
Stokes’ Theorem. Let A be a vector field in xyz-space. Let S be an oriented surface with
boundary curve C, which is a simple closed curve. If C is positively oriented relative to S, then∫

C

A · dr =
∫

S

rotA · dS.

We prove this for a special case where S is the rectangular determined by the vectors ai and bj

in the plane z = c. (We use i, j and k as the fundamental vectors in xyz-space, and a, b, c > 0).
Let

D = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}

be the square region, and parametrize S by

S : r(u, v) = (au, bv, c)

on D. Then the boundary C of S is the union of

C1 : r1(t) = (at, 0, c),

C2 : r2(t) = (a, bt, c),

C3 : r3(t) = (a− at, b, c),

C4 : r4(t) = (0, b− bt, c),

for 0 ≤ t ≤ 1. Then, C = C1 + C2 + C3 + C4 is positively oriented relative to S since

∂r

∂u
× ∂r

∂v
= (a, 0, 0)× (0, b, 0) = abk.

Let
A = (A1, A2, A3).

Note that r′1(t) = (a, 0, 0), r′2(t) = (0, b, 0), r′3(t) = (−a, 0, 0) and r′4(t) = (0,−b, 0). Hence,∫
C

A · dr =
∫

C1

A · dr +
∫

C2

A · dr +
∫

C3

A · dr +
∫

C4

A · dr

=
∫ 1

0

aA1(r1(t)) dt+
∫ 1

0

bA2(r2(t)) dt−
∫ 1

0

aA1(r3(t)) dt−
∫ 1

0

bA2(r4(t)) dt

=
∫ 1

0

aA1(at, 0, c) dt+
∫ 1

0

bA2(a, bt, c) dt−
∫ 1

0

aA1(a− at, b, c) dt−
∫ 1

0

bA2(0, b− bt, c) dt

=
∫ a

0

A1(x, 0, c) dx+
∫ b

0

A2(a, y, c) dy −
∫ a

0

A1(x, b, c) dx−
∫ b

0

A2(0, y, c) dy

= −
∫ a

0

( ∫ b

0

∂A1

∂y
(t, y, c) dy

)
dx+

∫ b

0

( ∫ a

0

∂A2

∂x
(x, t, c) dx

)
dy (Fundamental Theorem of Calculus)

=
∫ b

0

∫ a

0

(∂A2

∂x
(x, y, c)− ∂A1

∂y
(x, y, c)

)
dxdy

Now, we compute
∫

S
rotA · dS. Recall that

rotA =
(∂A3

∂y
− ∂A2

∂z
,
∂A1

∂z
− ∂A3

∂x
,
∂A2

∂x
− ∂A1

∂y

)
.



Thus ∫
S

rotA · dS =
∫∫

D

(∂A3

∂y
− ∂A2

∂z
,
∂A1

∂z
− ∂A3

∂x
,
∂A2

∂x
− ∂A1

∂y

)(
r(u, v)

)
·
( ∂r
∂u
× ∂r

∂v

)
dudv

=
∫ 1

0

∫ 1

0

ab
(∂A2

∂x
− ∂A1

∂y

)
(au, bv, c) dudv

=
∫ b

0

∫ a

0

(∂A2

∂x
− ∂A1

∂y

)
(x, y, c) dxdy.

Therefore, we have shown
∫

C
A · dr =

∫
S
rotA · dS. �

Exercise 1. Let A = (2x− y,−yz2,−y2z), S the half sphere of radius a centered at the origin,
and C the boundary of S. Prove the Stokes’ Theorem for this situation.

The following theorem, so-called Green’s Theorem, is a corollary of Stokes Theorem.

Green’s Theorem. Let A = (A1, A2) be a vector field in xy-plane. Let C be a simple closed
curve with counterclockwise orientation. Let D be the region surrounded by C. Then∫

C

A · dr =
∫∫

D

(∂A2

∂x
− ∂A1

∂y

)
dxdy.

Proof. Embed everything in xyz-space, and parametrize D by x and y, say r(x, y), so that
∂r
∂u ×

∂r
∂v has the same direction as k. Applying Stokes’ Theorem for (A1, A2, 0) and the surface D

with boundary C in xyz-space, we get this theorem. �

Green’s Theorem is crucial on a theory of vector fields in a plane. Also, Green’s Theorem is used
to prove the Cauchy’s Integral Theorem in line integrals of complex functions. Namely, if f(z) is
a differentiable function in a simply connected region R and C is any closed curve contained in R,
then

∫
C
f(z)dz = 0.

Exercise 2. Let A = (−y, x) be a vector field in xy-plane. Let C be the circle of radius a
centered at the origin. Prove Green’s Theorem in this situation.

Exercise 3. Let A = (xy + y2, x2) be a vector field in xy-plane. Let D be the region enclosed
by y = x and y = x2. Prove Green’s Theorem in this situation.

Exercise 4. (1) Let A = 1
d3 (x, y, z), d =

√
x2 + y2 + z2, be a vector field in xyz-space. Let C

be any closed curve which dose not pass the origin. Then show
∫

C
A · dr = 0.

(2) Let A = 1
d3 (x, y), d =

√
x2 + y2, be a vector field in xy-plane. Let C be any closed curve

which dose not pass the origin. Then show
∫

C
A · dr = 0.

Remark 1. The vector field A in Exercise 4 is conservative and one of the potentials is given by
f = − 1

d . (Check ∇f = A by yourself!) Note that the vector field A = (x, y, z) or A = (x, y) is also
conservative. Find a potential!

Exercise 5. Let A = ( −y
x2+y2 ,

x
x2+y2 ) be a vector field in xy-plane. Let C be any closed curve

which dose not pass the origin. Prove the following two statements.
(i) If C does not enclose the origin, then

∫
C
A · dr = 0.

(ii) If C does enclose the origin with positive orientation, then
∫

C
A · dr = 2π.

Remark 2. The vector field A in Exercise 5 is conservative and one of the potentials is given by
f = − arctan(x

y ). (Check ∇f = A by yourself!) But why
∫

C
A · dr 6= 0?


