Â裲£·²ó¥ê¡¼Âå¿ô¥µ¥Þ¡¼¥»¥ß¥Ê¡¼

 

Æü»þ¡§ £¸·î£²£²Æü¡Ê·î¡Ë£±£´¡§£²£°¡Á£±£¸¡§£±£°

¡¡¡¡ £¸·î£²£³Æü¡Ê²Ð¡Ë£±£°¡§£°£°¡Á £±£±¡§£³£µ

 

 ²ñ¾ì¡§¹­ÅçÂç³Ø ²â¥­¥ã¥ó¥Ñ¥¹¡¡»õ³ØÉô¡¡Â裳¹ÖµÁ¼¼

¡¡¡¡¡¡¡¡

¥×¥í¥°¥é¥à

£¸·î£²£²Æü¡Ê·î¡Ë

£±£´¡§£²£° ¡Á £±£´¡§£´£°¡¡Ëö¿®¡¡°êÌ顦µ×ÊÝÉÙ»ÎÃË  (¹­ÅçÂç)

Âå¿ô¹½Â¤¤Î´ö²¿³ØÅªÍÍÁê¡¡[ȯɽ»ñÎÁ]

 

£±£´¡§£µ£µ ¡Á £±£µ¡§£²£µ¡¡¼óÆ£ Éð»Ë

KS3¤Î¼«¸ÊƱ·¿·²II ¡¡[³µÍ×]¡¡[ȯɽ»ñÎÁ]

 

£±£µ¡§£´£° ¡Á £±£¶¡§£±£°¡¡ÇðÌÚ¡¡Ë§Èþ   (»³¸ýÂç)

Some Generalizations of the BCH Bound¡¡¡¡[ȯɽ»ñÎÁ]

 

£±£¶¡§£²£µ ¡Á £±£¶¡§£µ£µ ¡¡µÈ°æ¡¡ÍÎÆó  (½©ÅĹâÀì)

¶Ë¾®¶É½ê¥¢¥Õ¥£¥ó¥ê¡¼´Ä¡¡¡¡[ȯɽ»ñÎÁ]

 

£±£·¡§£±£° ¡Á £±£¸¡§£°£° ¡¡¾¾²¬¡¡³Ø (»°½Å¸©Î©»ÍÆü»Ô¹â¹»)

Generalizations of the concept of cyclicity of codes

 

£±£¹¡§£°£° ¡Á £²£±¡§£³£° ¡¡º©¿Æ²ñ²ñ¾ì¡§¡¡ºÚ¤Å¤±É´²°  (²ñÈñ¡§5000±ß)

 

£¸·î£²£³Æü¡Ê²Ð¡Ë

£±£°¡§£°£° ¡Á £±£°¡§£³£°¡¡²ÏËÜ Ä¾µª  (³¤¾åÊݰÂÂç)

ÈùʬÊýÄø¼°¤Ë¤è¤ë¿Í¸ýÊÑÆ°¥â¥Ç¥ë¡¡¡¡[ȯɽ»ñÎÁ]

 

£±£°¡§£´£µ ¡Á £±£±¡§£±£µ ¡¡Ê¿ÌǷ  (ÌÄÌç¶µ°éÂç)

Rings over which every free submodule of a free module is a direct summand


         Abstract:  If R is a commutative Artinian ring, then every finitely generated free R-submodule N 

of a finitely generated free R-module M is a direct summand of M. However, in general, 

a non-commutative Artinian ring does not have this property. In this talk, we show that 

certain class of non-commutative Artinian rings has this property.