LIE G-TORI

Үол Уозні

Department of Mathematics and Statistics
University of Saskatchewan
106 Wiggins Road
Saskatoon, SK., S7N 5E6 Canada
yoshii@math.usask.ca

ABSTRACT. We explain how the notion of Lie G-tori appeared naturally from finite-dimensional simple isotropic Lie algebras. Then we discuss the classification of Lie G-tori of type C_{ℓ} .

Throughout this report, let F be a field of characteristic 0.

§1 FINITE-DIMENSIONAL SIMPLE ISOTROPIC LIE ALGEBRAS

The details of this section can be found in [S] and [ABG].

Let L be a finite-dimensional Lie algebra. If there exists a nonzero ad-nilpotent element in L, then, by the theorem of Jacobson-Morozov, there exists a nonzero abelian ad-diagonalizable subalgebra, called a *split torus*. Such a Lie algebra is called *isotropic*.

Let L be a finite-dimensional simple isotropic Lie algebra and let \mathfrak{h} be a maximal split torus of L. Then L decomposes into the root spaces, i.e.,

$$L = \bigoplus_{\mu \in \mathfrak{h}^*} L_{\mu} = \bigoplus_{\mu \in \Delta \cup \{0\}} L_{\mu},$$

where \mathfrak{h}^* is the dual space of \mathfrak{h} , $L_{\mu} = \{x \in L \mid [h, x] = \mu(h)x \text{ for all } h \in \mathfrak{h}\}$, and

$$\Delta = \{ \mu \in \mathfrak{h}^* \mid L_{\mu} \neq 0, \ \mu \neq 0 \}$$

is called the set of roots. We note that $\mathfrak{h} \subset L_0$ and they are not equal in general. Also, $\dim_F L_\mu \geq 1$ for all $\mu \in \Delta$, but the equality $\dim_F L_\mu = 1$ does not hold in general. Thus the structure for L is much more complicated than the one for finite-dimensional **split** simple Lie algebras. However, the set Δ becomes almost same as in the case for finite-dimensional split simple Lie algebras. Namely, Δ becomes a finite irreducible root system, i.e., A_ℓ ($\ell \geq 1$), B_ℓ ($\ell \geq 2$), C_ℓ ($\ell \geq 2$), D_ℓ ($\ell \geq 4$), E_ℓ ($\ell = 6,7,8$), F_ℓ , G_ℓ , and BC_ℓ ($\ell \geq 1$). So the only difference is the appearance of type BC_ℓ . (Δ is called reduced if $\Delta \neq BC_\ell$.) We say that L has relative type Δ . Moreover, there is a very strong property which finite-dimensional split simple Lie algebras possess:

Division Property. For any $\mu \in \Delta$ and $0 \neq x \in L_{\mu}$, there exist $y \in \Delta_{-\mu}$ and $h \in \mathfrak{h}$ such that [h, x] = 2x, [h, y] = -2y and [x, y] = h.

Using this property and Serre's Theorem, one can show that there exists a split simple Lie subalgebra \mathfrak{g} of L containing \mathfrak{h} as a split Cartan subalgebra of type Δ^{red} , where

$$\Delta^{\mathrm{red}} := \begin{cases} \Delta & \text{if } \Delta \text{ is reduced} \\ \{\mu \in \Delta \mid \mu \text{ is reduced, i.e., } \frac{1}{2}\mu \notin \Delta \} & \text{otherwise, i.e., if } \Delta = \mathrm{BC}_l. \end{cases}$$

In particular, L is a so-called Δ -graded Lie algebra with grading pair $(\mathfrak{g}, \mathfrak{h})$. For each Δ , there is a certain way of constructing a Δ -graded Lie algebra, which generalizes a construction of a finite-dimensional split simple Lie algebra.

For example, one can construct a Δ -graded Lie algebra $sl_{\ell+1}(A)$ of type A_{ℓ} from a unital associative algebra A, or a Δ -graded Lie algebra $sp_{2\ell}(A,\sigma)$ of type C_{ℓ} from a unital associative algebra A with involution σ . The following are well-known:

- (1) $sl_{\ell+1}(A)$ is a finite-dimensional simple Lie algebra of relative type $A_{\ell} \Leftrightarrow A$ is a finite-dimensional division algebra.
- (2) $sp_{2\ell}(A, \sigma)$ is a finite-dimensional simple Lie algebra of relative type $C_{\ell} \Leftrightarrow A$ is a finite-dimensional division algebra with involution σ (anti-automorphism of period 2).

§2 Lie
$$G$$
-tori

The details of this section can found in [Y2], [Y3], and [ABG].

Among infinite-dimensional Lie algebras, the loop algebra $sl_{\ell+1}(F[t^{\pm 1}])$ is probably the most understandable algebra and has many applications. Note that $sl_{\ell+1}(F[t^{\pm 1}])$ has an A_{ℓ} -grading and also has a \mathbb{Z} -grading. We consider a generalization of both finite-dimensional isotropic simple Lie algebras and loop algebras. We note that the division property holds for homogeneous elements in the double-graded algebra $sl_{\ell+1}(F[t^{\pm 1}])$.

Definition. Let G be an abelian group.

(1) A Δ -graded Lie algebra $L = \bigoplus_{\mu \in \Delta \cup \{0\}} L_{\mu}$ with grading pair $(\mathfrak{g}, \mathfrak{h})$ is called (Δ, G) -graded if $L = \bigoplus_{g \in G} L^g$ is a G-graded Lie algebra such that $\mathfrak{g} \subset L^0$. Then since L^g is an \mathfrak{h} -submodule of L, we have

$$L = \bigoplus_{\mu \in \Delta \cup \{0\}} \bigoplus_{g \in G} L_{\mu}^{g},$$

where $L^g_{\mu} = L_{\mu} \cap L^g$. For convenience, we always assume that

$$\operatorname{supp} L := \{g \in G \mid L^g \neq 0\} \text{ generates } G.$$

(2) Let Z(L) be the centre of L and let $\mu^{\vee} \in \mathfrak{h}$ for $\mu \in \Delta$ be the coroot of μ . Then L is called a division (Δ, G) -graded Lie algebra if for any $\mu \in \Delta$ and any $0 \neq x \in L_{\mu}^{g}$,

there exists $y \in L_{-\mu}^{-g}$ such that $[x, y] \equiv \mu^{\vee}$ modulo Z(L). (division property)

(3) A division (Δ, G) -graded Lie algebra $L = \bigoplus_{\mu \in \Delta \cup \{0\}} \bigoplus_{g \in G} L^g_{\mu}$ is called a *Lie G-torus* of type Δ if

$$\dim_F L_u^g \leq 1$$
 for all $g \in G$ and $\mu \in \Delta$. (1-dimensionality)

If $G = \mathbb{Z}^n$, it is called a *Lie n-torus* or simply a *Lie torus*.

Example. Let F[G] be a group algebra. Then $sl_{\ell+1}(F[G])$ is a Lie G-torus. More generally, if $F^t[G]$ is a twisted group algebra, then $sl_{\ell+1}(F^t[G])$ is a Lie G-torus.

When $G = \mathbb{Z}^n$, there is a more concrete description for $F^t[G]$, called a quantum torus: An $n \times n$ matrix $\mathbf{q} = (q_{ij})$ over F such that $q_{ii} = 1$ and $q_{ji} = q_{ij}^{-1}$ is called a quantum matrix. The quantum torus $F_{\mathbf{q}} = F_{\mathbf{q}}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ determined by \mathbf{q} is defined as the associative algebra over F with 2n generators $t_1^{\pm 1}, \ldots, t_n^{\pm 1}$, and relations $t_i t_i^{-1} = t_i^{-1} t_i = 1$ and $t_j t_i = q_{ij} t_i t_j$ for all $1 \leq i, j \leq n$. Note that $F_{\mathbf{q}}$ is commutative if and only if $\mathbf{q} = \mathbf{1}$ where all the entries of $\mathbf{1}$ are $\mathbf{1}$. In this case, the quantum torus $F_{\mathbf{1}}$ becomes the algebra $F[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ of Laurent polynomials. Also, $F^t[\mathbb{Z}^n] \cong F_{\mathbf{q}}$ for some \mathbf{q} , and $F[\mathbb{Z}^n] \cong F_{\mathbf{1}}$.

We have two results corresponding to the ones in §1.

- (1) Any Lie G-torus of type A_{ℓ} for $\ell \geq 3$ is centrally isogeneous to $sl_{\ell+1}(F^t[G])$.
- (2) Any Lie G-torus of type C_{ℓ} for $\ell \geq 4$ is centrally isogeneous to $sp_{2\ell}(F^t[G], \sigma)$, where σ is a graded involution of $F^t[G]$.

In the classification of extended affine Lie algebras, the classification of Lie tori (i.e., $G = \mathbb{Z}^n$) becomes the central issue (see [A-P] or [AG]). Thus we need the classification of (F_q, σ) .

§3 Classification of
$$(F_q, \sigma)$$

The details of this section can be found in [Y1].

The existence of a graded involution on F_q forces the quantum matrix q to be elementary, i.e., $q_{ij} = \pm 1$. Moreover, there exists $l \geq 0$ such that $F_q \cong F_{h_{l,n}}$ where

$$h_{l,n} = \overbrace{h \times \cdots \times h}^{l\text{-times}} \times \mathbf{1}_{n-2l}$$
 and $h = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$,

and the product \times is defined as follows:

For square matrices A_1, \ldots, A_r of sizes $l_i, i = 1, \ldots, r$, we define the square matrix $A_1 \times \cdots \times A_r$ of size $l_1 + \cdots + l_r$ to be

$$A_1 \times \cdots \times A_r = \begin{pmatrix} A_1 & \mathbf{1} & \mathbf{1} & \cdots & \mathbf{1} \\ \mathbf{1} & A_2 & \mathbf{1} & & \vdots \\ \mathbf{1} & \mathbf{1} & A_3 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \mathbf{1} \\ \mathbf{1} & \cdots & \cdots & \mathbf{1} & A_r \end{pmatrix},$$

where the 1's are matrices of suitable sizes whose entries are all 1.

For the classification of involutions, first note that an involution σ on a quantum torus $F_{\mathbf{q}} = F_{\mathbf{q}}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$ is determined by a vector (a_1, \dots, a_n) , where $a_i = \pm 1$, so that $\sigma(t_i) = a_i t_i$ for all $1 \le i \le n$. So we write $\sigma = (a_1, \dots, a_n)$. Also, $* := (1, \dots, 1)$ is called the *main involution*. Note that * is the identity map if and only if $\mathbf{q} = \mathbf{1}$.

Using this notation, we can state the classification. Namely, we have

$$(F_{q}, \sigma)) \cong (F_{h_{l,n}}, *), (F_{h_{l,n}}, \sigma_{1}), \text{ or } (F_{h_{l,n}}, \sigma_{2}),$$

where

$$\sigma_1 = (1, \dots, 1, -1, 1, \dots, 1),$$

only the $2l + 1$ position is -1 , provided $n - 2l \ge 1$,
 $\sigma_2 = (1, \dots, 1, -1, -1, 1, \dots, 1),$
only the $2l - 1$ and $2l$ positions are -1 , provided $l > 1$.

For example, if n=1, then $F_{\boldsymbol{q}}=F[t^{\pm 1}]$, and σ has two choices, i.e., $\sigma=*=(1)$ (identity map) or $\sigma_1=(-1)$. Note that $sp_{2\ell}(F[t^{\pm 1}],*)\cong sp_{2\ell}(F)\otimes_F F[t^{\pm 1}]$ is the untwisted loop algebra of type $\mathcal{C}^{(1)}_\ell$, and $sp_{2\ell}(F[t^{\pm 1}],\sigma_1)$ is the twisted loop algebra of type $\mathcal{A}^{(2)}_{2\ell-1}$ (Kac's label) or $\mathcal{C}^{(2)}_\ell$ (Moody's label, which is more natural in our point of view). The twisting comes from a nontrivial involution of $F_{\boldsymbol{q}}$ in our context.

If n=2, we already have 3 nontrivial twistings (and 1 trivial one). Namely, they are

$$(F[t_1^{\pm 1}, t_2^{\pm 1}], \sigma_1), (F_h[t_1^{\pm 1}, t_2^{\pm 1}], *), \text{ or } (F_h[t_1^{\pm 1}, t_2^{\pm 1}], \sigma_2)$$

(and $(F[t_1^{\pm 1}, t_2^{\pm 1}], *)$). Note that $* = (1, 1), \sigma_1 = (1, -1),$ and $\sigma_2 = (-1, -1)$. As far as the author knows, the three twisted double-loop algebras

$$sp_{2\ell}(F[t_1^{\pm 1}, t_2^{\pm 1}], \sigma_1), \ sp_{2\ell}(F_{\boldsymbol{h}}[t_1^{\pm 1}, t_2^{\pm 1}], *), \quad \text{and} \quad sp_{2\ell}(F_{\boldsymbol{h}}[t_1^{\pm 1}, t_2^{\pm 1}], \sigma_2)$$

have not been studied at all. Note that $sp_{2\ell}(F[t_1^{\pm 1}, t_2^{\pm 1}], *) \cong sp_{2\ell}(F) \otimes_F F[t_1^{\pm 1}, t_2^{\pm 1}]$ is the untwisted double-loop algebra, or equivalently, a toroidal Lie algebra of type C_{ℓ} .

References

- [A-P] B.N. Allison, S. Azam, S. Berman, Y. Gao, A. Pianzola, Extended Affine Lie Algebras and Their Root Systems, Memoirs Amer. Math. Soc. 126, vol. 603, 1997.
- [ABG] B.N. Allison, G. Benkart, Y. Gao, Lie Algebras Graded by the Root Systems BC_r , $r \geq 2$, Memoirs Amer. Math. Soc. **751**, vol. 158, 2002.
- [AG] B.N. Allison, Y. Gao, The root system and the core of an extended affine Lie algebra, Selecta Mathematica, New Series 7 (2001), 149–212.
- [S] G.B. Seligman, *Rational Methods in Lie Algebras*, Lect. Notes in Pure and Applied Math., vol. 17, Marcel Dekker, New York, 1976.
- [Y1] Y. Yoshii, Classification of quantum tori with involution, Canad. Math. Bull. 45(4) (2002), 711–731.
- [Y2] Y. Yoshii, Root systems extended by an abelian group and their Lie algebras, J. Lie Theory (to appear).
- [Y3] Y. Yoshii, Lie tori A simple characterization of extended affine Lie algebras, submitted.

[Y2] and [Y3] can be obtained from http://mathematik.uibk.ac.at/mathematik/jordan/