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Abstract. We explain how the notion of Lie G-tori appeared naturally from finite-dimensional

simple isotropic Lie algebras. Then we discuss the classification of Lie G-tori of type C`.

Throughout this report, let F be a field of characteristic 0.

§1 finite-dimensional simple isotropic Lie algebras

The details of this section can be found in [S] and [ABG].
Let L be a finite-dimensional Lie algebra. If there exists a nonzero ad-nilpotent el-

ement in L, then, by the theorem of Jacobson-Morozov, there exists a nonzero abelian
ad-diagonalizable subalgebra, called a split torus. Such a Lie algebra is called isotropic.

Let L be a finite-dimensional simple isotropic Lie algebra and let h be a maximal split
torus of L. Then L decomposes into the root spaces, i.e.,

L =
⊕

µ∈h∗
Lµ =

⊕

µ∈∆∪{0}
Lµ,

where h∗ is the dual space of h, Lµ = {x ∈ L | [h, x] = µ(h)x for all h ∈ h}, and

∆ = {µ ∈ h∗ | Lµ 6= 0, µ 6= 0}
is called the set of roots. We note that h ⊂ L0 and they are not equal in general. Also,
dimF Lµ ≥ 1 for all µ ∈ ∆, but the equality dimF Lµ = 1 does not hold in general. Thus the
structure for L is much more complicated than the one for finite-dimensional split simple Lie
algebras. However, the set ∆ becomes almost same as in the case for finite-dimensional split
simple Lie algebras. Namely, ∆ becomes a finite irreducible root system, i.e., A` (` ≥ 1),
B` (` ≥ 2), C` (` ≥ 2), D` (` ≥ 4), E` (` = 6, 7, 8), F4, G2, and BC` (` ≥ 1). So the only
difference is the appearance of type BC`. (∆ is called reduced if ∆ 6= BC`.) We say that
L has relative type ∆. Moreover, there is a very strong property which finite-dimensional
split simple Lie algebras possess:
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Division Property. For any µ ∈ ∆ and 0 6= x ∈ Lµ, there exist y ∈ ∆−µ and h ∈ h such
that [h, x] = 2x, [h, y] = −2y and [x, y] = h.

Using this property and Serre’s Theorem, one can show that there exists a split simple
Lie subalgebra g of L containing h as a split Cartan subalgebra of type ∆red, where

∆red :=
{

∆ if ∆ is reduced
{µ ∈ ∆ | µ is reduced, i.e., 1

2µ /∈ ∆} otherwise, i.e., if ∆ = BCl.
In particular, L is a so-called ∆-graded Lie algebra with grading pair (g, h). For each ∆, there
is a certain way of constructing a ∆-graded Lie algebra, which generalizes a construction of
a finite-dimensional split simple Lie algebra.

For example, one can construct a ∆-graded Lie algebra sl`+1(A) of type A` from a
unital associative algebra A, or a ∆-graded Lie algebra sp2`(A, σ) of type C` from a unital
associative algebra A with involution σ. The following are well-known:
(1) sl`+1(A) is a finite-dimensional simple Lie algebra of relative type A` ⇔ A is a finite-
dimensional division algebra.
(2) sp2`(A, σ) is a finite-dimensional simple Lie algebra of relative type C` ⇔ A is a finite-
dimensional division algebra with involution σ (anti-automorphism of period 2).

§2 Lie G-tori

The details of this section can found in [Y2], [Y3], and [ABG].
Among infinite-dimensional Lie algebras, the loop algebra sl`+1(F [t±1]) is probably the

most understandable algebra and has many applications. Note that sl`+1(F [t±1]) has an
A`-grading and also has a Z-grading. We consider a generalization of both finite-dimensional
isotropic simple Lie algebras and loop algebras. We note that the division property holds
for homogeneous elements in the double-graded algebra sl`+1(F [t±1]).

Definition. Let G be an abelian group.
(1) A ∆-graded Lie algebra L = ⊕µ∈∆∪{0} Lµ with grading pair (g, h) is called (∆, G)-

graded if L = ⊕g∈G Lg is a G-graded Lie algebra such that g ⊂ L0. Then since Lg

is an h-submodule of L, we have

L =
⊕

µ∈∆∪{0}

⊕

g∈G

Lg
µ,

where Lg
µ = Lµ ∩ Lg. For convenience, we always assume that

suppL := {g ∈ G | Lg 6= 0} generates G.

(2) Let Z(L) be the centre of L and let µ∨ ∈ h for µ ∈ ∆ be the coroot of µ. Then L is
called a division (∆, G)-graded Lie algebra if for any µ ∈ ∆ and any 0 6= x ∈ Lg

µ,

there exists y ∈ L−g
−µ such that [x, y] ≡ µ∨ modulo Z(L). (division property)

(3) A division (∆, G)-graded Lie algebra L = ⊕µ∈∆∪{0} ⊕g∈G Lg
µ is called a Lie G-torus

of type ∆ if

dimF Lg
µ ≤ 1 for all g ∈ G and µ ∈ ∆. (1-dimensionality)

If G = Zn, it is called a Lie n-torus or simply a Lie torus.
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Example. Let F [G] be a group algebra. Then sl`+1(F [G]) is a Lie G-torus. More generally,
if F t[G] is a twisted group algebra, then sl`+1(F t[G]) is a Lie G-torus.

When G = Zn, there is a more concrete description for F t[G], called a quantum torus: An
n×n matrix q = (qij) over F such that qii = 1 and qji = q−1

ij is called a quantum matrix. The
quantum torus Fq = Fq[t±1

1 , . . . , t±1
n ] determined by q is defined as the associative algebra

over F with 2n generators t±1
1 , . . . , t±1

n , and relations tit
−1
i = t−1

i ti = 1 and tjti = qijtitj
for all 1 ≤ i, j ≤ n. Note that Fq is commutative if and only if q = 1 where all the entries of
1 are 1. In this case, the quantum torus F1 becomes the algebra F [t±1

1 , . . . , t±1
n ] of Laurent

polynomials. Also, F t[Zn] ∼= Fq for some q, and F [Zn] ∼= F1.

We have two results corresponding to the ones in §1.
(1) Any Lie G-torus of type A` for ` ≥ 3 is centrally isogeneous to sl`+1(F t[G]).
(2) Any Lie G-torus of type C` for ` ≥ 4 is centrally isogeneous to sp2`(F t[G], σ), where σ
is a graded involution of F t[G].

In the classification of extended affine Lie algebras, the classification of Lie tori (i.e.,
G = Zn) becomes the central issue (see [A-P] or [AG]). Thus we need the classification of
(Fq, σ).

§3 Classification of (Fq, σ)

The details of this section can be found in [Y1].
The existence of a graded involution on Fq forces the quantum matrix q to be elementary,

i.e., qij = ±1. Moreover, there exists l ≥ 0 such that Fq
∼= Fhl,n

where

hl,n =

l-times︷ ︸︸ ︷
h× · · · × h×1n−2l and h =

(
1 −1

−1 1

)
,

and the product × is defined as follows:
For square matrices A1, . . . , Ar of sizes li, i = 1, . . . , r, we define the square matrix

A1 × · · · ×Ar of size l1 + · · ·+ lr to be

A1 × · · · ×Ar =




A1 1 1 · · · 1

1 A2 1
...

1 1 A3
. . .

...
...

. . . . . . 1
1 · · · · · · 1 Ar




,

where the 1’s are matrices of suitable sizes whose entries are all 1.
For the classification of involutions, first note that an involution σ on a quantum torus

Fq = Fq[t±1
1 , . . . , t±1

n ] is determined by a vector (a1, . . . , an), where ai = ±1, so that
σ(ti) = aiti for all 1 ≤ i ≤ n. So we write σ = (a1, . . . , an). Also, ∗ := (1, . . . , 1) is called
the main involution. Note that ∗ is the identity map if and only if q = 1.
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Using this notation, we can state the classification. Namely, we have

(Fq, σ)) ∼= (Fhl,n
, ∗), (Fhl,n

, σ1), or (Fhl,n
, σ2),

where

σ1 = (1, . . . , 1,−1, 1, . . . , 1),
only the 2l + 1 position is −1, provided n− 2l ≥ 1,

σ2 = (1, . . . , 1,−1,−1, 1, . . . , 1),
only the 2l − 1 and 2l positions are −1, provided l ≥ 1.

For example, if n = 1, then Fq = F [t±1], and σ has two choices, i.e., σ = ∗ = (1) (identity
map) or σ1 = (−1). Note that sp2`(F [t±1], ∗) ∼= sp2`(F ) ⊗F F [t±1] is the untwisted loop
algebra of type C(1)

` , and sp2`(F [t±1], σ1) is the twisted loop algebra of type A(2)
2`−1 (Kac’s

label) or C(2)
` (Moody’s label, which is more natural in our point of view). The twisting

comes from a nontrivial involution of Fq in our context.
If n = 2, we already have 3 nontrivial twistings (and 1 trivial one). Namely, they are

(F [t±1
1 , t±1

2 ], σ1), (Fh[t±1
1 , t±1

2 ], ∗), or (Fh[t±1
1 , t±1

2 ], σ2)

(and (F [t±1
1 , t±1

2 ], ∗)). Note that ∗ = (1, 1), σ1 = (1,−1), and σ2 = (−1,−1). As far as the
author knows, the three twisted double-loop algebras

sp2`(F [t±1
1 , t±1

2 ], σ1), sp2`(Fh[t±1
1 , t±1

2 ], ∗), and sp2`(Fh[t±1
1 , t±1

2 ], σ2)

have not been studied at all. Note that sp2`(F [t±1
1 , t±1

2 ], ∗) ∼= sp2`(F )⊗F F [t±1
1 , t±1

2 ] is the
untwisted double-loop algebra, or equivalently, a toroidal Lie algebra of type C`.
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