ROOT-GRADED LIE ALGEBRAS
WITH COMPATIBLE GRADINGS

YoJ1 YOSHII

ABSTRACT. Lie algebras graded by a finite irreducible reduced root system A will be
generalized as predivision AG-graded Lie algebras for an abelian group G. In this paper

such algebras are classified, up to central extensions, when A = A; for I > 3, D or E,
and G = Z".

INTRODUCTION

The concept of a Lie algebra over a field F' of characteristic 0 graded by a finite
irreducible reduced root system A or a A-graded Lie algebra was introduced by
Berman and Moody [3]). It is a Lie algebra L together with a finite dimensional split
simple Lie algebra g, a split Cartan subalgebra b of g and the root system A, so that
g has the root space decomposition g = h & (@ueA gu) with b = gg, satisfying the
following three conditions:

(i) L contains g as a subalgebra
(ii) L = ®ueauvqoy Ly, where L, = {x € L | [h,z] = p(h)z for all h € h}; and
(i) Lo =", en [Lu, L-pl.
The subalgebra g = (g, h) is called the grading subalgebra of L.

Berman and Moody classified A-graded Lie algebras, up to central extensions,
when A has type A;, 1 > 2, D or F in [3], and then Benkart and Zelmanov completed
the classification for the other types in [5] (see also [7] for the classification of A-
graded Lie algebras over rings where A is not necessarily finite there, using Jordan
methods).

Let us explain the case A = A;, [ > 3, in order to describe our motivation of
this paper. By [3], an A;-graded Lie algebra covers psl;+1(A) for a unital associative
algebra A (see Definition 2.9). Then Berman, Gao and Krylyuk showed in [4] that the
core of an extended affine Lie algebra of type A; for [ > 3 is an A;-graded Lie algebra
and covers slj11(Cq) where Cq = Cg[tf,... ,tF] is a certain Z"-graded associative
algebra called, a quantum torus over C (see §2 below). The Lie algebra L = sl;41(Cyq)
is not only graded by A; but also graded by Z", and the Z"-grading L = ®4czn LY
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is compatible with the A;-grading L = ®,cauoy Ly in the sense that

L= @ € L where LS =L,NL"
pEAU{0} aczZn

We will call such a double grading a compatible A;Z"-grading (see Definition 2.6 for
the general definition). Moreover, let {h, € h | © € A} be the set of coroots where h
is the Cartan subalgebra of diagonal matrices in the grading subalgebra g = sl;;+1(C).
Then L has the following two properties:
(1) for any u € A and any 0 # = € Lg, there exists y € L}, such that [z,y] = hy;
(2) dimc Ly =1 for all p € A and o € Z".
The property (1) will be called division (see Definition 2.6 for the general definition).
Our interest is to describe such Lie algebras without the property (2), namely, division

AyZ"-graded Lie algebras. One of the main results of the paper which is contained
in Proposition 2.13 is the following:

Result 1. Letl > 3. Then any division A;Z"™-graded Lie algebra covers pslj;1(P)
where P is a division Z™-graded associative algebra (i.e., all nonzero homogeneous
elements are invertible).

A division Z™-graded associative algebra over a field F' can be considered as a
crossed product algebra D % Z™ for an associative division algebra D over F (see §1).
Our next interest is to describe D x Z" as a natural generalization of the algebra
F [tlil, ..., t:1] of Laurent polynomials or a quantum torus Fy.

A triple (D, ¢, q) is called a division Z™-grading triple if

(1) D is an associative division algebra;

(2) ¢ =(¢1,.-.,9¢n) is an n-tuple of automorphisms ¢; of D; and

(3) g = (¢i;) is an n x n matrix over D satisfying, for all 1 <i < j < k < n,
gi=1 and q;;' = gy,
pipi = 1(gij)pie;,
wr(gi5) = 4jne; (Gin) i3 0i (qr; ) ki

where I(g;;) is the inner automorphism of D determined by g5, i.e.,

I(gij)(d) = q@'jdqizl for d € D.

We will show that D+Z™ can be considered as a generalization of the ring D[t:?, ... | tF]
of Laurent polynomials over D in n-variables in the following sense:

D[tfl, oot = @aezn Dty is a Z'-graded algebra, where to = t§1 .- t& for
a=(a,...,q,) €Z", and the multiplication rule is determined by

tit; b=t =1, td=dt; and t;t; =t;t; foralldec D andi,j.
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Result 2. For any division Z™-grading triple (D, p,q), there ezists a division Z"-
graded associative algebra Dy q = D%q[tiﬁl, oot such that Dy.q = ®aczn Dita
has the same Z"-grading as D[tfl, . ,tffl] above, and the multiplication rule is de-
termined by

titi_l = ti_lti = 1, tzd = (Pz(d)tz and tjti = qijtitj fO’I’ alld e D and Z,j

Conversely, any division Z™-graded associative algebra is isomorphic to Dy, q for some
division Z™-grading triple (D, @, q) (see Theorem 8.3 for more precise statements).

Consequently, one gets that any division A;-Z™-graded Lie algebra for [ > 3 covers
psliy1(Dy.q). We will also classify division AZ"-graded Lie algebras when A = D
or E, which is simpler than the case A. Moreover, our concept “division” can be
generalized as “predivision” (see Definition 2.6). Result 1 and 2 above will be proved
in this more general set-up.

The organization of the paper is as follows. In §1 we review basic concepts of
graded algebras and crossed product algebras. In §2 we observe some properties of
AG-graded Lie algebras. Then predivision or division AG-graded Lie algebras are
defined. After describing some examples of them, we classify predivision AG-graded
Lie algebras for A = A; (I > 3), D and FE types. In §3 we classify crossed product
algebras R * Z". Finally in §4 we give a summary of our results.

Result 2 above is part of my Ph.D thesis, written at the University of Ottawa. I
would like to thank my supervisor, Professor Erhard Neher, for his encouragement
and suggestions.

§ 1 Basic CONCEPTS

For any group G and any G-graded algebra L = ©4cq Ly, we denote
supp L := {g € G | Ly # (0)}.

Then we have L = @yer Ly where G’ = (supp L) is the subgroup of G generated by
supp L. Because of this, we will in the following always assume

(1.1) G = (supp L).

Whenever a class of algebras has a notion of invertibility, one can make the follow-
ing definition:

Definition 1.2. Let G be a group. A G-graded algebra P = @®4eq P, is called a
predivision G-graded algebra if P, contains an invertible element for all g € supp P.
Also, P is called a division G-graded algebra if all nonzero homogeneous elements are
invertible.

One can easily check that if P is associative, then supp P = G and P is strongly
graded, i.e., PyP, = Py, for all g,h € G. This is not true if P is a Jordan algebra
(see [9]). Predivision G-graded associative algebras are realized as crossed product
algebras, which we recall here:



Definition 1.3. Let R be a unital associative algebra over a field ' and G a group.
Let R x G be the free left R-module with basis G = {g | g € G}, a copy of G. Define
a multiplication on R * G by linear extension of

(rg)(sh) = roy(s)7(g, h)gh,
for r,s € R and g,h € G, where

(action) o¢:G — Autp(R), the group of F-automorphisms of R,
(twisting) 7:G x G — U(R), the group of units of R,

are arbitrary maps and o, := o(g). This R+« G = (R,G,0,7) is called a crossed
product algebra over F' if this multiplication is associative. It is easily seen that this
is in fact an algebra over F'. If there is no action or twisting, that is, if 0, = id and
7(g,h) =1 for all g,h € G, then R« G = R[G] is the ordinary group algebra. If the
action is trivial, then R * G =: R![G] is called a twisted group algebra. Finally, if the
twisting is trivial, then R x G =: RG is called a skew group algebra.

Remark 1.4. If a crossed product algebra R * G is commutative, then the action is
clearly trivial, and so R * G = R'[G].

The following lemma characterizes o and 7 (see [8], Lemma 1.1 p.2). We denote
by I(d) the inner automorphism determined by d € U(R), i.e., I(d)(r) = drd~! for
r € R.

1.5. The associativity of R * G 1s equivalent to the following two conditions: for all
g,h, k€ G,

(i) ogon = I(T(Q»h))%iw

(ii) o4 (T(h, k))T(g, hk) =71(g,h)T(gh, k).

Remark 1.6. If R is commutative, then the action o : G — Autp(R) becomes a
group homomorphism by condition (i) in 1.5. So the action is really a “group action”
in usual sense. Also, for a skew group algebra RG, the action becomes a group
homomorphism for the same reason. Conversely, any group action G — Autp(R)
defines a skew group algebra RG.

If d: G — U(R) assigns to each element g € G a unit d,, then G = {d,g | g € G}
yields another R-basis for R x G so that R x G is a crossed product algebra for the
new basis. One calls this a diagonal change of basis ([8], p.3). Any crossed product
algebra has an identity element. It is of the form 1 = ue for some unit u in R where
e is the identity element of G ([8], Exercise 2 p.9). We can and will assume that
1 =€, via a diagonal change of basis, and so 7(g,e) = 7(e,g) = 1 for all g € G. The
embedding of R into R * G is then given by r — re. Also, we have ([8], p.3)

(1.7) rg is invertible if and only if r € U(R).
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Now, it is clear that a crossed product algebra R *x G = ©4ec¢ Rg is a predivision
G-graded associative algebra. Conversely, suppose that A = ©,cq Ay is a predivision
G-graded associative algebra over F. Then we have A = ©4eq Rz, where R = A,
and an invertible element z, € A,, which exists since A is predivision graded and
supp A = G. Moreover, for h € G, we have z,x) = :L‘gxh(xgh)_lmgh. So we can put
7(g9,h) := zgzp(xgn) "t € U(R). Then we have zyzp, = 7(g, h)xgp. Also, let I(z,) be
the inner automorphism determined by z, and let o, := I(x,) |gr. Then, o, is clearly
an F-automorphism of R and for r,7’ € R,

(rag)(r'zy) = r(mgr'mg_l)a}gmh =roy(rxgzy = rog(r')T(g, h)zgn.

Hence A is a crossed product algebra R * G determined by these o and 7. So the
two concepts, a crossed product algebra R x GG and a predivision G-graded associa-
tive algebra, coincide (see [8], Exercise 2 p.18). In particular, a division G-graded
associative algebra is a crossed product algebra R x G where R is a division algebra.

By Remark 1.4, a predivision G-graded commutative associative algebra Z =
Bgec Zy (G is necessarily abelian) is a twisted group algebra K'[G] where K := Z,.
Moreover (see [8], Exercise 6 p.10):

1.8. If the abelian group G is free, then Z is a group algebra K|G|. In particular,
when G = 72", Z is the algebra K[zlil, ...,z of Laurent polynomials for invertible

rn
elements z; € Ze,, i = 1,... ,n, where {€1,... ,€,} is a basis of 2.

§ 2 PREDIVISION AG-GRADED LIE ALGEBRAS

In this section F'is a field of characteristic 0 and A is a finite irreducible reduced
root system. We have defined a A-graded Lie algebra L = ®,cauoy Ly over F in
Introduction. We note that the centre Z(L) of L is contained in L.

A homomorphism (resp. an isomorphism) ¢ : L — L’ of A-graded Lie algebras
L = (L,g,h) and L' = (L',¢’,H’), which have the same type A, is called a A-
homomorphism (resp. an A-isomorphism) if p(g) = ¢’ and @(h) = b’ (cf. Definition
1.20 in [3]). Then one can check that ¢(L,) C L., for all « € A, and so ¢(Lg) C L.
In other words, a A-homomorphism is graded.

Recall that a cover L = (L, ) of a Lie algebra L is an epimorphism 7 : L — L
of Lie algebras so that L is perfect, i.e., L = [I:,f/], and ker 7 is contained in the
centre of L. If 7 : L — L is a cover of a A-graded Lie algebra L, then there exists
a A-grading of L such that 7 is a A-homomorphism (see Proposition 1.24 in [3]).
However, it is not known whether or not, for A-graded Lie algebras L and L, any
cover L — L is a A-homomorphism. Thus we define the following:

Definition 2.1. For A-graded Lie algebras L and L, if 7 : L — L is a cover and
a A-homomorphism, L = (i,w) is called a A-cover of L. Also, for A-graded Lie
algebras L and L', if there exist a A-graded Lie algebra L and maps T : L — L and
7' : L — L' such that (L, ) and (L, 7’) are both A-covers, we say that L and L’
are A-isogeneous.



Example 2.2. Let L = (L,g,h) be a A-graded Lie algebra with its centre Z(L).
Then, for any subspace V of Z(L), L/V = (L/V,g+ V,h + V) is a A-graded Lie
algebra, and the canonical epimorphism L — L/V is a A-cover. In particular, L
and L/V are A-isogeneous.

We will show that if L and L’ are A-isogeneous, then L/Z(L) and L'/Z(L’") are
A-isomorphic, i.e., there exists a A-isomorphism between them.

Lemma 2.3. Let 7 : [ — L be a A-cover and ¢ : L — L/Z(L) the canonical
epimorphism. Then we have Z(L) = n~*(Z(L)), and hence kercon = Z(L).

Proof. Tt is clear that Z(L) C #~!(Z(L)). For the other inclusion, let z € 7= (Z(L)).
Then z € Ly, and so for any a € A, one has [z, Ly] C Lo. On the other hand, we
have [z, Ly| C kerm C Z(L) C Ly. Hence [z, L,] = (0) and we get x € Z(L). O
Corollary 2.4. Suppose that L and L' are A-isogeneous. Then L/Z(L) and L'/ Z(L")
are A-isomorphic.

Proof. By our assumption, there exists a A-graded Lie algebra L = (Z~L,§;, 6) such
that 7 : L = (L,g,h) — L and n’ : L — L' = (L', g, ') are both A-covers. Let
c:L— L/Z(L)and ¢ : L' — L'/Z(L') be the canonical epimorphisms. Then, by
Lemma 2.3, we have kercom = Z(L) = ker¢ o 7’. Hence there exists the induced
isomorphism

¢:L/Z(L)=(L/Z(L),g+ Z(L),b+ Z(L))
—L'/Z(L') = (L'/Z(L'),¢' + Z(L'),4 + Z(L'))

such that pocor = ¢/ on’. In particular, p(g+ Z(L)) = pocon(g) = on'(g) = ¢+
Z(L') and similarly ¢(h+ Z(L)) = b’ + Z(L'). Therefore, ¢ is a A-isomorphism. [

Remark 2.5. Any A-graded Lie algebra is perfect. Also, any perfect Lie algebra L,
we have Z(L/Z(L)) = (0). Indeed, it is enough to show that if z € L satisfies
[z, L) C Z(L), then z € Z(L). Since [z, L] = [z,[L, L]] C [[z, L], L] + [L, [z, L] = (0),
we get © € Z(L).

Now we define new concepts.

Definition 2.6. Let L = (L, g,b) = ©,cau{oy Ly be a A-graded Lie algebra over F'.
Let G be an abelian group. We say that L admits a compatible G-grading or simply
L is a AG-graded Lie algebra if

L = ®4eq LY is a G-graded Lie algebra such that g C L0,

As a consequence, LY is a h-module for all g € G via the adjoint action. Hence we
have LY = ©,cauqoy Lf, where L) = L, N LY (see [6] Proposition 1, p.92). Therefore,

L, =®gec L and
- @ Pu
nEAU{0} g€G
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Remark 2.7. (i) The compatible G-grading is completely determined by L¢, for all
p€AandgeGsince L§ =3 cn D ymnik (Ll L% ).
(ii) Let supp L, := {g € G | LY, # (0)}. Then we have

supp L C | J (supp Ly, + supp L,,),
HEA

where supp L = {g € G | L9 # (0)} as defined in the beginning of §1.
Let Z(L) be the centre of L and let

{hu€b|peA}

be the set of coroots. Then a AG-graded Lie algebra L is called predivision if

(pd) for any p € A and any LY, # (0), there exist x € LY and y € L_}, such that
[z, y] = h, modulo Z(L);
and division if
(d) for any p € A and any 0 # = € L9, there exists y € L_ such that [z,y] = h,,
modulo Z(L).

Note that (d) implies (pd), i.e., ‘division’ == ‘predivision’. If dimp L, < 1 for all
1€ A and g € G, then two concepts, ‘predivision’ and ‘division’, coincide.

Example 2.8. (a) A A-graded Lie algebra is a predivision AGg-graded for the trivial
group Gy = {0}.

(b) The core of an extended affine Lie algebra of reduced type A with nullity n is
a division AA-graded Lie algebra over C, where A is a free abelian group of rank n.
Indeed, it is known that such a core L is a A-graded Lie algebra over C and has a

A-grading, say
- @ @
pEAU{0} SEA

where A is defined as the group generated by isotropic roots ¢ in a vector space, which
turns out to be a lattice of rank n, and so supp L of the A-grading of L is equal to A
(see for the details in [2]). Also, the grading subalgebra g is contained in ®,eauor Lu
(L = Ly+o) so that the A-grading L = ®secp L, where L := ®,eauqoy Luts, is
compatible. Thus L is a AA-graded Lie algebra.

We recall one of the basic properties of extended affine Lie algebras (see [1]): For
any i € A, 6 € A and any 0 # e,qs € L, 45, there exist some f,45 € L_,_s and
huts € Lo (= Loto) such that (eu4s, fu+s, huts) is an slo-triplet, and in particular
[epts, furs] = Puts.

One can check that h, —h,1s € Z(L) for all coroots hy = huyo of g. Therefore L
is a division AA-graded Lie algebra. We note that dim¢ L5 <1 for all © € A and
0 € A, which is also one of the basic properties of extended affine Lie algebras.
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(c) Let Z = @®4eq Z4 be a G-graded commutative associative algebra over F' and
let g="hod (@MGA Qu) be a finite dimensional split simple Lie algebra over F' of
type A with the set {h, € b | p € A} of coroots. Then L :=g®p Z is a AG-graded
Lie algebra. In fact, L = @ caufoy (8, ®F Z) for go = b is a A-graded Lie algebra
with grading subalgebra g = g® 1. We put LY := g ®Fp Z, for all ¢ € G. Then
supp L = suppZ and L = @geq LY is a G-graded Lie algebra with g C LY, ie,
compatible. Hence L is a AG-graded Lie algebra. We call the compatible G-grading
of L =g ®p Z the natural compatible G-grading from the G-grading of Z.

Suppose that Z = ©4eq K7 is a crossed product commutative algebra over F'. Let
e € g, and f € g_, such that [e, f| = h,. Thene®ge Ly, f Ry e L~J and

e@g fog'l=leflogg =hol="h,

for all g € GG, and so L is a predivision AG-graded Lie algebra over F. Note that
Z(L) = (0). Also, if K is a field, then L is a division AG-graded Lie algebra.

Suppose that L = (E,g,r}) = Bgec L9 is a AG-graded Lie algebra and that

m: L — L is a cover of a Lie algebra L. Then L = (L,n(g),7(h)) becomes a
A-graded Lie algebra so that (f}, ) is a A-cover of L. Moreover, if ker 7 is G-graded,
then L admits the induced compatible G-grading L = @4cq m(L9). In particular, the

centre Z(L) is always G-graded, L/Z(L) is a AG-graded Lie algebra.

Definition 2.9. Let P be a unital associative algebra over F' and let gl;41(P) be the
Lie algebra consisting of all (I + 1) x (I + 1) matrices over P under the commutator
product (I > 1). Let e;j(a) € gli+1(P) whose (i, j)-entry is a and the other entries
are all 0. We define sl;;1(P) as the subalgebra of gl;;(P) generated by e;;(a) for
alla € Pand 1 <i# j <1+ 1. The centre Z(sli41(P)) of slj41(P) consists of
Zii eii(a) for a € [P, P] N Z(P) where [P, P] is the span of all commutators in P
and Z(P) is the centre of P. We define psl;11(P) as slj41(P)/Z(sli41(P)).

It is well-known that sl;11(P) is an A;-graded Lie algebra (see [3]): Denote {e;;(b) | b €
B} by e;;(B) for any subset B C P. Let

3ll+1(F) =hod @ Bij(Fl) C Sll+1(P),
1<izj<l+1

be the split simple Lie algebra over F' of type A; where b is the Cartan subalgebra
consisting of diagonal matrices of slj+1(F'). Let ¢; : h — F be the projection onto
the (¢,j)-entry fori =1,... 141, and A := {g; —¢; | i # j}, which is a root system

of type A;. Then
slip1(P) = Lo ® ( $H eij(P>),

E;i—Ej [SYAN
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where Ly = Z&i—sjeA leij(P),e;i(P)], is an A;-graded Lie algebra with grading
subalgebra slj1(F). Let Z := Z(sli41(P)). We can and will identify sl;1(F) + Z
with sl;11(F) and e;;(P) + Z with e;;(P), and so

plina(P) = (Lo/2) 0 (B ()

€;—€;€EA

is also an A;-graded Lie algebra with the same grading subalgebra sl;11(F).

Example 2.10. Let sl;1(P) be the A;-graded Lie algebra over F' with grading
subalgebra sl;yi(F) described above. If P = @4cq P, is a G-graded algebra, then
sli+1(P) admits a compatible G-grading. Indeed, let

slip1(P)? == {Z €ij(Pg) | Z €ij(Py) C slip1(P)}.

Then slj41(P) = ®geq sliy1(P)Y, and it is a G-graded Lie algebra with sl;41 (F) C L°,
i.e., compatible. Note that supp (sli41(P)) D supp P, and so (supp (sl;41(P))) = G.
Also, psl;y+1(P) admits the induced compatible G-grading. We call the compatible
G-grading of sl;j+1(P) or psl+1(P), i.e.,
sll+1(P)gi_Ej =e;j(Py) = pslz+1(P)§i_5j for all e, —¢; € A and g € G,
the natural compatible G-grading from the G-grading of P.
If P = @4ecq Ry is a crossed product algebra, then

lei5(9), €5i(g )] = ei(1) — ej5(1) = [es; (1), €5i(1)] = he, e,

for all g € G. Thus slj4+1(P) and psl;+1(P) with the natural compatible G-gradings
from the G-grading of P are predivision A;G-graded Lie algebras over F'. Also, if R
is a division algebra, then the A;G-graded Lie algebras sl;,1(P) and psl;i(P) are
division.

For any associative algebra P, one can define a new product, p-q = %(pq +gp) for
all p,q € P. Then P* := (P,-) is a Jordan algebra.

Lemma 2.11. (i) Suppose that the A;-graded Lie algebra pslj;1(P) described above
admits a predivision (resp. division) compatible G-grading. Then if | > 2, P is
a predivision (resp. division) G-graded algebra, and the G-grading of psliy1(P) is
natural from the G-grading of P.

If 1 =1, then PT is a predivision (resp. division) G-graded Jordan algebra.

(ii) Suppose that the A-graded Lie algebra g§ @p Z described in Example 2.8(c)
admits a predivision (resp. division) compatible G-grading. Then Z is a predivision
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(resp. division) G-graded algebra, and the G-grading of § @ p Z is natural from the
G-grading of Z.

Proof. (i): By our assumption, psli1(P) = pslit1(P)o ® ( ®e,—c,ea €ij(P)) admits
a predivision (resp. division) compatible G-grading, say

psli+1(P) = psli41(P)o @ (@ai—sjeA DPygea eij(P)g)-
Let
PV :={pe P|ey(p) €ey(P)}.
We claim that Pgij = P;* forall e, —es € A, If [ =1, then A = {e1 — 9,69 — €1}
For p € Pgu, we have

[[e12(p), e21(1)], e21(1)] = —2e21(p) € €21 (P)?

since ea1(1) € e91(P)?. Thus p € Pg21 and we get Pg12 C szl. The other inclusion can
be obtained by the similar way. Hence the claim holds for [ = 1.

In general, it is well-known that for any distinct a,3 € A = A;, 1 > 2, D or E,
there exists a sequence a;, ... ,a; € A so that a3 = a, oy = f and ;41 — oy € A for
i=1,....t—1.

Now, for [ > 2, it is enough to show that P/ C P;*. Let p € P7. We apply the
above for a =¢; —¢j and 8 = ¢, — 5. For p € P;j,

[-[leij (P)s ean (D], €as (D], - s €a, (1)] = Fea, (p) = Fers(p) € ers(P)?
since eq, (1) € Ly, Hence p € P;* and our claim is settled.
Thus one can write Py = P)) and P = @©4cc FPy. Since, for p € Py and ¢ € P,
(9,h € G),

leij(p), ek (q)] = eir(pq) € eik(P)fH'h if [ > 2 and i # k,

[e12(p), e21(1)], e12(q)] = e12(pg + gp) € e1a(P)IT" if I =1,

we have pqg € Pyyp if | > 2 and pg + qp € Py4p if | = 1. Also, one can see that
supp L C supp P + supp P (see Remark 2.7), and so (supp P) D (supp L) = G,
whence (supp P) = G. Therefore, P is a G-graded algebra if [ > 2 and P is a
G-graded Jordan algebra if [ = 1. Note that e;;(P)Y = e;;(F,) for all ¢, —¢; € A and
g € G, and hence the G-grading for [ > 2 is natural (see Remark 2.7).

By (pd), for any ¢; —e¢; € A and any g € supp P, there exist e;;(p) € e;;(Py) and
e;i(q) € e;jx(P—g4) such that

leij(p), eji(q)] = [eij(1),e(1)] + 2 for some z € Z(sllH(P)).

Hence e;i(pq) —e;;(qp) = eii(1) —e;; (1) + Zﬁ:;ll exr(a) for some a € P, and so a =0

and pg = qp = 1, i.e., p is invertible. Also, p is invertible in P < p is invertible in
Pt. Therefore, P = ®yeq Py is a predivision G-graded associative algebra if [ > 2,
and P* = @ c¢ P, is a predivision G-graded Jordan algebra if [ = 1. The statement
for ‘division’ can be shown in the same manner.

(ii): Let Zy :=={2 € Z | g® 2z C (g®F Z)9}. Then Z = @4ecc Z,; becomes a
G-graded algebra. The rest can be shown in the same manner. [J
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Definition 2.12. For AG-graded Lie algebras L = Dgea L9 and L = Dgeq LI, if
A-cover  : L — L satisfies LY = w(L9) for all g € G, then L = (L,7) is called
a AG-cover of L. Also, for AG-graded Lie algebras L and L', if there exist a AG-
graded Lie algebra Land maps7: L — L and n’ : L — L’ such that (L,n) and
(L, 7') are both AG-covers, we say that L and L’ are AG-isogeneous.

It is clear that if L is a AG-cover of L, then
L is is predivision (resp. division) <= L is predivision (resp. division).

Also, by Corollary 2.4, if L and L’ are AG-isogeneous, then L/Z(L) and L'/Z(L’) are
AG-isomorphic, i.e., there exists a A-isomorphism which is also G-graded between
them. In particular, L/Z(L) and L/Z(L) above are AG-isomorphic.

Proposition 2.13. (i) Let | > 3. Then a predivision (resp. division) A;G-graded
Lie algebra L over F is an AjG-cover of psli+1(P) admitting the natural compatible
G-grading from the G-grading of a predivision (resp. division) G-graded associative
algebra P over F. Hence L/Z (L) and psli4+1(P) are AG-isomorphic.

(ii) Let A = D or E and let g be a finite dimensional split simple Lie algebra L over
F of type A. Then a predivision (resp. division) AG-graded Lie algebra over F is a
AG-cover of g ®p Z admitting the natural compatible G-grading from the G-grading
of a predivision (resp. division) G-graded commutative associative algebra Z over F'.
Hence L/Z (L) and g @ Z are AG-isomorphic.

Proof. For (i), let L be a predivision A;G-graded Lie algebra over F. Berman and
Moody showed in [3] that L is Aj-isogeneous to (sli1(P), slip1(F)) (the Steinberg
Lie algebra st;11(P) serves as an A;-cover of L and sl;41(P)). Hence, by Corollary
2.4, L/Z(L) is Aj-isomorphic to pslj1(P). Thus (psli+1(P), sli+1(F)) admits a com-
patible G-grading via the A;-isomorphism from the compatible G-grading of L/Z(L)
induced by the compatible G-grading of L. Therefore, the statement follows from
Lemma 2.11.

(ii): Let L be a predivision AG-graded Lie algebra over F'. Berman and Moody
showed in [3] that L is a A-cover of g®@p Z. Thus the statement follows from Lemma
2.11. O

In this paper we classify predivision AZ™-graded Lie algebras for A = A;, | > 3,
D or E, up to central extensions. By Proposition 2.13, our work is to classify crossed
product algebras R Z™. We determine such algebras as a generalization of quantum
tori. Namely, let g = (g;;) be an n x n matrix over F' such that

gi =1 and g =q;;".
The quantum torus Fy = Fg[tf', ... ¢
algebra over F' with 2n generators tlil

determined by q is defined as the associative

., t:f1, and relations

tit; b=t =1 and  tit; = qijtit;
11



for all 1 < 4,5 < n. Quantum tori are characterized as predivision Z"-graded asso-
ciative algebras whose homogeneous spaces are all 1-dimensional (see [4]). Note that
Fg4 is commutative <= g = 1 whose entries are all 1, i.e., Fj = F[tlﬂ, ..., tF1] is the
algebra of Laurent polynomials. Also, a quantum torus is a twisted group algebra
FYz"™].

§ 3 CLASSIFICATION OF R *x Z"

Throughout this section F' is an arbitrary field and G is an arbitrary group. For
a G-graded algebra S = @,cq Sy over F' in general, we denote by GrAutz(S) the
group of graded automorphisms of 5, i.e.,

GrAutg(S) := {0 € Autp(5) | 0(Sy) = S, for all g € G}.

Lemma 3.1. Let R+xG = (R,G,0,7) be a crossed product algebra over F and (R *
G)xM = (RxG,M,n,§) a crossed product algebra over F' for a group M, an action
n and a twisting £. Suppose that n(M) C GrAutg(R x G) and that £(m,l) € U(R)
for all m,l € M. Then, (R G)x M is a crossed product algebra R (G x M) =
(R, (G x M),o’, T') over F for some action ¢’ and twisting 7.

Proof. We have
(RxG)* M = Dmerm (R*G)M = Omem (Dgea Rg)m = Dgmyeaxm Rgm

as free R-modules. We define 7, = n(m) |gr1 an F-automorphism of R for every
m € M. Also for h € G, h is a unit in R * G (see 1.6). Since 7, is a graded
automorphism of R+G by our first assumption, n,, (h) = dpm, nh for some dm,n € U(R).
Therefore, for 7gm € Rgm and shl € Rhl, we have

(rgm)(shl) = rgnm

8)dm,non (§(m,1))hml  (by our second assumption)
S)Gg(dm,h)agh (g(ma l))gm
5)09 (dm,h)agh (g(ma l))T(g7 h)g_h m

Thus we have the action
o' G x M — AuwtpR by 0, = Tglim,
and the twisting 7/ : (G x M) x (G x M) — U(R) by

T'((g, m), (h, l)): og(dm.n)ogn (g(m, l))T(g, h).
12



Since the crossed product algebra (R * G) x M is associative, we get

(RxG)*M =R« (Gx M)=(R,Gx M,o' 7). O
A triple (R, ¢, q) where R is a unital associative algebra over F,

@ =(p1,---,0n)

is an n-tuple of F-automorphisms ¢, of R, and q = (¢;;) is an n x n matrix over R
satisfying, for all 1 <i < j <k <mn,

(G1) g =1 and qj_z'l = Qij,
(G2) i = Lqij)piv;,
(G3) @k(qz'j) = ijQOj(Qik)QijSOi(ij)Qki;

is called a Z™-grading triple, and a division Z™-grading triple if R is a division algebra.
For a Z"-grading triple, we introduce several notations and prove some identities.

Notations.
(N1) e =(0,...,0,1,0,...,0) € Z",
i.e., the ¢-th coordinate is 1 and the others are 0.
qi70i(ai)03 (i) o] Naiy) =TI ©ay), ifm>0
(N2) ¢ =1{ 1, ifm=0
oy Haga)ey *(aza) o (a50) = L2y Phlaz),  ifm <0,
g5 i ()
For a = (av,... ,an),8=(P1,...,0n) €Z" and k =0,1,2,... ,n,
id, if k=0,1
(N3) L B
o1t iR >,

and @ = oo,
7j—1
(N4) Qejo = H SO(a)i(qz(;?éi)) with ag = qo; = 1.
=1
H?mel 902'((]ej,a), ifm>0

(N5) ¢ =11, fm =0
-1 _ .
Hl:m SO_Z] (qu{a)u if m < 0.



Lemma 3.2. Form € Z and o = (1, ... ,a) € Z", we have

—(m)y _ _(—=m)
(1) (P (qZ] ) qz] )
(2) oo =gl s,
(). D= @' (aiy))e' ™ ey for i =i,
(3) P\t = . ()
I(THZ) @ (q"))loredi for j <,
m—+1 m m—+1
(4) qu * ) = QZJSO’L(Q'EJ )) and qz]( * ) - Sol(qu( ))q.?’“
(5) or(a™) = ames (ae)a ™ o ()™ -
Proof. For (1), we have from (N2),
e Naji) - pilasi) g = Hll:mq ©H(gji), ifm>0
;M =141, if m =0
m -1 .
e (qi) oy 2 (ai) i H(aig) = TTmm ©4(a;), ifm <0,
So we get
o; i) -0 ™ (gzs) =TI @hlage), if m >0
e (g™ =1 1, it m =0

m

—m— —m—1 .
Gijei(ai) o7 " Naiy) =TI elaig), if m <0,

which is exactly qZ(;m).

For (2), the case m = 0 is clear. Assume that m > 0. Put ¢ := ¢;; for simplicity.
Then we have

P o7 = 0ipr
= I(q(m 1))302n_1g0jg0i by induction on m
=I(¢" )" Lq)pip; by (G2)
= 1(g" NI(e" (@) 7 @5
=1(¢") e p;.

Also, ()=t = (I(qz(;'ﬂ‘))gogngoj)_l for m > 0, and so

—(m) (- -m

om0t = o7 o™ ;™) = 0 (e ™ (")) e ™ = 0 e ™) e ™,

by (1). Hence we get @ p; ™ = I(qgj_m))goi_mgoj, and (2) holds for all m € Z.

14



For (3), when j > i, using (2), we have
(@) 1
Yi¥i = PiP1 P

(a1) o1

= I(qu )L S
= 1(g{7) o 1S )52 0057 -

=g 1ase )05 Las s - g )l o)

1—1
=I(JT #“" (@)@ 0. (Note ()0 = id when i = 1)
=1

When j < i, we have

(e)i Qi1

PiP; :‘PjSptlll P

(a1) o1

= 1(q15") el psp5” - 5 i

(a1) Q-1

=g ) - Hg\ e (g0 ) oM g -
= 1(5)pst - Lg M )l et

7j—1
=I(J] # @ (gi)p(@T)5. (Note ¢(®) = id when j = 1)
1=1
For the first formula of (4), the case m = 0 is clear. We put q := ¢;;, p:= ¢ ' and

@ := ; for simplicity. For m > 0, we have

¢ = qp(q) (@) - ™ (q)
= qp(qp(q) - 0™ (@)= ap(d™).

For m = —1, we have ¢(~1*1) = 1, while qp(¢(~) = qpp—(p) = 1. For m < —1, we
have

7n+1(

¢t = o Y p)p2(p) - ™ (p

) )
=qpe (p)e *(p) ¢
= qo(e ' (P)e2(p) - @™ (p)) = ae(q™).

(m+1) _ (q(m+1))_1_

The second formula follows from the first since g, ; i
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For (5), the case m = 0 is clear. Assume that m > 0. Then we have

(m)

‘Pk(qij )
=or(ai)onei(a" ™) by (3)

=01(qij)8irPier (qg}”*l) Jar: by (G2)

m—1 m—1) m— —(m—1
=513 (%) 91501 (a7 ) Qi (45105 (0 ))q§j Lo k) (™)) aw

by (G3) and induction on m

=qinps(ain)aiieiei( @ il el (an)ei(a ™ )aw
=qines(ain) @i ari0i iy Daiei(al el (ae)ei(a ™)
by (G2) and (3)

=qirei(an) iy )eila ) e (ae)ei(a ™) by (3)

=k (a4} ))q§}” Yo (rg)a™ by (3).

m —1 m m) m -
Also, one has (pk(a\)) " =(gjnes(aly”)al” o (ars) i
oe(a;: ™) = a§ e @i e ™ e (e Vaks. Applying ¢f

(m))_l for m > 0, and so

m

in both hands, we get

(m)

—(m) (m) m

©; "on(ay ) =0 " (e @) i (g

(m)y  (=m) _—m o —(m)

=¢; "(q, ak; ei " ei(ae ;s (aki) by (1)

)17

Then, by (1) and (2), we have

g™ eonlal; ™) = a6t agraly ™ 1 "™ )i (@l ™ e ™ (ang),

and we obtain

(—=m) (—m)) (—=m) (—=m)

SOk(Qij ) = ki (@, 9ij ©; " (qri) g, for m > 0.

Hence, (5) holds for all m € Z. O

Now we are ready to state our theorem.

Theorem 3.3. Let (R,,q) be a Z"-grading triple and let Ry g := @aezr Rta be a
free left R-module with basis {te, | o € Z™}. Then there exists a unique associative
multiplication on Ry g such that, fort; :==t.,,i=1,...,n, a = (a1,...,a,) and
r e R,

(3.4) to=t{r -t it =t =1, tor=@i(r)t; and  tjt; = qijtit;.
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!/
Moreover, for rtq,r'tg € Ry q, we have

rtar'tg = 1 (1) qa.stats:
where > and ga g are defined in (N3) and (N6). In particular, R, q is a crossed
product algebra R * Z™ with

(action) o :7Z" — Autp(R) by o(a)=p*
(twisting) 7 :7Z" xZ" — U(R) by 7(o,B) = qa,pB-

Conwversely, for any crossed product algebra Rx7Z", there exists a Z™-grading triple

(R, @, q) such that R+7Z" = R, q.

Proof. We first consider a crossed product algebra R * Z. Let t := 1 € R * Z. Then,
t™ is a unit in Rm for all m € Z. Using the diagonal basis change, one can take an
R-basis {t™ | m € Z}. So we have t™t! = t™*! for all m,l € Z. Hence, R*Z = RZ is
a skew group algebra. Let ¢ be the action of 1, i.e., t(rl) = ¥ (r)t for r € R. (Note
that 1 = 0.) Then the action of m is ™, i.e.,
e (rl) =" (r)t™

Conversely, it is clear that any F-automorphism 1 of R determines a skew group
algebra RZ by the action m — 1™ (see Remark 1.3). We denote this RZ by R|[t;].

Let R := R[t;;41] where 91 = ¢1. Let 95 be a graded F-automorphism 5 of
RM and R®) := RMWty;4hy]. Then, by Lemma 3.1, we get R®) = (RZ)Z = R * 72,
Repeating this process n times, one can construct R * Z™ inductively. Namely, for a
crossed product algebra R*—1) = R« Z*~1 if we specify an F-graded automorphism
Y of R=1) then

R™ = RE=D ] = R* 27,

and we obtain R(™ = R Z". Thus, our task is to specify 15, on R%*~1 and to show
that v is a graded F-automorphism where k£ > 2. We note that

{t?l . t(]:k 11 (041, . ,Oék_l) S Zk_l}
is a basis of the free R-module R*~1). For convenience, we put
(0%
A

and define an F-linear transformation 1, on R**~1 by

lbk(rt(a)’“ = [H SO(OL)Z (aZ) 175(0‘)’“ for r € R,

which is clearly graded. If vy (rt(®*) = 0, then ¢ (r) = 0, and hence r = 0, and so
Y is injective. Since

-1
wk(so,zl( {H @@ “‘”} )t“‘)k) = rtl),

1y, is surjective. Therefore, vy, is an F-linear graded isomorphism on R*~1. So it
remains to prove that v, is a homomorphism. For this purpose, we use a well-known
fact.
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3.5. Let A and B be unital associative algebras over F' and f a F-linear map from
A into B. Let {t;}icr be a generating set of the F-algebra A. Then, [ is a homomor-
phism if and only if f(t;y) = f(t;)f(y) for alli € I andy € A. Moreover, if {t,?:l}iej
is a generating set of A, then f is a homomorphism if and only if f(t;y) = f(t;)f(y)
and f(t; 1) = f(t;)" for alli € I and y € A.

We have a generating set R U {tlﬂ, e ,t,ill of R5=1) over F, and
_ —-1),— _ _
Unlt; ") = 45V = 07 )t
= (t05 qzw)) ™" = (qnty) ™" = rlt;) "
So, by 3.5, we only need to show that, for all r, 7’ € Rand 1 < j <k —1,

(A) i (rr't @) = () (@),
(B) Ui (£t @R) = ahy () by (rt (k).

For (A), we have

k—1
wko"r/t(a)k) SDk(TT ) H (p(a) (q(az))t(a)
1=1
1:[ (@) (gl )@
=1
= g, (7)ahy, (' t(@F),

For (B), we first note that there is the embedding of RY) into R*~1 for 1 < j < k—1,
and so

—_

j_
1107 = 4y (1)t = 0;(r) [T @' (a7 )t b1;.
i=1

Thus we have

P (5t @R = P (i, (r)t ¢ )
= 1/)k(90j(7‘)(¢ (t(a)J) G

H (@) (g(@0y (e
Ji _
o i o i+ ate )
zgpkspj( )H 901630( )i qz(j ) H (axtej)i ( + ))t( +ei)k
=1 =1
: = ABCt(@tei)x
18



a, o — ates); oi+0ii
where A = 0;(r), B = [[12} @pp'®i(q{f”) and € = [[I2] pleteni (gl 09)),
First of all, we have
A = orp;(r) = girpier(r)ar; by (G2).
Secondly, by Lemma 3.3(2) and (4), we have

o @i (g5)

i—1

= {H @(a)l(%(gl))]go(o‘)% (a8) {H 2@l }

=1

-1

i—1

:{H

I=1
Note that

-1

1—1
P @ (gle ”)} @ (qinps (gl ) o (any) ™) {H @i (gle l))}
=1

-1

i—1 —1 i
w(“)i(qk_fa")){ﬂ w(a)’(ql(?l))} = [H w(“)l(ql(;fl))}
=1

=1
and @1 (qij) = (¥ (quy).

So we have

(SOk:CP(a)i(qZ(;”)))(SOkQD(a)Hl qqfilfjl) {H go(o‘)l oez } (e): (q k:QOJ( (az))qz(]az))

—1
x @it (i (g )T ) [H P @ (gi) }
Thus, after cancellations, we get
j—1
B=T] ere'® ()
i=1
Jj—1 j—1 -1
ijk{H P (p5(ay ”)qff”)]so("‘)j(qw){ﬂ P2 (g (O“))] :
i=1 i=1
Thirdly, we have
k—1
¢ =T ¢t
i=1
_ji—1 k—1
a; a;j+1 Vi [
_ S0(01) ( (o )) S0(04)3( ( )) H SO(aJrsJ) (qz(k ))
=1 - 1=7+1
_j—]_ .
=TT #' (@5 |7 (aj005(a5)) H pletei (git)),
-i=1 - =741
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by Lemma 3.2(4). Consequently, after cancellations and notifying ¢;; = 1, we obtain

Ui (trt(®r) = ABCt Tt
: (0:)) () = (o)
(*) = q]k@j@k(r) H SD( ) (80]( (e 77 )q’u i H QO(OH_Ej)i (qd?z )t(a+sj)k )

i=1 i=j+1

On the other hand, we have

k—1
it )wk(rt(a)k) = qjkt;or(r H 90(0‘) (al) t(o‘)k
i=1

k—1

= qjkPj l@k ¥
=1

(C")z (O‘l) :|tjt(a)k

k—1
= qjk(pj@k H ©j SO(OL)z ( z) H SO(Oz)l (al)>t(°‘+53)k
=1 I=1

We rewrite D = Hf:ll ;o @i (g (o 1)). To find an expression for D, we use the
following lemma:

Lemma 3.6. Let A be a unital associative algebra, ag = 1,a1,... ,ax € A units and
bi,...,bx € A. Then we have

) 121 (I(Em)(b») =1:Ib(1:1>
2 1 (TTege0) = (T I 00

Proof. (1) is straightforward and (2) is obvious. [
By Lemma 3.2(3), we have, for i < j,

1—1
i@ (gip)) = I( 11 s0(°‘”(flff”>> (i (a?)).

=1

So, by Lemma 3.6(1), we get

J J J
T i () =TT ¢ (es(ale ) |
i=1 i=1 l
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By Lemma 3.2(3), we have, for j < i,

s (g (H " (ag;") >(90(°‘+5“i(q§?i))).

So, by Lemma 3.6(2), we get

H 56 () (J_

—

k—1
g0(06)1 @l)))( H SO(O“st)i(qi(z‘i))).

i=j+1 e i
Hence we get
k-1
D=1 e (d?)
=1
. - .
= H ()i ( (g (as) qf;lz) H pletes)i (g (ai) t(a+ej)k[ (p(a)l (a,) ] '
=t i=j+1 e
Consequently, we obtain
(1 ()
;
= giweion(r) [T ¢ (ps(ait)alf™) H pleteni (gipytlaten,
i=1 =i

which is exactly (x). Hence we have shown (B) and constructed a crossed product
algebra R+ Z* = R*) for k=1,... ,n from (R, p,q).

Let us put R, 4 := R = @,epn Rty where a = (... ,a,) € Z"™ and ty =
t3t - -t Since i |r= @ for k =1,... ,n, we have t;r = p;(r)t;. Also, we have
t]tz = wj(tz)tj = qijtitj for 1 S /) <j S n, and so tjti = qijtitj for all 1 S Z,] S n.
Hence, our R, 4 satisfies (3.4). The uniqueness of the multiplication on R, q is clear
since RU {tF!,... '} is a generating set of R, 4.

Now, one can easily check that w;lj (t#B)i) = qgfgt(ﬁ)j. So for rte,7'tg € Ry g, We
get

t(@)n o (tOn )tonthn

(p(a)n(qg:?)) $(2)n (B)n gorn+Bn

I
=
AS)
— — ~ — ~~
=
N~— S~— SN~— N~— ~—

= () (1) @2 (gL g

= ro* (T/)Qa,,ﬁta-i-ﬁ'
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Conversely, for any crossed product algebra R x Z" = (R,Z",7,0) = Gaqeczn Re,
we take a new R-basis {to | & € Z"} of R« Z" where to = £, ---,°". We set
¢j = T1(gj,&;) for 1 <i < j<n,qj = q;jl and ¢; := oc,. Note that 7(g;,g;) = 1.
Then one can check that the triple (R, ¢, q) is a Z"-grading triple:

(G1) is clear. Let t; ;== &; for i = 1,... ,n. Then, for i < j and r € R, we have
tjti’f’ = QOjQDZ'<7’)tjti = ngQDi(’f’)qijtitj and tjtﬂ’ = qijtitjr = Qijﬁoi@j<r)titj- Hence,
gpjgoi(r)qij = (i PiP; (T), i.e., (GQ) holds. For ¢ S] S k?, we have tkt]’ti = tkqijtit]’ =
©0i(qij)@intitit; = 0x(4i5) @i (@r)titjte and titit; = qirtjtit; = e (qin)ttity =
4k (qik)gijtitite. Hence, oi(qij)qinei(ak) = @inei(ir)dij, i-e., (G3) holds.

Finally, it is clear that R % Z"™ = @qezn Rt satisfies (3.4). Therefore, we obtain
R+Z"=R,q O

Thus the following is clear:

Corollary 3.7. Let (D, p,q) be a division Z"-grading triple. Then, Dy q is a di-
vision Z"-graded algebra. Conversely, for any division Z™-graded algebra A, there
exists a division Z"-grading triple (D, ¢, q) such that A = D, 4.

Remark. What we have shown in Theorem 3.3 can be written in the following way:
Let B :={e1,... ,e,} and C := {(gj,&;) | 1 <i < j < n}. Suppose that maps

0:B— Autp(R) and 7:C — U(R)

satisfy
(a) 0e,0e, =1(7(€j,€;))0e,0e, and
(b) e, (T(gj,€:))7(ek, €i)0c, (T(E,€5)) = T(ek, &5)0¢, (T(ek, €:))T(5, &)

for all 1 <i < j < k < n. Then there exist unique action ¢ : Z" — Autp(R) and
twisting 7 : Z™ x Z" — U(R) such that & |p= 0, 7 |c= 7 and

(c) T(ovier + -+ g, a6+ +age,) =1 foralll <i<j<n.

Conversely, for any crossed product algebra R x Z™, we can use the diagonal basis
change so that the action and twisting satisfy (a), (b) and (c).

In a certain situation, the condition (G3) of a Z"-grading triple is not needed. We
use the notation [a,b] = aba=1b~! for a,b € U(R).

Lemma 3.8. Let R be a unital associative algebra over F', ¢ :(I(dl), . ,I(dn)) an
n-tuple of inner automorphisms ¢; of R for some dy, ... ,d, € U(R) and q = (¢;;) an
n X n matriz over F. Suppose that a triple (R, p,q) satisfies (G1) and (G2). Then,
(R, ¥, q) is a Z™-grading triple.

Proof. We only need to check (G3). By (G1) and (G2), we have, for all 1 <1i,j <n,
I(dj)I(d;) = I(qi;)1(di)I(dy). So for all r € R, djdsrd; *d; " = gijd;djrd; " d; " ;i and
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hence rdi_ldj_lqijdidj = di_ldj_lqijdidjr, ie., di_ldj_lqijdidj =: ¢;; is in the centre of
R. Note that c;il = ¢;j. Thus we have

Gij = Cijld;, di].
Using this identity, we get (G3): for all 1 <i < j < k <mn,

%k‘Pj(Qilc)QijSOi(ij)Qki
=cjk|dk, dj]d;jcik[dk, di]dj_lcij [d;, dildick;[d;, di)d;  erildi, d]
=dycijldy, dildy " = or(giy). O

By this lemma, if R is a finite dimensional central simple associative algebra, the
defining identities of a Z"-grading triple are just (G1) and (G2).

Remark 3.9. (1) For a Z™-grading triple (R, ¢, q), if ¢ =1 := (id,... ,id), then the
crossed product algebra Rj 4 has the trivial action by Theorem 3.3. So, Ry 4 = R'[Z"]
is a twisted group algebra.
1 - 1
(2) For a Z™-grading triple (R,¢,q), if g =1, =1:= | - |, then a
|
crossed product algebra R, 1 has the trivial twisting by Theorem 3.3. So, R, = RZ"
is a skew group algebra.
(3) By (G2), (R, ,1) is a Z"-grading triple if and only if

() wjp; = pip; for all 4, j.

Finally, we give some examples.

Example. (1) Let Fy, be an arbitrary quantum torus and R an arbitrary associative
algebra. Then it is easy to see that R @ Fy is a predivision Z"-graded associative
algebra (division Z"-graded if R is a division algebra) and is isomorphic to Ry 4. Note
also if R is a field, then this example becomes a quantum torus over R. Conversely,
for a division Z"-grading triple (D, ¢, q), if ¢ = 1, then I(g;;) = id for all ¢;;, by
(G2). Hence g;; is in the centre of D, say K, and we can show that D 4 = D®g K.
Therefore, D, 4 is a tensor product with D and some quantum torus if and only if
@ =1.

(2) Let @ = (4,7) be a quaternion algebra over a field, where ¢ and j are the
standard generators, ¢ = @3 = (I(¢), I(j), I(45)) and 1 = 13. Then one can easily
check (x) in Remark 3.9(3), and hence Q1 is a predivision Z3-graded associative
algebra.
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(3) Let K = Q(({5) be a cyclotomic extension of Q (the field of rational numbers)
where ¢ := (5 is a primitive 5th root of unity, and ¢ the automorphism of K defined
by ¢(¢) = ¢*. Let ¢ = (¢, ¢ ¢°) and

1 ¢ ¢
g= ¢t 1 ¢!
¢ ¢ 1

Then one can easily check that (K, ¢,q) is a division Z3-grading triple, and hence
K 4 is a division Z3-graded associative algebra over Q.

(4) Let H = (¢,j) be Hamilton’s quaternion over R (the field of real numbers),
i.e., the unique quaternion division algebra over R. Put k := ij. Let ¢ = (I(dl),
I(dy), I(dg)) where dy =141, dy =1+ j and d3 = 1 + k. We put ¢;; = 2[d;, d;] for
1<i<j<3,¢= qigl and g;; = 1. Then, (H, ¢, q) satisfies (G1) and (G2), and

1 l—i+j—k 1—-i+j+k
g=|(1—-i+75—k)! 1 l—i—7+k
l1—i+j+k)™ Q1-i—73+k)! 1

By Lemma 3.8, this is a division Z3-grading triple and hence Hy, 4 is a division Z3-
graded associative algebra over R.

§ 4 CONCLUSION

By 1.8, Example 2.8(c), Example 2.10, Proposition 2.13, Theorem 3.3 and Corol-
lary 3.7, one can summarize our results as follows:

Corollary. (i) Any predivision (resp. division) AjZ"-graded Lie algebra over F for
I > 3 is an A)Z"-cover of psli1(Ryp,q) for some (resp. division) Z™-grading triple
(R,¢,q). Conversely, any psliy1(Ry.q) for 1 > 1 is a predivision (resp. division)
AZ" -graded Lie algebra.

(ii) Any predivision (resp. division) AZ™-graded Lie algebra over F for A = D or
E is a AZ"™-cover of g @ K[zfc, ..., 2F] where g is a finite dimensional split simple
Lie algebra over F' of type D or E and K is a unital commutative associative algebra
over F' (resp. K is a field extension of F). Conversely, for any finite dimensional
split simple Lie algebra g over F of any type A, g Qp K[zli, oo, 2] is a predivision
(resp. division) AZ™-graded Lie algebra.
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