)} := \begin{cases} \prod_{l=m-1}^{0} \varphi_j^{l}(q_{\varepsilon_j, \alpha}), & \text{if } m > 0 \\ 1, & \text{if } m = 0 \\ \prod_{l=m}^{-1} \varphi_j^{l}(q_{\varepsilon_j, \alpha}), & \text{if } m < 0. \end{cases} \\
(N6) & \quad q_{\alpha, \beta} := \prod_{j=n}^{1} \varphi_j^{(\alpha_j)}(q_{\varepsilon_j, \beta}).
\end{align*}
Lemma 3.2. For \(m \in \mathbb{Z} \) and \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n \), we have

\[
\begin{align*}
(1) & \quad \varphi_i^{-m}(q_{ij}^{(-m)}) = q_{ij}^{(-m)}, \\
(2) & \quad \varphi_j \varphi_i^m = I(q_{ij}^{(m)}) \varphi_i^m \varphi_j, \\
(3) & \quad \varphi_j \varphi(\alpha)_i = \begin{cases} \\
I(\prod_{l=1}^{i-1} \varphi(\alpha)_i(q_{ij}^{(\alpha_l)})) \varphi(\alpha)_i \varphi_j & \text{for } j \geq i, \\
I(\prod_{l=1}^{j-1} \varphi(\alpha)_i(q_{ij}^{(\alpha_l)})) \varphi(\alpha + \epsilon_i) & \text{for } j < i,
\end{cases} \\
(4) & \quad q_{ij}^{(m+1)} = q_{ij} \varphi_i(q_{ij}^{(m)}) \text{ and } q_{ij}^{(-m+1)} = \varphi_i(q_{ij}^{(-m)}) q_{ji}, \\
(5) & \quad \varphi_k(q_{ij}^{(m)}) = q_{jk} \varphi_j(q_{ik}^{(m)}) \varphi_i(q_{kj}) q_{ik}^{(-m)}.
\end{align*}
\]

Proof. For (1), we have from (N2),

\[
q_{ij}^{(-m)} = \begin{cases} \\
\varphi_i^{-1}(q_{ji}) \cdots \varphi_i(q_{ji}) q_{ji} = \prod_{l=m-1}^{1} \varphi_i(q_{ji}), & \text{if } m > 0 \\
1, & \text{if } m = 0 \\
\varphi_i^m(q_{ij}) \cdots \varphi_i^{-2}(q_{ij}) \varphi_i^{-1}(q_{ij}) = \prod_{l=m}^{1} \varphi_i(q_{ij}), & \text{if } m < 0.
\end{cases}
\]

So we get

\[
\varphi_i^{-m}(q_{ij}^{(-m)}) = \begin{cases} \\
\varphi_i^{-1}(q_{ji}) \cdots \varphi_i^{-m}(q_{ji}) = \prod_{l=-1}^{-m} \varphi_i(q_{ji}), & \text{if } m > 0 \\
1, & \text{if } m = 0 \\
q_{ij} \varphi_i(q_{ij}) \cdots \varphi_i^{-m-1}(q_{ij}) = \prod_{l=1}^{-m-1} \varphi_i(q_{ij}), & \text{if } m < 0,
\end{cases}
\]

which is exactly \(q_{ij}^{(-m)} \).

For (2), the case \(m = 0 \) is clear. Assume that \(m > 0 \). Put \(q := q_{ij} \) for simplicity. Then we have

\[
\begin{align*}
\varphi_j \varphi_i^m & = \varphi_j \varphi_i^{m-1} \varphi_i \\
& = I(q^{(m-1)}) \varphi_i^{m-1} \varphi_j \varphi_i & \text{by induction on } m \\
& = I(q^{(m-1)}) \varphi_i^{m-1} I(q) \varphi_i \varphi_j & \text{by (G2)} \\
& = I(q^{(m-1)}) I(\varphi_i^{m-1}(q)) \varphi_i^m \varphi_j \\
& = I(q^{(m)}) \varphi_i^m \varphi_j.
\end{align*}
\]

Also, \((\varphi_j \varphi_i^m)^{-1} = (I(q_{ij}^{(m)}) \varphi_i^m \varphi_j)^{-1}\) for \(m > 0 \), and so

\[
\varphi_i^{-m} \varphi_j^{-1} = \varphi_j^{-1} \varphi_i^{-m} (I(q_{ij}^{(-m)}) \varphi_i^{-m} \varphi_j)^{-1} \varphi_i^{-m} \varphi_j = \varphi_j^{-1} I(q_{ij}^{(-m)}) \varphi_i^{-m},
\]

by (1). Hence we get \(\varphi_j \varphi_i^{-m} = I(q_{ij}^{(-m)}) \varphi_i^{-m} \varphi_j \), and (2) holds for all \(m \in \mathbb{Z} \).
For (3), when \(j \geq i \), using (2), we have
\[
\varphi_j \varphi_i^{(\alpha)} = \varphi_j \varphi_1^{\alpha_1} \cdots \varphi_i^{\alpha_{i-1}} \\
= I(q_{ij}^{(\alpha_1)}) \varphi_1^{\alpha_1} \varphi_j \varphi_2^{\alpha_2} \cdots \varphi_i^{\alpha_{i-1}} \\
= I(q_{ij}^{(\alpha_1)}) \varphi_1^{\alpha_1} I(q_{2j}^{(\alpha_2)}) \varphi_j \varphi_2^{\alpha_2} \varphi_j \varphi_3^{\alpha_3} \cdots \varphi_i^{\alpha_{i-1}} \\
\cdots \\
= I(q_{ij}^{(\alpha_1)}) \varphi_1^{\alpha_1} \varphi_j \varphi_2^{\alpha_2} I(q_{3j}^{(\alpha_3)}) \varphi_j \varphi_3^{\alpha_3} \cdots I(q_{i-1,j}^{(\alpha_{i-1})}) \varphi_j \varphi_i^{\alpha_{i-1}} \\
= I(\prod_{l=1}^{i-1} \varphi^{(\alpha_l)}(q_{lj}^{(\alpha_l)})) \varphi_j \varphi_i^{(\alpha_{i-1})}. \quad \text{(Note \(\varphi^{(\alpha)} = \text{id} \) when \(i = 1 \)}
\]

When \(j < i \), we have
\[
\varphi_j \varphi_i^{(\alpha)} = \varphi_j \varphi_1^{\alpha_1} \cdots \varphi_i^{\alpha_{i-1}} \\
= I(q_{ij}^{(\alpha_1)}) \varphi_1^{\alpha_1} \varphi_j \varphi_2^{\alpha_2} \cdots \varphi_j \varphi_i^{\alpha_{i-1}} \\
\cdots \\
= I(q_{ij}^{(\alpha_1)}) \varphi_1^{\alpha_1} \cdots I(q_{j-1,j}^{(\alpha_{j-1})}) \varphi_{j-1}^{\alpha_{j-1}} I(q_{jj}^{(\alpha_j)}) \varphi_j^{\alpha_j} \varphi_j \cdots \varphi_i^{\alpha_{i-1}} \\
= I(q_{ij}^{(\alpha_1)}) \varphi_1^{\alpha_1} \cdots I(q_{j-1,j}^{(\alpha_{j-1})}) \varphi_{j-1}^{\alpha_{j-1}} \varphi_j^{\alpha_j} \cdots \varphi_i^{\alpha_{i-1}} \\
= I(\prod_{l=1}^{j-1} \varphi^{(\alpha_l)}(q_{lj}^{(\alpha_l)})) \varphi_j \varphi_i^{(\alpha_{i-1})+\epsilon_j}). \quad \text{(Note \(\varphi^{(\alpha)} = \text{id} \) when \(j = 1 \)}
\]

For the first formula of (4), the case \(m = 0 \) is clear. We put \(q := q_{ij} \), \(p := q^{-1} \) and \(\varphi := \varphi_i \) for simplicity. For \(m > 0 \), we have
\[
q^{(m+1)} = q \varphi(q) \varphi^2(q) \cdots \varphi^m(q) \\
= q \varphi(q) \varphi(q) \cdots \varphi(q) = q \varphi(q^{(m)}).
\]

For \(m = -1 \), we have \(q^{(-1+1)} = 1 \), while \(q \varphi(q^{(-1)}) = q \varphi^{-1}(p) = 1 \). For \(m < -1 \), we have
\[
q^{(m+1)} = \varphi^{-1}(p) \varphi^{-2}(p) \cdots \varphi^{m+1}(p) \\
= q \varphi^{-1}(p) \varphi^{-2}(p) \cdots \varphi^{m+1}(p) \\
= q \varphi(q^{-1}(p) \varphi^{-2}(p) \cdots \varphi^{m}(p)) = q \varphi(q^{(m)}).
\]

The second formula follows from the first since \(q_{ij}^{-(m+1)} = (q_{ij}^{(m+1)})^{-1} \).
For (5), the case \(m = 0 \) is clear. Assume that \(m > 0 \). Then we have

\[
\varphi_k(q_{ij}^{(m)}) = \varphi_k(q_{ij})\varphi_k(q_{ij}^{(m-1)}) \quad \text{by (3)}
\]

\[
= \varphi_k(q_{ij})q_{ik}\varphi_i(q_{ij}^{(m-1)})q_{ki} \quad \text{by (G2)}
\]

\[
= q_{jk}\varphi_j(q_{ik})q_{ij}\varphi_j(q_{kj}^{(m-1)})q_{ki}q_{ik}\varphi_i(q_{jk}^{(m-1)})q_{ij}^{(m-1)}(q_{kj})(q_{ik}^{-(m-1)})q_{ki}
\]

by (G3) and induction on \(m \)

\[
= q_{jk}\varphi_j(q_{ik})q_{ij}\varphi_j(q_{ik}^{(m-1)})\varphi_i(q_{ij}^{(m-1)})\varphi_i(q_{kj}^{-(m-1)})q_{ki}
\]

\[
= q_{jk}\varphi_j(q_{ik})q_{ij}\varphi_i(q_{ik}^{(m-1)})\varphi_i(q_{kj})\varphi_i(q_{ik}^{-(m)})
\]

by (G2) and (3)

\[
= q_{jk}\varphi_j(q_{ik})q_{ij}\varphi_i(q_{ik}^{(m-1)})\varphi_i(q_{kj})\varphi_i(q_{ik}^{-(m)}) \quad \text{by (3)}
\]

Also, one has \((\varphi_k(q_{ij}^{(m)}))^{-1} = q_{jk}\varphi_j(q_{ik}^{(m)})q_{ij}^{(m)}\varphi_i(q_{kj})q_{ik}^{-(m)} \) for \(m > 0 \), and so

\[
\varphi_k(q_{ij}^{-(m)}) = q_{ik}^{(m)}\varphi_i(q_{kj})q_{ij}^{-(m)}\varphi_j(q_{ik}^{-(m)})q_{kj}
\]

Applying \(\varphi_i^{-(m)} \) in both hands, we get

\[
\varphi_i^{-(m)}\varphi_k(q_{ij}^{-(m)}) = \varphi_i^{-(m)}q_{ik}^{(m)}\varphi_i(q_{kj})\varphi_j(q_{ik}^{-(m)})q_{kj}
\]

\[
= \varphi_i^{-(m)}q_{ik}^{(m)}q_{kj}q_{ij}^{-(m)}\varphi_i^{-(m)}q_{ik}^{-(m)}q_{kj}^{-(m)}
\]

by (1).

Then, by (1) and (2), we have

\[
I(q_{ik}^{-(m)})\varphi_k(q_{ij}^{-(m)}) = q_{ik}^{-(m)}q_{jk}q_{ij}^{-(m)}I(q_{ij}^{-(m)})\varphi_j(q_{ik}^{-(m)})\varphi_i^{-(m)}(q_{kj})
\]

and we obtain

\[
\varphi_k(q_{ij}^{-(m)}) = q_{jk}\varphi_j(q_{ik}^{-(m)})q_{ij}^{-(m)}\varphi_i^{-(m)}(q_{kj})q_{ik}^{-(m)} \quad \text{for } m > 0.
\]

Hence, (5) holds for all \(m \in \mathbb{Z} \). □

Now we are ready to state our theorem.

Theorem 3.3. Let \((R, \varphi, q)\) be a \(\mathbb{Z}^n \)-grading triple and let \(R_{\varphi, q} := \oplus_{\alpha \in \mathbb{Z}^n} R_{t_{\alpha}} \) be a free left \(R \)-module with basis \(\{t_{\alpha} \mid \alpha \in \mathbb{Z}^n\} \). Then there exists a unique associative multiplication on \(R_{\varphi, q} \) such that, for \(t_i := t_{\alpha_i}, i = 1, \ldots, n, \alpha = (\alpha_1, \ldots, \alpha_n) \) and \(r \in R \),

\[
t_{\alpha} = t_{\alpha_1}^{\alpha_1} \cdots t_{\alpha_n}^{\alpha_n}, \quad t_{i}t_{i}^{-1} = t_{i}^{-1}t_{i} = 1, \quad t_{i}r = \varphi_i(r)t_{i} \quad \text{and} \quad t_{j}t_{i} = q_{ij}t_{i}t_{j}.
\]

(3.4)
Moreover, for $r t \alpha, r' t \beta \in R \varphi, q$, we have
\[r t \alpha r' t \beta = r \varphi^\alpha(r') q_{\alpha, \beta} t \alpha + \beta, \]
where φ^α and $q_{\alpha, \beta}$ are defined in (N3) and (N6). In particular, $R \varphi, q$ is a crossed product algebra $R \ast \mathbb{Z}^n$ with
\[
\begin{align*}
\text{(action)} & \quad \sigma : \mathbb{Z}^n \to \text{Aut}_F(R) \quad \text{by} \quad \sigma(\alpha) = \varphi^\alpha \\
\text{(twisting)} & \quad \tau : \mathbb{Z}^n \times \mathbb{Z}^n \to U(R) \quad \text{by} \quad \tau(\alpha, \beta) = q_{\alpha, \beta}.
\end{align*}
\]

Conversely, for any crossed product algebra $R \ast \mathbb{Z}^n$, there exists a \mathbb{Z}^n-grading triple (R, φ, q) such that $R \ast \mathbb{Z}^n = R \varphi, q$.

Proof. We first consider a crossed product algebra $R \ast \mathbb{Z}$. Let $t := \bar{t} \in R \ast \mathbb{Z}$. Then, t^m is a unit in $R \bar{m}$ for all $m \in \mathbb{Z}$. Using the diagonal basis change, one can take an R-basis $\{t^m \mid m \in \mathbb{Z}\}$. So we have $t^m t^l = t^{m+l}$ for all $m, l \in \mathbb{Z}$. Hence, $R \ast \mathbb{Z} = RZ$ is a skew group algebra. Let ψ be the action of 1, i.e., $(r t 1) = \psi(r)t$ for $r \in R$. (Note that $1 = \bar{0}$.) Then the action of m is ψ^m, i.e.,
\[t^m(r 1) = \psi^m(r)t^m. \]
Conversely, it is clear that any F-automorphism ψ of R determines a skew group algebra RZ by the action $m \mapsto \psi^m$ (see Remark 1.3). We denote this RZ by $R[t; \psi]$.

Let $R^{(1)} := R[t_1; \psi_1]$ where $\psi_1 = \varphi_1$. Let ψ_2 be a graded F-automorphism ψ_2 of $R^{(1)}$ and $R^{(2)} := R^{(1)}[t_2; \psi_2]$. Then, by Lemma 3.1, we get $R^{(2)} = (RZ)Z = R \ast \mathbb{Z}^2$. Repeating this process n times, one can construct $R \ast \mathbb{Z}^n$ inductively. Namely, for a crossed product algebra $R^{(k-1)} = R \ast \mathbb{Z}^{k-1}$, if we specify an F-graded automorphism ψ_k of $R^{(k-1)}$, then
\[R^{(k)} := R^{(k-1)}[t_k; \psi_k] = R \ast \mathbb{Z}^k, \]
and we obtain $R^{(n)} = R \ast \mathbb{Z}^n$. Thus, our task is to specify ψ_k on $R^{(k-1)}$ and to show that ψ_k is a graded F-automorphism. We note that
\[\{t_1^{\alpha_1} \cdots t_{k-1}^{\alpha_{k-1}} \mid (\alpha_1, \ldots, \alpha_{k-1}) \in \mathbb{Z}^{k-1}\} \]
is a basis of the free R-module $R^{(k-1)}$. For convenience, we put
\[t^{(\alpha)_k} = t_1^{\alpha_1} \cdots t_{k-1}^{\alpha_{k-1}}, \]
and define an F-linear transformation ψ_k on $R^{(k-1)}$ by
\[\psi_k(r t^{(\alpha)_k}) = \varphi_k(r) \prod_{i=1}^{k-1} \varphi^{(\alpha)_i}(q_{ik}^{(\alpha)_i}) \cdot t^{(\alpha)_k} \quad \text{for} \quad r \in R, \]
which is clearly graded. If $\psi_k(r t^{(\alpha)_k}) = 0$, then $\varphi_k(r) = 0$, and hence $r = 0$, and so ψ_k is injective. Since
\[\psi_k \left(\varphi_k^{-1} \left(r \prod_{i=1}^{k-1} \varphi^{(\alpha)_i}(q_{ik}^{(\alpha)_i}) \right)^{-1} \right) t^{(\alpha)_k} = r t^{(\alpha)_k}, \]
ψ_k is surjective. Therefore, ψ_k is an F-linear graded isomorphism on $R^{(k-1)}$. So it remains to prove that ψ_k is a homomorphism. For this purpose, we use a well-known fact.
3.5. Let A and B be unital associative algebras over F and f a F-linear map from A into B. Let $\{t_i\}_{i \in I}$ be a generating set of the F-algebra A. Then, f is a homomorphism if and only if $f(t_i y) = f(t_i) f(y)$ for all $i \in I$ and $y \in A$. Moreover, if $\{t_i^{\pm 1}\}_{i \in J}$ is a generating set of A, then f is a homomorphism if and only if $f(t_i y) = f(t_i) f(y)$ and $f(t_i^{-1}) = f(t_i)^{-1}$ for all $i \in I$ and $y \in A$.

We have a generating set $R \cup \{t_1^{\pm 1}, \ldots, t_{k-1}^{\pm 1}\}$ of $R^{(k-1)}$ over F, and

$$
\psi_k(t_j^{-1}) = q_{jk}^{(-1)} t_j^{-1} = \varphi_j^{-1}(q_{jk}) t_j^{-1}
= (t_j \varphi_j^{-1}(q_{jk}))^{-1} = (q_{jk} t_j)^{-1} = \psi_k(t_j)^{-1}.
$$

So, by 3.5, we only need to show that, for all $r, r' \in R$ and $1 \leq j \leq k - 1$,

\begin{align*}
(A) & \quad \psi_k(rr' t^{(\alpha)_k}) = \psi_k(r) \psi_k(r' t^{(\alpha)_k}), \\
(B) & \quad \psi_k(t_j rt^{(\alpha)_k}) = \psi_k(t_j) \psi_k(rt^{(\alpha)_k}).
\end{align*}

For (A), we have

\begin{align*}
\psi_k(rr' t^{(\alpha)_k}) &= \varphi_k(r r') \prod_{i=1}^{k-1} \varphi^{(\alpha)}_i(q^{(\alpha_i)}_{ik}) t^{(\alpha)_k} \\
&= \varphi_k(r) \varphi_k(r') \prod_{i=1}^{k-1} \varphi^{(\alpha)}_i(q^{(\alpha_i)}_{ik}) t^{(\alpha)_k} \\
&= \psi_k(r) \psi_k(r' t^{(\alpha)_k}).
\end{align*}

For (B), we first note that there is the embedding of $R^{(j)}$ into $R^{(k-1)}$ for $1 \leq j \leq k - 1$, and so

$$
t_j t^{(\alpha)_j} = \psi_j(t^{(\alpha)_j}) t_j = \varphi_j(r) \prod_{i=1}^{j-1} \varphi^{(\alpha)}_i(q^{(\alpha_i)}_{ij}) t^{(\alpha)_j} t_j.
$$

Thus we have

\begin{align*}
\psi_k(t_j rt^{(\alpha)_k}) &= \psi_k(\varphi_j(r) t_j t^{(\alpha)_k}) \\
&= \psi_k(\varphi_j(r) t_j^{\alpha_j+1} \cdots t_{k-1}^{\alpha_{k-1}}) \\
&= \psi_k(\varphi_j(r) \prod_{i=1}^{j-1} \varphi^{(\alpha)}_i(q^{(\alpha_i)}_{ij}) t^{(\alpha+\varepsilon)_k}) \\
&= \varphi_k \varphi_j(r) \prod_{i=1}^{j-1} \varphi_k \varphi^{(\alpha)}_i(q^{(\alpha_i)}_{ij}) \prod_{i=1}^{k-1} \varphi^{(\alpha+\varepsilon)_i}(q^{(\alpha_i+\delta_{ij})}_{ik}) t^{(\alpha+\varepsilon)_k} \\
&= ABC t^{(\alpha+\varepsilon)_k},
\end{align*}

18
Thus, after cancellations, we get

\[A = \varphi_k \varphi_j (r) \]

First of all, we have

\[A = \varphi_k \varphi_j (r) = q_{jk} \varphi_j \varphi_k (r) q_{kj} \quad \text{by (G2).} \]

Secondly, by Lemma 3.3(2) and (4), we have

\[\varphi_k \varphi_i (q_{ij}^{(\alpha_i)}) \]

\[= \left[\prod_{l=1}^{i-1} \varphi_i (q_{ik}^{(\alpha_i)}) \right] \varphi_i (q_{ij}^{(\alpha_i)}) \left[\prod_{l=1}^{i-1} \varphi_i (q_{lk}^{(\alpha_i)}) \right]^{-1} \]

\[= \left[\prod_{l=1}^{i-1} \varphi_i (q_{ik}^{(\alpha_i)}) \right] \varphi_i (q_{jk}^{(\alpha_i)}) q_{ij}^{(\alpha_i)} q_{ij}^{\alpha_i} q_{ik}^{\alpha_i} \left[\prod_{l=1}^{i-1} \varphi_i (q_{lk}^{(\alpha_i)}) \right]^{-1} \].

Note that

\[\varphi_i (q_{ki}^{(\alpha_i)}) \left[\prod_{l=1}^{i-1} \varphi_i (q_{lk}^{(\alpha_i)}) \right]^{-1} = \left[\prod_{l=1}^{i} \varphi_i (q_{lk}^{(\alpha_i)}) \right]^{-1} \]

and

\[\varphi_i (q_{kj}^{(\alpha_i)}) = \varphi_{i+1} (q_{kj}^{(\alpha_i)}). \]

So we have

\[(\varphi_k \varphi_i (q_{ij}^{(\alpha_i)}))(\varphi_k \varphi_i (q_{ij}^{(\alpha_i+1)})) = \left[\prod_{l=1}^{i-1} \varphi_i (q_{lk}^{(\alpha_i)}) \right] \varphi_i (q_{jk}^{(\alpha_i)}) q_{ij}^{(\alpha_i+1)} \left[\prod_{l=1}^{i} \varphi_i (q_{lk}^{(\alpha_i)}) \right]^{-1} \times \varphi_{i+1} (q_{i+1,k}^{(\alpha_i)}) q_{i+1,j}^{(\alpha_i+1)} \left[\prod_{l=1}^{i} \varphi_i (q_{lk}^{(\alpha_i)}) \right]^{-1}. \]

Thus, after cancellations, we get

\[B = \prod_{i=1}^{j-1} \varphi_k \varphi_i (q_{ij}^{(\alpha_i)}) \]

\[= q_{jk} \left[\prod_{i=1}^{j-1} \varphi_i (q_{ik}^{(\alpha_i)}) q_{ij}^{(\alpha_i)} \right] \varphi_j (q_{kj}) \left[\prod_{i=1}^{j-1} \varphi_i (q_{ik}^{(\alpha_i)}) \right]^{-1}. \]

Thirdly, we have

\[C = \prod_{i=1}^{k-1} \varphi_i (q_{ik}^{(\alpha_i+\delta_i)}) \]

\[= \left[\prod_{i=1}^{j-1} \varphi_i (q_{ik}^{(\alpha_i)}) \right] \varphi_j (q_{jk}^{(\alpha_j+1)}) \left[\prod_{i=j+1}^{k-1} \varphi_i (q_{ik}^{(\alpha_i)}) \right] \]

\[= \left[\prod_{i=1}^{j-1} \varphi_i (q_{ik}^{(\alpha_i)}) \right] \varphi_j (q_{jk} \varphi_j (q_{jk}^{(\alpha_j)})) \left[\prod_{i=j+1}^{k-1} \varphi_i (q_{ik}^{(\alpha_i)}) \right]. \]
by Lemma 3.2(4). Consequently, after cancellations and notifying \(q_{ii} = 1 \), we obtain

\[
\psi_k(t_j r t^{(\alpha)_k}) = ABC t^{(\alpha + \varepsilon)_k}
\]

\((\star)\)

\[
= q_{jk} \varphi_j \varphi_k(r) \prod_{i=1}^{j} \varphi^{(\alpha)}(\varphi_j(q_{ik}^{(\alpha)})) q_{ij}^{(\alpha)} \prod_{i=j+1}^{k-1} \varphi^{(\alpha + \varepsilon)}(q_{ik}^{(\alpha)}) t^{(\alpha + \varepsilon)_k}.
\]

On the other hand, we have

\[
\psi_k(t_j) \psi_k(r t^{(\alpha)_k}) = q_{jk} t_j \varphi_k(r) \prod_{i=1}^{k-1} \varphi^{(\alpha)}(q_{ik}^{(\alpha)}) t^{(\alpha)_k}
\]

\[
= q_{jk} \varphi_j \left[\varphi_k(r) \prod_{i=1}^{k-1} \varphi^{(\alpha)}(q_{ik}^{(\alpha)}) \right] t_j t^{(\alpha)_k}
\]

\[
= q_{jk} \varphi_j \varphi_k(r) \prod_{i=1}^{k-1} \varphi^{(\alpha)}(q_{ik}^{(\alpha)}) \prod_{l=1}^{j-1} \varphi^{(\alpha)}(q_{lj}^{(\alpha)}) t^{(\alpha + \varepsilon)_k}.
\]

We rewrite \(D := \prod_{i=1}^{k-1} \varphi_j \varphi^{(\alpha)}(q_{ik}^{(\alpha)}) \). To find an expression for \(D \), we use the following lemma:

Lemma 3.6. Let \(A \) be a unital associative algebra, \(a_0 = 1, a_1, \ldots, a_k \in A \) units and \(b_1, \ldots, b_k \in A \). Then we have

\[
(1) \quad \prod_{i=1}^{k} \left(I \left(\prod_{l=1}^{i-1} a_l \right) (b_i) \right) = \prod_{i=1}^{k} a_i b_i \left(\prod_{l=1}^{k} a_l \right)^{-1}.
\]

\[
(2) \quad \prod_{i=j+1}^{k} \left(I \left(\prod_{l=1}^{j-1} a_l \right) (b_i) \right) = I \left(\prod_{i=1}^{j-1} a_l \right) \left(\prod_{i=j+1}^{k} b_i \right).
\]

Proof. (1) is straightforward and (2) is obvious. □

By Lemma 3.2(3), we have, for \(i < j \),

\[
\varphi_j \varphi^{(\alpha)}(q_{ik}^{(\alpha)}) = I \left(\prod_{l=1}^{i-1} \varphi^{(\alpha)}(q_{il}^{(\alpha)}) \right) \left(\varphi^{(\alpha)}(q_{ij}^{(\alpha)}) \right).
\]

So, by Lemma 3.6(1), we get

\[
\prod_{i=1}^{j} \varphi_j \varphi^{(\alpha)}(q_{ik}^{(\alpha)}) = \prod_{i=1}^{j} \varphi^{(\alpha)}(\varphi_j(q_{ik}^{(\alpha)})) \left(\prod_{l=1}^{j-1} \varphi^{(\alpha)}(q_{lj}^{(\alpha)}) \right)^{-1}.
\]
By Lemma 3.2(3), we have, for $j < i$,
\[\varphi_j \varphi^{(\alpha)}_i(q_{ik}^{(\alpha_i)}) = I \left(\prod_{l=1}^{j-1} \varphi(\alpha)_l(q_{lj}^{(\alpha_i)}) \right) \left(\varphi(\alpha+\varepsilon_j)_i(q_{ik}^{(\alpha_i)}) \right). \]

So, by Lemma 3.6(2), we get
\[\prod_{i=j+1}^{k-1} \varphi_j \varphi^{(\alpha)}_i(q_{ik}^{(\alpha_i)}) = I \left(\prod_{l=1}^{j-1} \varphi(\alpha)_l(q_{lj}^{(\alpha_i)}) \right) \left(\prod_{i=j+1}^{k-1} \varphi(\alpha+\varepsilon_j)_i(q_{ik}^{(\alpha_i)}) \right). \]

Hence we get
\[D = \prod_{i=1}^{k-1} \varphi_j \varphi^{(\alpha)}_i(q_{ik}^{(\alpha_i)}) \]
\[= \prod_{i=1}^{j} \varphi(\alpha)_i(q_j(q_{ik}^{(\alpha_i)})q_{ij}^{(\alpha_i)}) \prod_{i=j+1}^{k-1} \varphi(\alpha+\varepsilon_j)_i(q_{ik}^{(\alpha_i)})t(\alpha+\varepsilon_j)_k \left[\prod_{l=1}^{j-1} \varphi(\alpha)_l(q_{lj}^{(\alpha_i)}) \right]^{-1}. \]

Consequently, we obtain
\[\psi_k(t_j) \psi_k(rt^{(\alpha)_k}) = q_{jk} \varphi_j \varphi_k(r) \prod_{i=1}^{j} \varphi(\alpha)_i(q_j(q_{ik}^{(\alpha_i)})q_{ij}^{(\alpha_i)}) \prod_{i=j+1}^{k-1} \varphi(\alpha+\varepsilon_j)_i(q_{ik}^{(\alpha_i)})t(\alpha+\varepsilon_j)_k, \]
which is exactly (*). Hence we have shown (B) and constructed a crossed product algebra $R \ast \mathbb{Z}^k = R^{(k)}$ for $k = 1, \ldots, n$ from (R, φ, q).

Let us put $R_{\varphi,q} := R^{(n)} = \bigoplus_{\alpha \in \mathbb{Z}^n} R_{t^\alpha}$ where $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n$ and $t^\alpha = t_1^{\alpha_1} \cdots t_n^{\alpha_n}$. Since $\psi_k |_{R} = \varphi_k$ for $k = 1, \ldots, n$, we have $t_ir = \varphi_i(r) t_i$. Also, we have $t_j t_i = \psi_j(t_i) t_j = q_{ij} t_i t_j$ for $1 \leq i < j \leq n$, and so $t_j t_i = q_{ij} t_i t_j$ for all $1 \leq i, j \leq n$. Hence, our $R_{\varphi,q}$ satisfies (3.4). The uniqueness of the multiplication on $R_{\varphi,q}$ is clear since $R \cup \{ \sum_{i=1}^{k} t_{i}^{\pm 1} \}$ is a generating set of $R_{\varphi,q}$.

Now, one can easily check that $\psi^{(\alpha)}_j(t^{(\beta)_j}) = q_{\epsilon_j,\beta}^{(\alpha)} t^{(\beta)_j}$. So for $rt^{(\alpha)}_\alpha, r't^{(\beta)}_\beta \in R_{\varphi,q}$, we get
\[rt^{(\alpha)}_\alpha r't^{(\beta)}_\beta = r \varphi^{(\alpha)}(r') t^{(\alpha)}_\alpha t^{(\beta)}_\beta \]
\[= r \varphi^{(\alpha)}(r') t^{(\alpha)}_\alpha q_{\epsilon_n,\beta}^{(\alpha_n)} t^{(\beta)}_n t^{\beta_n} \]
\[= r \varphi^{(\alpha)}(r') t^{(\alpha)}_\alpha q_{\epsilon_n,\beta}^{(\alpha_n)} t^{(\beta)}_n t^{\alpha_n+\beta_n} \]
\[= r \varphi^{(\alpha)}(r') t^{(\alpha)}_\alpha q_{\epsilon_n,\beta}^{(\alpha_n)} t^{(\beta)}_n t^{\alpha_n+\beta_n} \]
\[\ldots \]
\[= r \varphi^{(\alpha)}(r') t^{(\alpha)}_\alpha q_{\epsilon_n,\beta}^{(\alpha_n)} \varphi^{(\alpha)}(q_{\epsilon_n,\beta}^{(\alpha_n)}) t^{\alpha_n+\beta_n} \]
\[= r \varphi^{(\alpha)}(r') t^{\alpha_n+\beta_n}. \]
Conversely, for any crossed product algebra $R \ast \mathbb{Z}^n = (R, \mathbb{Z}^n, \tau, \sigma) = \oplus_{\alpha \in \mathbb{Z}^n} R\alpha$, we take a new R-basis $\{t_\alpha \mid \alpha \in \mathbb{Z}^n\}$ of $R \ast \mathbb{Z}^n$ where $t_\alpha = \varepsilon_1^{a_1} \cdots \varepsilon_n^{a_n}$. We set $q_{ij} := \tau(\varepsilon_j, \varepsilon_i)$ for $1 \leq i \leq j \leq n$, $q_{ij} := q_{ji}^{-1}$ and $\varphi_i := \sigma_{\varepsilon_i}$. Note that $\tau(\varepsilon_i, \varepsilon_j) = 1$. Then one can check that the triple (R, φ, q) is a \mathbb{Z}^n-grading triple:

\[(G1)\] is clear. Let $t_i := \varepsilon_i$ for $i = 1, \ldots, n$. Then, for $i \leq j$ and $r \in R$, we have

\[t_j t_i r = \varphi_j \varphi_i(r) t_i t_j = \varphi_j \varphi_i(r) q_{ij} t_i t_j \text{ and } t_i t_j r = q_{ij} \varphi_i \varphi_j(r) t_i t_j.\]

Hence, $\varphi_j \varphi_i(r) q_{ij} = q_{ij} \varphi_i \varphi_j(r)$, i.e., $(G2)$ holds. For $i \leq j \leq k$, we have $t_k t_j t_i = t_k q_{ij} t_i t_j = \varphi_k(q_{ij})(q_{ik}) t_i t_j t_k = \varphi_k(q_{ij}) \varphi_i(q_{jk}) t_i t_j t_k \text{ and } t_k t_j t_i = q_{jk} \varphi_j(q_{ik}) t_i t_j t_k$. Hence, $\varphi_k(q_{ij}) \varphi_i(q_{jk}) = q_{jk} \varphi_j(q_{ik}) q_{ij}$, i.e., $(G3)$ holds.

Finally, it is clear that $R \ast \mathbb{Z}^n = \oplus_{\alpha \in \mathbb{Z}^n} R\alpha$ satisfies (3.4). Therefore, we obtain $R \ast \mathbb{Z}^n = R\varphi, q$. □

Thus the following is clear:

Corollary 3.7. Let (D, φ, q) be a division \mathbb{Z}^n-grading triple. Then, $D\varphi, q$ is a division \mathbb{Z}^n-graded algebra. Conversely, for any division \mathbb{Z}^n-graded algebra A, there exists a division \mathbb{Z}^n-grading triple (D, φ, q) such that $A = D\varphi, q$.

Remark. What we have shown in Theorem 3.3 can be written in the following way:

Let $B := \{\varepsilon_1, \ldots, \varepsilon_n\}$ and $C := \{\langle \varepsilon_j, \varepsilon_i \rangle \mid 1 \leq i < j \leq n\}$. Suppose that maps

\[\sigma : B \longrightarrow \text{Aut}_F(R) \text{ and } \tau : C \longrightarrow U(R)\]

satisfy

\[(a) \quad \sigma_{\varepsilon_j} \sigma_{\varepsilon_i} = I(\tau(\varepsilon_j, \varepsilon_i)) \sigma_{\varepsilon_i} \sigma_{\varepsilon_j} \quad \text{and} \]

\[(b) \quad \sigma_{\varepsilon_k} \big(\tau(\varepsilon_j, \varepsilon_i)\big) \tau(\varepsilon_k, \varepsilon_i) = \tau(\varepsilon_k, \varepsilon_j) \sigma_{\varepsilon_j} \big(\tau(\varepsilon_k, \varepsilon_i)\big) \tau(\varepsilon_k, \varepsilon_j)\]

for all $1 \leq i < j < k \leq n$. Then there exist unique action $\tilde{\sigma} : \mathbb{Z}^n \longrightarrow \text{Aut}_F(R)$ and twisting $\tilde{\tau} : \mathbb{Z}^n \times \mathbb{Z}^n \longrightarrow U(R)$ such that $\tilde{\sigma} |_B = \sigma$, $\tilde{\tau} |_C = \tau$ and

\[(c) \quad \tilde{\tau}(\alpha_1 \varepsilon_1 + \cdots + \alpha_i \varepsilon_i, \alpha_j \varepsilon_j + \cdots + \alpha_n \varepsilon_n) = 1 \quad \text{for all } 1 \leq i < j \leq n.\]

Conversely, for any crossed product algebra $R \ast \mathbb{Z}^n$, we can use the diagonal basis change so that the action and twisting satisfy (a), (b) and (c).

In a certain situation, the condition (G3) of a \mathbb{Z}^n-grading triple is not needed. We use the notation $[a, b] = aba^{-1}b^{-1}$ for $a, b \in U(R)$.

Lemma 3.8. Let R be a unital associative algebra over F, $\varphi = (I(d_1), \ldots, I(d_n))$ an n-tuple of inner automorphisms φ_i of R for some $d_1, \ldots, d_n \in U(R)$ and $q = (q_{ij})$ an $n \times n$ matrix over F. Suppose that a triple (R, φ, q) satisfies (G1) and (G2). Then, (R, φ, q) is a \mathbb{Z}^n-grading triple.

Proof. We only need to check (G3). By (G1) and (G2), we have, for all $1 \leq i, j \leq n$, $I(d_j)I(d_i) = I(q_{ij})I(d_i)I(d_j)$. So for all $r \in R$, $d_j d_i r d_i^{-1} d_j^{-1} = q_{ij} d_i d_j r d_j^{-1} d_i^{-1} q_{ji}$ and
hence \(rd_i^{-1}d_j^{-1}q_{ij}d_id_j = d_i^{-1}d_j^{-1}q_{ij}d_id_jr \), i.e., \(d_i^{-1}d_j^{-1}q_{ij}d_id_j =: c_{ij} \) is in the centre of \(R \). Note that \(c_{ji}^{-1} = c_{ij} \). Thus we have

\[q_{ij} = c_{ij}[d_j,d_i]. \]

Using this identity, we get (G3): for all \(1 \leq i < j < k \leq n \),

\[
q_{jk} \varphi_j(q_{ik})q_{ij} \varphi_i(q_{kj})q_{ki} =
\begin{align*}
&= c_{jk}[d_k,d_j]c_{ik}[d_k,d_i]d_j^{-1}c_{ij}[d_j,d_i]d_ic_{kj}[d_j,d_k]d_i^{-1}c_{ki}[d_i,d_k] \\
&= d_kc_{ij}[d_j,d_i]d_k^{-1} = \varphi_k(q_{ij}).
\end{align*}
\]

By this lemma, if \(R \) is a finite dimensional central simple associative algebra, the defining identities of a \(\mathbb{Z}^n \)-grading triple are just (G1) and (G2).

Remark 3.9. (1) For a \(\mathbb{Z}^n \)-grading triple \((R, \varphi, q)\), if \(\varphi = 1 := (\text{id}, \ldots, \text{id}) \), then the crossed product algebra \(R_{1,q} \) has the trivial action by Theorem 3.3. So, \(R_{1,q} = R^e[\mathbb{Z}^n] \) is a twisted group algebra.

(2) For a \(\mathbb{Z}^n \)-grading triple \((R, \varphi, q)\), if \(q = 1_n = 1 := \left(\begin{array}{ccc} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{array} \right) \), then a crossed product algebra \(R_{\varphi,1} \) has the trivial twisting by Theorem 3.3. So, \(R_{\varphi,1} = R\mathbb{Z}^n \) is a skew group algebra.

(3) By (G2), \((R, \varphi, 1)\) is a \(\mathbb{Z}^n \)-grading triple if and only if

\[(*) \quad \varphi_j \varphi_i = \varphi_i \varphi_j \quad \text{for all } i, j. \]

Finally, we give some examples.

Example. (1) Let \(F_q \) be an arbitrary quantum torus and \(R \) an arbitrary associative algebra. Then it is easy to see that \(R \otimes_F F_q \) is a predivision \(\mathbb{Z}^n \)-graded associative algebra (division \(\mathbb{Z}^n \)-graded if \(R \) is a division algebra) and is isomorphic to \(R_{1,q} \). Note also if \(R \) is a field, then this example becomes a quantum torus over \(R \). Conversely, for a division \(\mathbb{Z}^n \)-grading triple \((D, \varphi, q)\), if \(\varphi = 1 \), then \(I(q_{ij}) = \text{id} \) for all \(q_{ij} \), by (G2). Hence \(q_{ij} \) is in the centre of \(D \), say \(K \), and we can show that \(D_{1,q} \cong D \otimes_K K_q \). Therefore, \(D_{\varphi,q} \) is a tensor product with \(D \) and some quantum torus if and only if \(\varphi = 1 \).

(2) Let \(Q = \langle i, j \rangle \) be a quaternion algebra over a field, where \(i \) and \(j \) are the standard generators, \(\varphi = \varphi_3 = (I(i), I(j), I(ij)) \) and \(1 = 1_3 \). Then one can easily check \((*)\) in Remark 3.9(3), and hence \(Q_{\varphi,1} \) is a predivision \(\mathbb{Z}^3 \)-graded associative algebra.
(3) Let \(K = \mathbb{Q}(\zeta_5) \) be a cyclotomic extension of \(\mathbb{Q} \) (the field of rational numbers) where \(\zeta := \zeta_5 \) is a primitive 5th root of unity, and \(\varphi \) the automorphism of \(K \) defined by \(\varphi(\zeta) = \zeta^2 \). Let \(\varphi = (\varphi, \varphi^2, \varphi^3) \) and

\[
q = \begin{pmatrix}
1 & \zeta & \zeta^2 \\
\zeta^{-1} & 1 & \zeta^{-1} \\
\zeta^3 & \zeta & 1
\end{pmatrix}.
\]

Then one can easily check that \((K, \varphi, q)\) is a division \(\mathbb{Z}^3 \)-grading triple, and hence \(K_{\varphi, q} \) is a division \(\mathbb{Z}^3 \)-graded associative algebra over \(\mathbb{Q} \).

(4) Let \(\mathbb{H} = \langle i, j \rangle \) be Hamilton’s quaternion over \(\mathbb{R} \) (the field of real numbers), i.e., the unique quaternion division algebra over \(\mathbb{R} \). Put \(k := ij \). Let \(\varphi = (I(d_1), I(d_2), I(d_3)) \) where \(d_1 = 1 + i, d_2 = 1 + j \) and \(d_3 = 1 + k \). We put \(q_{ij} = 2[d_j, d_i] \) for \(1 \leq i < j \leq 3 \), \(q_{ji} = q_{ij}^{-1} \) and \(q_{ii} = 1 \). Then, \((\mathbb{H}, \varphi, q)\) satisfies (G1) and (G2), and

\[
q = \begin{pmatrix}
1 & 1 - i + j - k & 1 - i + j + k \\
(1 - i + j - k)^{-1} & 1 & 1 - i - j + k \\
(1 - i + j + k)^{-1} & (1 - i - j + k)^{-1} & 1
\end{pmatrix}.
\]

By Lemma 3.8, this is a division \(\mathbb{Z}^3 \)-grading triple and hence \(\mathbb{H}_{\varphi, q} \) is a division \(\mathbb{Z}^3 \)-graded associative algebra over \(\mathbb{R} \).

§ 4 Conclusion

By 1.8, Example 2.8(c), Example 2.10, Proposition 2.13, Theorem 3.3 and Corollary 3.7, one can summarize our results as follows:

Corollary. (i) Any predivision (resp. division) \(A_l \mathbb{Z}^n \)-graded Lie algebra over \(F \) for \(l \geq 3 \) is an \(A_l \mathbb{Z}^n \)-cover of \(\text{psl}_{l+1}(R_{\varphi, q}) \) for some (resp. division) \(\mathbb{Z}^n \)-grading triple \((R, \varphi, q)\). Conversely, any \(\text{psl}_{l+1}(R_{\varphi, q}) \) for \(l \geq 1 \) is a predivision (resp. division) \(A_l \mathbb{Z}^n \)-graded Lie algebra.

(ii) Any predivision (resp. division) \(\Delta \mathbb{Z}^n \)-graded Lie algebra over \(F \) for \(\Delta = D \) or \(E \) is a \(\Delta \mathbb{Z}^n \)-cover of \(g \otimes_F K[z_1^\pm, \ldots, z_n^\pm] \) where \(g \) is a finite dimensional split simple Lie algebra over \(F \) of type \(D \) or \(E \) and \(K \) is a unital commutative associative algebra over \(F \) (resp. \(K \) is a field extension of \(F \)). Conversely, for any finite dimensional split simple Lie algebra \(g \) over \(F \) of any type \(\Delta \), \(g \otimes_F K[z_1^\pm, \ldots, z_n^\pm] \) is a predivision (resp. division) \(\Delta \mathbb{Z}^n \)-graded Lie algebra.

References

Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5