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ABSTRACT. We explain how the notion of Lie G-tori appeared naturally from finite-dimensional
simple isotropic Lie algebras. Then we discuss the classification of Lie G-tori of type Cy.

Throughout this report, let F' be a field of characteristic 0.

§1 FINITE-DIMENSIONAL SIMPLE ISOTROPIC LIE ALGEBRAS

The details of this section can be found in [S] and [ABG].

Let L be a finite-dimensional Lie algebra. If there exists a nonzero ad-nilpotent el-
ement in L, then, by the theorem of Jacobson-Morozov, there exists a nonzero abelian
ad-diagonalizable subalgebra, called a split torus. Such a Lie algebra is called isotropic.

Let L be a finite-dimensional simple isotropic Lie algebra and let h be a maximal split
torus of L. Then L decomposes into the root spaces, i.e.,

L= L.= P L.

peh peAU{0}
where h* is the dual space of h, L, = {x € L | [h,z] = p(h)z for all h € b}, and

A={peb”|L,#0, p+#0}

is called the set of roots. We note that h C Ly and they are not equal in general. Also,
dimp L, > 1 for all p € A, but the equality dimg L, = 1 does not hold in general. Thus the
structure for L is much more complicated than the one for finite-dimensional split simple Lie
algebras. However, the set A becomes almost same as in the case for finite-dimensional split
simple Lie algebras. Namely, A becomes a finite irreducible root system, i.e., Ay (£ > 1),
Bg (E > 2), Cg (Z > 2), Dg (f > 4), Eg (f = 6,7, 8), F4, GQ, and BCg (E > 1). So the only
difference is the appearance of type BCy. (A is called reduced if A # BC,.) We say that
L has relative type A. Moreover, there is a very strong property which finite-dimensional
split simple Lie algebras possess:
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Division Property. For any n € A and 0 # x € L, there exist y € A_,, and h € b such
that [h, z] = 2z, [h,y] = —2y and [z,y] = h.
Using this property and Serre’s Theorem, one can show that there exists a split simple
Lie subalgebra g of L containing b as a split Cartan subalgebra of type A™¢, where
Ared . { A if A is reduced
. {p€ A | pisreduced, i.e., i ¢ A} otherwise, ie., if A =BC;.
In particular, L is a so-called A-graded Lie algebra with grading pair (g, ). For each A, there
is a certain way of constructing a A-graded Lie algebra, which generalizes a construction of
a finite-dimensional split simple Lie algebra.

For example, one can construct a A-graded Lie algebra sl;11(A) of type A, from a
unital associative algebra A, or a A-graded Lie algebra spoy(A, o) of type C; from a unital
associative algebra A with involution ¢. The following are well-known:

(1) slg+1(A) is a finite-dimensional simple Lie algebra of relative type A, < A is a finite-
dimensional division algebra.

(2) spae(A, o) is a finite-dimensional simple Lie algebra of relative type C;, < A is a finite-
dimensional division algebra with involution o (anti-automorphism of period 2).

§2 LIE G-TORI

The details of this section can found in [Y2], [Y3], and [ABG].

Among infinite-dimensional Lie algebras, the loop algebra sly, i (F[t*1]) is probably the
most understandable algebra and has many applications. Note that sl ;(F[t*!]) has an
Ay-grading and also has a Z-grading. We consider a generalization of both finite-dimensional
isotropic simple Lie algebras and loop algebras. We note that the division property holds
for homogeneous elements in the double-graded algebra sy, i (F[tT1]).

Definition. Let G be an abelian group.
(1) A A-graded Lie algebra L = @,cauqo} Ly with grading pair (g, b) is called (A, G)-
graded if L = @yec LY is a G-graded Lie algebra such that g C L°. Then since L9

is an h-submodule of L, we have

- @ @u
neEAU{0} geG
where Ly = L, N LY. For convenience, we always assume that
supp L :={g € G | LY # 0} generates G.

(2) Let Z(L) be the centre of L and let u¥ € b for u € A be the coroot of p. Then L is
called a division (A, G)-graded Lie algebra if for any p € A and any 0 # x € Lf,

there exists y € L:Z such that [z,y] = ¥ modulo Z(L). (division property)

(3) A division (A, G)-graded Lie algebra L = ©,caufo} ©gec LY, is called a Lie G-torus
of type A if

dimp LY <1forallg € G and p € A. (1-dimensionality)

If G =7", it is called a Lie n-torus or simply a Lie torus.
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Example. Let F|[G] be a group algebra. Then sly;1(F[G]) is a Lie G-torus. More generally,
if F'[G] is a twisted group algebra, then sl, 1 (F*[G]) is a Lie G-torus.

When G = Z", there is a more concrete description for F'*[G], called a quantum torus: An
nxn matrix ¢ = (g;;) over F' such that ¢;; = 1 and ¢;; = qi_j1 is called a quantum matriz. The
quantum torus Fq = Fy [tlﬂ, ., tF1] determined by q is defined as the associative algebra
over F with 2n generators t1',... t*' and relations t;t; ' = t7't; = 1 and t;t; = qi;tit;
for all 1 <+¢,7 <n. Note that Fy is commutative if and only if ¢ = 1 where all the entries of
1 are 1. In this case, the quantum torus F; becomes the algebra F [tiﬂ7 ... ,tF1] of Laurent

polynomials. Also, F*[Z"] = F, for some g, and F[Z"] = F}.

We have two results corresponding to the ones in §1.
(1) Any Lie G-torus of type A, for £ > 3 is centrally isogeneous to slyy1(F'[G]).
(2) Any Lie G-torus of type C; for £ > 4 is centrally isogeneous to spoe(F*[G], o), where o
is a graded involution of F*[G].

In the classification of extended affine Lie algebras, the classification of Lie tori (i.e.,
G = 7Z") becomes the central issue (see [A-P] or [AG]). Thus we need the classification of
(Fg,0).

§3 CLASSIFICATION OF (Fg,0)

The details of this section can be found in [Y1].
The existence of a graded involution on Fy forces the quantum matrix q to be elementary,
i.e., ¢;; = 1. Moreover, there exists [ > 0 such that Fy = Fp,  where

l-times
' 1 -1
hi,=hx---xhx1l, 5 and h= ] L)

and the product x is defined as follows:
For square matrices Ay, ..., A, of sizes l;, i = 1,...,r, we define the square matrix
Ay x---x A, of size ly +---+ 1, to be

4 1 1 - 1

1 A, 1 :
ApxeoxAr=11 1 Ay .|

: . .1

1 .. ... 1 A,

where the 1’s are matrices of suitable sizes whose entries are all 1.

For the classification of involutions, first note that an involution ¢ on a quantum torus
Fy = Fq[tfl,... ,t1] is determined by a vector (ai,...,a,), where a; = +1, so that
o(t;) = a;t; for all 1 < i < n. So we write 0 = (a1,...,a,). Also, *x := (1,...,1) is called
the main involution. Note that * is the identity map if and only if g = 1.
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Using this notation, we can state the classification. Namely, we have

(Fq,O')) = (Fhl,n7 *)7 (th,mo-l)v or (th,naa2)7
where

o1 =(1,...,1,-1,1,...,1),
only the 2] 4+ 1 position is —1, provided n — 2] > 1,
oo =(1,...,1,—-1,-1,1,...,1),

only the 2/ — 1 and 2! positions are —1, provided [ > 1.
For example, if n = 1, then Fy, = F[t*!], and o has two choices, i.e., 0 = * = (1) (identity
map) or o1 = (—1). Note that spos(F[tT'], %) =2 spoy(F) @p F[tT1] is the untwisted loop
25:|:1]

algebra of type C@l), and spo(F[t™'],01) is the twisted loop algebra of type A;i)_l (Kac’s

label) or Cf) (Moody’s label, which is more natural in our point of view). The twisting
comes from a nontrivial involution of Fy in our context.
If n = 2, we already have 3 nontrivial twistings (and 1 trivial one). Namely, they are

(F[titlatgzlLo-l)v (Fh[t?ﬂatéﬂh*)a or (Fh[titlvtg:l]?UQ)

(and (F[t{', 5], %)). Note that * = (1,1), o1 = (1,—1), and g5 = (=1, —1). As far as the
author knows, the three twisted double-loop algebras

spoe(FItEY 451, 01), spoe(FultE 651, %), and  spog(FultEh, 1], o)

have not been studied at all. Note that spoe(F[ti1, 5], %) = spoe(F) @p F[tE1, 5] is the
untwisted double-loop algebra, or equivalently, a toroidal Lie algebra of type C,.
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