Â裲£·²ó¥ê¡¼Âå¿ô¥µ¥Þ¡¼¥»¥ß¥Ê¡¼
Æü»þ¡§
£¸·î£²£²Æü¡Ê·î¡Ë£±£´¡§£²£°¡Á£±£¸¡§£±£°
¡¡¡¡ £¸·î£²£³Æü¡Ê²Ð¡Ë£±£°¡§£°£°¡Á
£±£±¡§£³£µ
²ñ¾ì¡§¹ÅçÂç³Ø
²â¥¥ã¥ó¥Ñ¥¹¡¡»õ³ØÉô¡¡Â裳¹ÖµÁ¼¼
¡¡¡¡¡¡¡¡
¥×¥í¥°¥é¥à
£¸·î£²£²Æü¡Ê·î¡Ë
£±£´¡§£²£° ¡Á
£±£´¡§£´£°¡¡Ëö¿®¡¡°êÌ顦µ×ÊÝÉÙ»ÎÃË (¹ÅçÂç)
Âå¿ô¹½Â¤¤Î´ö²¿³ØÅªÍÍÁê¡¡[ȯɽ»ñÎÁ]
£±£´¡§£µ£µ ¡Á £±£µ¡§£²£µ¡¡¼óÆ£ Éð»Ë
KS3¤Î¼«¸ÊƱ·¿·²II ¡¡[³µÍ×]¡¡[ȯɽ»ñÎÁ]
£±£µ¡§£´£° ¡Á £±£¶¡§£±£°¡¡ÇðÌÚ¡¡Ë§Èþ (»³¸ýÂç)
Some
Generalizations of the BCH
Bound¡¡¡¡[ȯɽ»ñÎÁ]
£±£¶¡§£²£µ ¡Á £±£¶¡§£µ£µ ¡¡µÈ°æ¡¡ÍÎÆó
(½©ÅĹâÀì)
¶Ë¾®¶É½ê¥¢¥Õ¥£¥ó¥ê¡¼´Ä¡¡¡¡[ȯɽ»ñÎÁ]
£±£·¡§£±£° ¡Á £±£¸¡§£°£° ¡¡¾¾²¬¡¡³Ø (»°½Å¸©Î©»ÍÆü»Ô¹â¹»)
Generalizations
of the concept
of cyclicity of codes
£±£¹¡§£°£° ¡Á £²£±¡§£³£°
¡¡º©¿Æ²ñ²ñ¾ì¡§¡¡ºÚ¤Å¤±É´²° (²ñÈñ¡§5000±ß)
£¸·î£²£³Æü¡Ê²Ð¡Ë
£±£°¡§£°£° ¡Á £±£°¡§£³£°¡¡²ÏËÜ Ä¾µª (³¤¾åÊݰÂÂç)
ÈùʬÊýÄø¼°¤Ë¤è¤ë¿Í¸ýÊÑÆ°¥â¥Ç¥ë¡¡¡¡[ȯɽ»ñÎÁ]
£±£°¡§£´£µ ¡Á £±£±¡§£±£µ ¡¡Ê¿ÌǷ (ÌÄÌç¶µ°éÂç)
Rings
over which every free
submodule of a free module is a direct summand
Abstract: If R is a
commutative
Artinian ring, then every finitely generated free R-submodule N
of a
finitely generated free
R-module M is a direct summand of M. However, in general,
a
non-commutative Artinian ring
does not have this property. In this talk, we show that
certain
class of
non-commutative Artinian rings has this property.